橋の動的耐震設計

目 次

編 動的解析による橋の耐震設計の原則

1	章	総 則
	1.1	適用の範囲
	1.2	用語の定義
2	章	耐震設計の原則
	2.1	- 般2
	2.2	橋の重要度
	2.3	設計地震動2
3	章	耐震性能 3
	3.1	橋の耐震に関わる基本性能
	3.2	性能水準の設定
	3.3	基本性能と性能水準4
	3.4	基本性能と限界状態4
	3.	4.1 構造安全性能と限界状態
	3.	4.2 地震後の使用性能と限界状態
4	章	動的解析による耐震性能照査の基本
	4.1	一 般
	4.2	耐震性能照査の基本

編 動的解析による橋の耐震設計

1章	総	則······11
2章	地震	!の影響
2.1	—	般11
2.2	設言	计地震動

2.3	設言	計地震動の設定方向
2.	.3.1	- 般
2.	.3.2	基盤面
2.4	土臣	王の影響
2.5	水區	王の影響
3章	材料	の設計用値 18
3.1	—	般18
3.2	12	ソクリート
3.3	鋼	材20
3.4	地	盤24
4章	応答	解析 25
4.1	—	般25
4.2	解机	所手法の選定
4.3	構道	告モデル
4.4	減衰	夏の設定
4.5	部林	オの力学モデル
4	.5.1	コンクリート部材
4	.5.2	鋼部材
4.	.5.3	支承・落橋防止構造
4.6	地盘	盤および基礎のモデル
4.	.6.1	一般
4.	.6.2	地盤・構造全体モデル
4.	.6.3	地盤・基礎の集約ばねモデル
5章	性能	水準の照査方法
5.1	_	般40
5.2	橋台	全体系の照査
6章	上部	3 構造の健全度の照査
6.1	_	般47
6.2	12	ンクリート部材
6.3	鋼音	8材51
7章	橋踑	駆体の健全度の照査
7.1	_	般52
7.2	コン	ンクリート部材

	7.	.2.1	健全	度レ	ベル	1 にす	対する	照査		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	52
	7.	.2.2	健全	度レ	ベル	2,3	3 に対	する	照査·	•••••	•••••	•••••	•••••			•••••	•••••	•••••	53
	7.	.2.3	健全	度レ	ベル	4 に対	対する	照査			•••••	•••••	•••••						55
	7.3	鋼音	阝材…	•••••	•••••		•••••	•••••	•••••	•••••	•••••		•••••				•••••	•••••	55
	7.	.3.1	健全	度レ	ベル	1	•••••				•••••	•••••	•••••						55
	7.	.3.2	健全	度レ	ベル	2及7	び健全	度レ	ベル3	3	•••••	•••••	•••••			•••••	•••••		56
8	章	基礎	構造	の健:	全度	の照望	£		•••••	•••••	•••••	•••••	•••••			•••••	•••••		57
9	章	支承	・伸	缩装	こお	よび落	齲橋防	止構	造の優	建全度	の照	查…	•••••						59
	9.1	—	般…		•••••		•••••												59
	9.2	支	承…		•••••														60
	9.3	伸絡	富装置	t	•••••		•••••												60
	9.4	落樽	喬防止	構造	į	•••••	•••••		•••••		•••••	•••••	•••••			•••••	•••••	•••••	61
1	0章	t 免	震橋	の健:	全度	の照望	£				•••••	•••••	•••••						61
	10.1	ι —	般·	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••				•••••	•••••	61
	10.2	2 免	震装	置	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••			•••••	•••••		62
	10.3	3 伸	縮装	置	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••			•••••	•••••		63
	10.4	4 落	橋防	止装置	置	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	63
	10.5	5 上	部構	告	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••			•••••	•••••		63
	10.6	6 橋	脚躯	体	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••			•••••	•••••		63
	10.7	7 基	礎構	告	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••			•••••	•••••		66
	10.8	3 地	盤	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••			•••••	•••••	•••••	66
	10.9)制	震構	告			•••••	•••••					•••••						67

編 動的解析法に関する参考資料

1章	動的	り 解析用入力地震動の設定方法
1.1	震》	原断層を想定した地震動の設定 69
1	.1.1	理論的手法
1	.1.2	半経験的手法
1	.1.3	経験的手法
1.2	地震	{動の設定における不確定性の取扱い
1	.2.1	感度解析
1	.2.2	非定常性の影響

	1.2.3	確率論的地震危険度解析	78
1.	3 节	や長周期帯域を考慮した地震動の設定	81
1.	4 各種	種構造物の設指針等で用いられているレベル2地震動の基盤波	82
2章	地畫	&と構造物との動的相互作用	88
2.	1 地	盤との動的相互作用の概要······	88
	2.1.1	一 般	88
	2.1.2	地盤との動的相互作用を考慮する必要性	90
	2.1.3	基準類における地盤との動的相互作用の扱い	93
2.	2 解	折方法の分類と概要	95
2.	3 表	層地盤の動的解析	98
	2.3.1	解析法とモデル化	98
	2.3.2	必要な土質定数と土質試験	103
	2.3.3	土質定数の設定に際しての留意事項	106
2.	4 動的	的解析における基礎のモデル化	109
	2.4.1	各基礎形式の特徴と留意点	109
	2.4.2	基礎のモデル化・・・・・	110
	2.4.3	基礎のモデル化に際しての留意事項	118
	2.4.4	基礎構造物の耐震性能照査に関する参考事例	119
2.	5 異7	なる基礎のモデル化による解析事例	124
	2.5.1	検討概要	124
	2.5.2	対象構造 , 地盤条件および地盤の地震応答解析	124
	2.5.3	集約ばねモデルによる検討	128
	2.5.4	2 次元骨組モデルによる検討	131
	2.5.5	2 次元 FEM による検討	133
	2.5.6	各解析法の結果の比較	133
2.	6 地	^{盤種別が異なる地盤を跨ぐ連続橋の動的挙動}	140
	2.6.1	検討概要	140
	2.6.2	解析条件	141
	2.6.3	地盤の地震応答解析	142
	2.6.4	橋梁の動的解析	143
3章	連續	結鋼桁免震橋の動的解析	147
3.	1 序	論	147
3.	2 検討	討概要	147

	3.2.1	検討対象構造の概要	··147
	3.2.2	検討条件	149
3	.3 解枕	所モデルおよび解析結果	150
	3.3.1	レベル2地震動を対象とした検討	150
	3.3.2	レベル1地震動を対象とした検討	154
3	.4 検言	寸結果	··157
	3.4.1	レベル2地震動を対象とした最適柱断面の検討結果	··157
	3.4.2	レベル1地震動に対する耐震性能照査結果	··157
3	.5 まと	こめ	161
4貫	に コン	クリ - ト橋の検討項目	162
4	.1 過引	≜度曲げ耐力が応答せん断力に与える影響(PC 連続ラーメン橋) ⋅⋅⋅⋅⋅	162
	4.1.1	はじめに	162
	4.1.2	検討対象橋梁および解析モデル・・・・・	162
	4.1.3	橋脚の過強度曲げ耐力と応答せん断力	··164
	4.1.4	まとめ	169
4	.2 上音	『構造端部と橋台との衝突が耐震性能に与える影響(PC 連続ラ - メン橋)	·•170
	4.2.1	はじめに	170
	4.2.2	検討対象橋梁および解析モデル・・・・・	170
	4.2.3	上部構造端部が橋台と衝突する場合の動的応答	··172
	4.2.4	遊間の設定と耐震性能・・・・・	173
	4.2.5	まとめ	178
4	.3 解枕	fモデルの違いが応答値へ及ぼす影響(上路アーチ橋)	·· 179
	4.3.1	はじめに	179
	4.3.2	解析モデル・・・・・	179
	4.3.3	固有值解析結果	180
	4.3.4	橋軸方向の解析結果・・・・・	181
	4.3.5	橋軸直角方向の解析結果	183
	4.3.6	まとめ	··184
4	.4 減衰	ēマトリックスの違いが非線形応答に与える影響(PC斜張橋)	185
	4.4.1	はじめに	185
	4.4.2	減衰について	185
	4.4.3	検討結果	186
4	.5 解枕	ffモデルの相違による検討(エクストラドーズド橋)	188

4	4.5.1	はじめに	188
4	4.5.2	検討対象橋梁	188
4	4.5.3	解析モデルおよび検討ケース	188
4	4.5.4	照査結果の比較	189
4	4.5.4	まとめ	193
5章	鋼橋	の検討	194
5.1	l ラ-	- メン橋における残留変位の検討	194
!	5.1.1	はじめに	194
!	5.1.2	解析モデル・・・・・	194
!	5.1.3	照查方法	195
!	5.1.4	照査結果	195
!	5.1.5	考察及び結論	197
5.2	2 中路	8アーチにおける橋解析モデルの違いが応答に及ぼす影響	197
!	5.2.1	概 要	197
!	5.2.2	動的解析における解析モデルの影響比較	197
!	5.2.3	まとめ	199
5.3	3 上路	各アーチ橋における幾何学的非線形性の影響	199
ļ	5.3.1	概 要	199
!	5.3.2	活荷重による幾何学的非線形性の影響(静的解析)	200
!	5.3.3	初期軸力が固有振動数に与える影響	200
!	5.3.4	動的解析における幾何学的非線形性の影響	200
!	5.3.5	結 論	201
5.4	1 上路	各アーチ橋における床版のモデル化に関する検討	202
!	5.4.1	概 要	202
!	5.4.2	構造モデル・・・・・・	202
!	5.4.3	非線形性の考慮・・・・・・	203
!	5.4.4	従来のモデル化との比較	204
!	5.4.5	結 論	204
5.5	5 水管	賃橋の通水機能確保に関する検討	206
!	5.5.1	検討概要	206
!	5.5.2	解析モデル・・・・・・	206
!	5.5.3	解析条件	206
!	5.5.4	解析結果	207

5.5.5	まとめ	
5.6 斜弦	長橋における軸力変動と曲げモ - メント相関の影響に関する検討…	
5.6.1	概 要	
5.6.2	解析モデルと解析条件	
5.6.3	3 断面力(M-M-N)の相関を考慮した降伏曲面の定義	
5.6.4	解析結果	
5.6.5	まとめ・・・・・	
5.7 吊村	喬における解析手法の影響	
5.7.1	検討概要	
5.7.2	検討内容	
5.7.3	モデル化の違いによる固有値への影響	
5.7.4	動的解析における幾何学的非線形性の影響	
5.7.5	結 論	214

編 動的解析による橋梁の耐震設計例

1章	設	計地震動の作成例	15
1.	1 根	我 要2	15
1.3	2 計	†算方法2	15
	1.2.1	経験的手法(翠川・小林手法)2	15
	1.2.2	2 理論的手法(ハイブリッド手法)	16
	1.2.3	3 半経験的手法(経験的グリーン関数法)	17
1.	3 計	+算条件2	17
	1.3.1	断層モデル諸元	17
	1.3.2	2. 地盤条件	20
	1.3.3	3 その他の条件	21
1.4	4 言	1算結果······2	22
2章	P	C 連続ラーメン橋の耐震設計例	29
2.	1 根	租 要2	29
2.2	2 影	と計対象橋梁	29
2.3	3 影	計条件2	31
	2.3.1	性能水準および限界状態	31

	2.3.2	設計地震動	·231
	2.3.3	地震時動水圧の影響	·231
2.	.4 レイ	ベル1地震動に対する性能水準1の照査	·232
	2.4.1	解析モデル・・・・・	·232
	2.4.2	固有値解析結果	·233
	2.4.3	応答スペクトル法による動的解析結果	·234
	2.4.4	橋脚躯体の健全度レベル1の照査	·236
	2.4.5	上部構造の健全度レベル1の照査	·237
2.	.5 レイ	ベル2地震動に対する性能水準2の照査	·238
	2.5.1	解析モデル・・・・・	·238
	2.5.2	固有値解析結果	·241
	2.5.3	非線形時刻歴応答解析法による動的解析結果	·242
	2.5.4	橋脚躯体の健全度レベル2の照査	·244
	2.5.5	上部構造の健全度レベル 2 の照査	·246
2.	.6 今征	をの課題	·249
3章	i コン	[,] クリートアーチ橋	·250
3.	.1 対象	象橋梁の概要	·250
3.	.2 解材	斤条件	·251
3.	.3 固有	与値解析結果	·253
3.	.4 性能	能水準1の照査	·254
	3.4.1	設計断面力の算出	·254
	3.4.2	性能水準 1 の照査	·255
3.	.5 性能	能水準 2 の照査	·256
	3.5.1	性能水準 2 の照査レベル	·256
	3.5.2	非線形時刻歷応答解析結果	·256
	3.5.3	曲げに対する照査	·259
	3.5.4	せん断力 , ねじりも - メントの照査	·260
	3.5.5	残留変位の照査	·261
4章	t PC	斜張橋	·262
4.	.1 解林	斤対象橋梁	·262
4.	.2 解材	fiモデルと解析条件	·262
	4.2.1	解析モデル・・・・・	·262
	4.2.2	解析条件	·263

4	4.3	固有	∮値解析 ······	·264
4	4.4	応智	答解析結果	·267
4	4.5	部框	オの健全度の照査	·268
	4.	5.1	上部構造の照査(健全度レベル2)	·268
	4.	5.2	主塔および橋脚の照査(健全度レベル2)	·268
Z	4.6	考	察	·270
5 i	¢	РС	エクストラドーズド橋の耐震設計	·271
5	5.1	概	要	·271
5	5.2	設言	+対象橋梁·····	·271
5	5.3	耐霜	雲設計条件	·272
5	5.4	レイ	ベル1地震動に対する性能水準1の照査	·273
	5.	4.1	解析モデルおよび固有振動解析の結果	·273
	5.	4.2	各部材の照査	·274
5	5.5	レイ	ベル2地震動に対する性能水準2の照査	·275
	5.	5.1	解析モデル・・・・・	·275
	5.	5.2	固有値解析	·275
	5.	5.3	橋軸方向に対する健全度の照査	·276
	5.	5.4	橋軸直角方向の健全度の照査	·279
6 I	<u></u>	ΡR	C連続ラーメン橋	·282
6	3.1	概	要	·282
6	3.2	基z	k 条件	·284
6	3.3	解杠	斤モデル	·285
6	3.4	固有	〔 値解析	·286
6	3.5	動的	り解析による性能水準2の照査	·289
	6.	5.1	下部構造の健全度レベル2の照査	·289
	6.	5.2	上部構造の健全度レベル2の照査	·291
7 i	<u></u>	鋼ラ	ーメン橋	·294
7	7.1	概	要	·294
7	7.2	設言	+条件	·296
7	7.3	解机	斤モデル	·297
	7.	3.1	モデル化上の留意点・・・・・	·297
	7.	3.2	解析手法	·298
	7.	3.3	部材のモデル化・・・・・	·298

7	.3.4	減衰特性	302
7	.3.5	初期断面力	302
7.4	固有	〔值解析 ····································	302
7.5	レイ	いし2 地震動に対する性能水準2の照査	305
7	.5.1	上部構造の健全度レベルの照査	305
7	.5.2	下部構造の健全度レベルの照査	306
7	.5.3	橋全体としての耐震照査	309
7	.5.4	今後の課題	309
8章	上路	式鋼アーチ橋	311
8.1	Ŧ	デル橋の概要	311
8	.1.1	設計条件	311
8	.1.2	橋の重要度と性能水準	311
8.2	耐潤	夏設計方針	312
8.3	解机	所モデルの検討	313
8	.3.1	解析モデル・・・・・	313
8	.3.2	床版モデル・・・・・・	313
8	.3.3	非線形モデル(材料構成則)	313
8	.3.4	解析ケース	313
8.4	断面	面諸量	314
8.5	減	衰	315
8.6	線刑	%応答解析	316
8	.6.1	解析方法	316
8	.6.2	固有値解析及び Rayleigh 減衰	316
8	.6.3	入力地震動	317
8	.6.4	解析結果	317
8.7	非約	泉形動的解析	318
8	.7.1	解析方法	318
8	.7.2	固有値解析	318
8	.7.3	入力地震動	319
8	.7.4	解析結果	319
8	.7.5	照查結果	321
8.8	考	察	322
9章	中路	式鋼アーチ橋	324

	9.1	モラ	デル橋の概要	·324
	9.	1.1	設計条件	·324
	9.	1.2	橋の重要度と性能水準	·324
	9.2	解机	fモデルの検討	·325
	9.	2.1	解析モデル・・・・・	·325
	9.	2.2	非線形モデル(材料構成則)	·325
	9.	2.3	幾何学的非線形について	·325
	9.3	断面	可諸量	·326
	9.4	減	衰	·326
	9.5	線刑	彭的解析 ······	·326
	9.	5.1	解析方法	·326
	9.	5.2	入力地震動	·327
	9.	5.3	解析結果	·327
	9.6	非約	泉形動的解析	·328
	9.	6.1	解析方法	·328
	9.	6.2	固有値解析	·328
	9.	6.3	入力地震動	·329
	9.	6.4	解析結果	·330
	9.7	照望	査結果	·330
	9.	7.1	アーチリプ部材の健全度レベルの照査	·331
	9.	7.2	補剛桁部材の健全度レベルの照査	·331
	9.8	考	察	·331
1	0章	t 7	ンガー形式水管橋	·333
	10.1	ŧ	デル橋の概要	·333
	10	0.1.1	設計条件	·333
	10	0.1.2	橋の重要度と性能水準	·333
	10.2	2 耐	震設計方針	·333
	10.3	8 解	析モデルの検討	·334
	10	0.3.1	解析モデル・・・・・	·334
	10	0.3.2	非線形モデル(材料構成則)	·335
	10.4	減	衰	·335
	10.5	手	線形応答解析	·335
	10	0.5.1	固有値解析および Rayleigh 減衰	·335

10.5.2	入力地震動	336
10.5.3	解析結果	336
10.6 照3	查結果	339
10.7 考	察	339
11章 鋼網	斜張橋	
11.1 E	デル橋の概要	340
11.1.1	設計条件	340
11.1.2	橋の重要度と性能水準	340
11.2 解杯	近モデル	
11.2.1	全体系解析モデル	340
11.2.2	基礎のモデル化	342
11.2.3	非線形モデル	342
11.3 非約	泉形応答解析 ······	342
11.3.1	固有値解析および Rayleigh 減衰	342
11.3.2	入力地震動	344
11.3.3	解析結果	344
11.4 まる	とめ	349
12章 吊	構	350
12.1 E	デル橋の概要	350
12.2 設計	計条件	350
12.2.1	基本諸元	350
12.2.2	橋の重要度と性能水準	351
12.2.3	設計地震動	351
12.3 解材	折モデル	352
12.3.1	解析手法	352
12.3.2	モデル化	352
12.3.3	減衰特性	354
12.4 固有	有振動特性	354
12.4.1	固有値解析結果······	354
12.4.2	Rayleigh 減衰	355
12.5 動的	的解析による照査	355
12.5.1	時刻歴応答解析結果	355
12.5.2	性能水準 1 に対する照査	356

	12.6	まと	こめ358
1	3章	免閒	夏支承を用いたTラーメン橋
	13.1	設言	十条件
	13.2	免鶦	夏支承の設計
	13.3	性俞	と水準1に対する照査
	13.4	性俞	と水準2に対する照査
	13.4	4.1	解析手法と解析モデル
	13.4	4.2	部材のモデル
	13.4	4.3	減衰および固有値解析
	13.4	4.4	設計地震動371
	13.4	4.5	解析結果
	13.4	4.6	橋脚躯体の健全度レベル2の照査
	13.4	4.7	上部構造の健全度レベル1の照査
	13.4	4.8	免震支承の健全度レベル1の照査
	13.5	支承	系構造の違いによる支承変位の比較