

2. STRONG GROUND MOTIONS

2.1 INTRODUCTION

This chapter describes the results of strong motion analysis. Signal to noise ratios, corrected accelerations, velocities and displacements of the intense ground motions recorded in this earthquake are presented. In order to illustrate different characteristics of these records, different spectra such as power spectral densities, response spectra and H/V spectra are also provided and a discussion on each spectrum is presented in a nutshell.

2.2 RECORDED ACCELEROGRAMS

On 22 June 2002, at 7:28:20 local time, a destructive earthquake struck some vast regions in Hamadan, Qazvin and Zanjan provinces in Iran. This earthquake was also felt in Tehran, Kermanshah, Qom, Central, Ardebil and Gilan provinces as well. The magnitude of this earthquake as announced by the Earthquake Information Center of The US Geological Survey, was Mw=6.5 (See **Chapter 1**).

Figure 2.1. Map of accelerometer stations: Stations where the main event of the Changureh Earthquake was recorded are marked with red (BHRC).

According to the report of Building and Housing Research Center (BHRC), the earthquake was recorded by more than 50 digital accelerometers. The maximum acceleration of about 0.5g was reached at Avaj station, 26km away from the hypocenter. **Table 2.1** shows the recorded PGA values, their locations, times and azimuths. The locations of the stations are also shown in **Figure 2.1**. Accelerometers at red squares among the other stations were all triggered by the main event, and are found in an area of about 250 Km in radius.

No	STATION		Gei				Anitude	Azimut	
		Record	Coord. U.P.G			G.A (cm	nete)		1. B
	weeks	No.	E	N		V			J. J.
1	AVAJ	2749-1	49 22	35.58	498.75	271.67	484.12	1970	105 195
2	RAZAN	2756-1	49.03	35.38	183 53	134.59	200.58	1840	5 55
3	SHRINSO	2781	48.45	35.5	179.7E	92.54	128.07	1810	170 260
4	KABODARAHANG	2754-1	48.72	35.2	87.5	70.91	166.19	1675	150 240
5	ABEGARM	2748-1	49.28	36.75	119.68	60.99	130.37	1550	312 42
6	GHOHORD	2778	48.07	35.47	51.03	23.30	85.09	1900	168 258
7	DARSCHIN	2769-2	49.23	36.03	55.67	42.32	77.6	1675	230 320
8	APHAR	2763	49.22	36.15	29.43	28.92	74.29	1504	310 20
19	KHARAGHAN	2024	19 96	35.33	36.00	20.93	49.12	1900	90 99
10	EACKRAND	2787-3	49.69	36.4	42.30	14.76	24.19	1320	190 382
11	EAHAD	2250	18.43	34.0	34.02	17.3	40.18	1730	147 732
12	SAFINDALEH	2772	49 07	36.3	39.16	22.5	34 31	1679	40 130
-	TVAADAD	2741-2	89.45	15.90	14 40	10.14	37.1	1400	781 331
	COLTABEN	27777	48.3	35.55	99.00	36.99	35.48	2120	340 390
10	GOLIAPEN	2779	40.4	30.44	12.74	20.33	32.40	1200	240 330
10	ROENZAHDA	2771	49.13	30.12	10.24	22.01	21.29	1700	234 322
10	EUERIZARIKA	2/50	50.05	32.11	19.21	10.98	31.39	1210	212 2
10	UANESP APAN	2/51-1	89.73	35.78	413	15.75	25,18	1450	110 200
18	NAHAVAND	2/61	49.52	35.92	25.67	18.05	27.26	1380	322 62
19	KHOSROABAD	2055	47.62	35.52	23.17	10.5	23.31	1840	304 34
20	KHODABANDEH	2753	48.69	36.12	23.2	13.84	17.12	2000	10 100
21	TEHRAN2	2766	51.4	35.72	22.86	5.02	17.34		50 140
22	KAHAK	2790	积阳	36.12	22.86	6.56	18.92	1.00	228 318
23	GARMAE	2752	48.22	35.83	18.98	19.57	22.49	1590	140,230
24	HAMEDAN	2700	48.52	34.78	22.06	7.06	12.17	1800	145 235
25	ROSTAMABAD	2792	49.85	36.67	21.69	11.55	20.05	1470	126 316
26	DEHLALAL	2768	48.7	36.31	18 12	20.48	20.65	2040	82 172
27	MARCABAD	2774	50.85	35.73	12.05	5.31	20.64	1216	0 90
28	MAMOREH	2796	50.62	35.3	20.09	5.77	15.93	1270	115 205
29	TALEGHAN	2618	50.77	36.18	13.44	12.77	19.23		173 263
30	ESHTEHARD	2773	50 37	35.72	19.12	6.82	17.15	1106	357 94
31	FARMAHIN	2826	49.68	34.5	19.05	10.55	18.35	1785	357 17
-	KOMUAN	2021	89 23	34.72	10.65	REA	10.34	1760	317 42
	COLTABILITY III	706.7	410.00	10.00	14 01	110	10.41	1704	1011 1011
24	HALER	2770	49.05	36.9	17.80	8.01	11.6	1000	70 180
24	CHORNEN	2000	47.0	30.2	0.45	D-10	17.73	4044	20, 100
30	TALCAR	2000	47.0	30.17	10.10	4.77	15.74	1010	30 120
20	TAPAS -	2002	47.1	30.41	15.00	9.41	10.74	1022	250 240
21	1EPPIGAN-GHC	21;44	51 13	35.7	10.4	5/4	12.25	T.	20 110
30	SEFIDROUD	2705-3	49.30	36.75	15.09	3,73	7.50	-	28 118
39	NOBARAN	2622	49.7	36.12	15.4	9.35	15.48	1654	160 250
40	VAHIDIYEH	2803-2	61.01	36.6	14.32	5.76	15.4		40 130
41	ESFANDAN	2794	49.33	34.63	12.7	8.95	14.95	1750	160 25
42	ZARINABAD	2758	48.28	36,41	14.85	6.11	11.77	1740	334 34
43	AGHABABA	2786-2	49.75	36.33	14 44	6.26	12.7		184 274
44	NIKOYEH	2291	49.57	36.29	14.43	9.43	10.13	1520	268 358
45	TEHRAN1	2765	51.4	35.72	9.84	5.02	14.32	+	280 10
46	FARDIE	2639	-	-	13 93	6.52	957	+	酒 355
47	KAVANEH	2856	46.98	34.95	93	3.28	13.92	1620	270 360
48	KALATELARZAN	2954	46.66	35.35	11.64	2.62	13.14	1530	300 30
49	KAHRIZAK	2820	51.37	35.5	13.09	4.22	10.88	1024	350 80
50	VAHNABAD	2619	51.17	35.45	12.02	E.12	10.84	1037	当 125
51	JOFTAN	2828	49.75	34.84	12.74	717	11.75	1540	365 365
63	TAKESTAN	2293	49.7	36.05	12.12	11.23	11.92	1220	200 12
6.9	CADMONDEN	3093	61.00	36. 2	117	6.66	0.45	142712	104 784
5.4	00M	2255	50.00	34.00	8.24	4.54	11.57	000	195 295
14	MARCHAN ADD SCADAD	2700	49.67	34 70	E.1E	4.01	11.57	907	100 220
00	THE CLARE ADDASABAD	2773	40.04	34 / 5	0.10	4.62	11.50	1000	30 210
20	Televisie	2/90	40.42	30.67	11.06	5,18	10.12	1000	24 124
51	HAJB	2785	30.18	35.54	9.78	6.72	11.05	1613	10 100
50	TEMRAN3	2/67	51.4	30.72	4.35	211	5.23	+	02 102

 Table 2.1. List of the stations that record Changureh Earthquake (BHRC).

In **Figure 2.2**, three uncorrected components of the 4 strongest accelerograms are shown (excluding Avaj station). Features in common for the records are (1) spiky peaks and (2) short duration times.

Figure 2.2. Four strongest motions recorded at Razan, Shirinso, Kabodarahang and Abegarm

Figure 2.2 (cont). Four strongest motions recorded at Razan, Shirinso, Kabodarahang and Abegarm

At a glance over the planar locations of the stations with recorded PGA values, the bigger PGA values are mostly found on the western side of the Avaj fault that was activated in the earthquake. This fact may prove that there was a directivity effect.

As shown in **Table 2.1**, there are only two horizontal PGA values larger than 0.2g. For this reason, discussion will be narrowed to these two components. They include Avaj and Razan records with the maximum uncorrected PGA values of 0.51g and 0.2g reached.

An earthquake accelerogram generally contains all accelerations from the time that the earthquake begins until the time that the motion has returned to the level of background "noise". For engineering purpose, only the strong motion part must be extracted. For this, both the pre-event parts and tail parts of the accelerograms were examined. Though there is no guarantee that the tail parts contain only pure noises, the reference noise signal was taken from the tails because there were some forshocks effects appearing in the pre-event parts. **Figures 2.3** and **2.4** show the signal to noise (S/N) spectra of three components of Avaj and Razan records, respectively. From these figures, the lower and higher cutoff frequencies for a band-pass filter were set at 0.15 Hz and 25 Hz, respectively, and all records were conditioned so that the noise amplitudes were minimized. The corrected accelerations together with velocities and displacements at Avaj and Razan stations are shown in **Figures 2.5** and **2.6**, respectively.

Figure 2.3. Avaj S/N ratio spectrum (a) Horizontal 1 (b) Vertical (c) Horizontal 2

Figure 2.4. Razan S/N ratio spectrum (a) Horizontal 1 (b) Vertical (c) Horizontal 2

Figure 2.5. Corrected acceleration, velocity and displacement at Avaj station

Figure 2.6. Corrected acceleration, velocity and displacement at Razan station

2.3 PSD AND RESPONSE SPECTRA

In conventional strong motion analyses, it is common to describe frequency characteristics of a motion in terms of Fourier Spectrum. On the other hand, power spectral density (PSD) of the motion is useful in characterizing an earthquake as a random process.

Power spectra of Avaj and Razan records are shown in Figures 2.7 and 2.8.

Figure 2.8. PSD at Razan station.

Response spectra were also calculated for these records, and plotted in a four-way logarithmic plot (tripartite plot) in **Figures 2.9** and **2.10**. As is clear from Avaj PSDs and response spectra, two distinct dominant frequencies at about 3 Hz and 5 Hz are recognized for the longitudinal horizontal component, one at about 4 Hz for the transverse component and one at about 5 Hz for vertical component. As for Razan, there are two distinct peaks at around 1.2 Hz and 4 Hz for the longitudinal component and 3 Hz for both the transverse and vertical components.

Figure 2.10. Response spectra at Razan station

2.4 HORIZONTAL TO VERTICAL SPECTRAL RATIOS

Local site conditions can profoundly influence all the important characteristics of strong ground motion. If an accelerometer is installed on a rock outcrop, it can be used as a reference and the local site effects at the other sites nearby can be recognized by comparing them with the reference record.

In the area of Changureh Earthquake, due to the lack of such a reference station, the HVSR (Horizontal to Vertical Spectral Ratio) technique (Nakamura, 1989) was utilized. This technique has received due attention recently because of its potential for identifying predominant periods of soft soil deposits as well as amplification factors. The applicability of HVSR technique to obtain site effect using both weak and strong motion records in the frequency domain was examined by Lermo and Chavez-Garcia [4] and Zare and Bard [3].

HVSRs were calculated for both Avaj and Razan records, and are shown in **Figures 11** and **12**, respectively. HVSR for Avaj record has a peak at about 2.2 Hz, while a peak at around 1.5 Hz is seen in Razan. From this, Avaj and Razan sites are classified into Types 3 and 4, respectively (Type 1 =rock site, Type 2 = hard soil, Type 3 = medium soil and Type 4 = soft soil, See [3]).

Figure 2.11. HVSR at Avaj

Figure 2.12. HVSR at Razan

2.5 AFTERSHOCKS

Aftershocks of the Changureh earthquake were recorded at BHRC stations as well as temporary stations set by International Institute of Earthquake Engineering and Seismology (IIEES). The list of BHRC aftershocks is given in **Table 2.2**. The greatest aftershock with the peak PGA value of 0.15g was recorded at Changureh.

As for IIEES aftershocks, Zare[2] reported that about 37 aftershocks in the first day were recorded in Hesar village. **Figures 2.13**, **2.14**, **2.15** and **2.16** show respectively the greatest aftershock among those recorded at Hesar, its average FFTs, HVSRs and response spectra for total 37 seismometers. These figures show that the fundamental frequency of the record was about 20 Hz indicating that the site is stiff.

111			Geog.	Cord.	Epicenter			UPGA (Cm/s/s)			Origin Time	
No	Station	Record No	E	N	E	N	M	L	V	Т	h:m:s	D-M-Y
1	CHANGUREH	2841-5	48.96	35.77				56.67	88.88	150.28	13:29:58	25/07/2002
2	CHANGUREH	2827-2	48.96	35.77				146	30.8	87.85	20:26:09	06/07/2002
3	CHANGUREH	2827-5	48.96	35.77				81.12	60.55	133.2	22:58:01	10/07/2002
4	ABEGARM	2748-3	49.28	35.75	48.91	35.64	5.1	54.32	20.96	72.67	06:45:33	22/06/2002
- 5	CHANGUREH	2764-2	48.96	36.77				55.56	23.88	27.83	18:58:03	26/06/2002
- 6	CHANGUREH	2816	48.96	35.77	48.9	35.69	4.3	52.54	23.12	41.98	19:24:51	03/07/2002
7	AVAJ	2749-5	49.22	35.68	48.91	35.64	6.1	39.13	29.28	44.5	06:45:33	22/06/2002
8	CHANGUREH	2827-13	48.96	35.77				25.45	31.95	36.1	08:13:50	22/07/2002
9	CHANGUREH	2827-6	48.96	35.77				16.14	20.5	35.97	02:26:63	11/07/2002
10	AVAJ	2749-2	49.22	35.58				35.8	12.52	25.45	03:03:21	22/06/2002
11	CHANGUREH	2827-12	48.96	35.77				24.48	29.04	34.62	08:04:26	22/07/2002
12	CHANGUREH	2827-1	48.96	35.77				18.62	21.9	33.58	22:43:13	04/07/2002
13	CHANGUREH	2841-2	48.96	35.77				18.62	21.9	33.58	22:43:02	04/07/2002
14	AVAJ	2783	49.22	35.58	48.86	35.49	4.6	32.92	14.04	26.3	18:18:46	26/06/2002
15	CHANGUREH	2788	48.96	35.77				19.05	31.31	29.22	09:40:21	01/07/2002
16	CHANGUREH	2841-3	48.96	36.77				25.77	19.9	30.23	17:35:46	12/07/2002
17	CHANGUREH	2861	48.96	35.77				25.77	19.9	30.23	17:35:56	12/07/2002
18	CHANGUREH	2784	48.96	35.77				26.91	21.48	29.76	16:20:27	28/06/2002
19	ABEGARM	2748-2	49.28	35.75				19.07	5.74	29.38	03:00:42	22/06/2002
20	CHANGUREH	2827-10	48.96	35.77				18.12	12.21	25.96	20:18:06	20/07/2002
21	CHANGUREH	2827-7	48.96	35.77				23.46	15.61	23.63	03:06:02	11/07/2002
22	CHANGUREH	2827-11	48.96	35.77				23.06	14.52	18.49	22:08:43	21/07/2002
23	CHANGUREH	2827-9	48.96	35.77				19.17	13.56	21.94	15:22:26	20/07/2002
24	CHANGUREH	2764-1	48.96	35.77				21.37	21.92	19.52	18:51:17	26/06/2002
25	CHANGUREH	2775	48.96	35.77				19.91	12.79	18.02	18:19:58	27/06/2002
26	AVAJ	2749-4	49.22	35.68	48.68	33.9	4.1	19.12	7.6	13.37	04:41:48	22/06/2002
27	CHANGUREH	2827-3	48.96	35.77				13.72	7.81	18.09	21:47:19	08/07/2002
28	RAZAN	2756-2	49.03	35.38	49.01	35.51	4.4	17.07	8.06	17.67	03:32:00	22/06/2002
29	ABEGARM	2782	49.28	35.75	48.86	35.49	4.6	14.22	7.94	16.08	18:18:46	26/06/2002
30	RAZAN	2776	49.03	35.38	48.91	35.64	5.1	13.24	10.57	15.88	06:45:33	22/06/2002
31	CHANGUREH	2841-6	48.96	35.77				8.79	14.64	11.04	15:03:53	25/07/2002
32	KABODARAHANG	2754-2	48.72	35.2				10.01	6.67	14.63	02:58:51	22/06/2002
33	CHANGUREH	2841-4	48.96	35.77				11.62	8.55	14.63	04:33:58	25/07/2002
34	CHANGUREH	2841-1	48.96	35.77				9.74	14.59	10.13	18:01:20	29/06/2002
35	ZIYAABAD	2760-3	49.45	35.99	48.91	35.64	6.1	14.41	3.88	9.01	06:45:33	22/06/2002
36	CHANGUREH	2827-4	48.96	35.77				9.87	3.93	13.93	03:19:42	10/07/2002
37	AVAJ	2749-3	49.22	35.68	49.01	35.51	4.4	13.7	6.59	13.76	03:32:00	22/06/2002
38	DANESFAHAN	2751-2	49.22	35.58	48.91	35.64	5.1	12.87	5.98	4.84	06:45:33	22/06/2002
39	CHANGUREH	2827-8	48.96	35.77				12.23	5.34	12.51	04:39:51	11/07/2002

 Table 2.2 Aftershocks (BHRC)

Figure 2.14 Average FFT spectra for 37 aftershocks recorded during June 22, 2002 at Hesar. (Zare, 2002)

Figure 2.15 Average and Average+1 standard deviation HVSRs for 37 aftershocks recorded during June 22, 2002 at Hesar. (Zare, 2002)

Figure 2.16. Average response spectra for 37 aftershocks recorded during June 22, 2002 at Hesar: (a) Horizontal componets. (b) Vertical components (Zare, 2002)

(2.1-2.5/ A. A. MOINFAR, Center of Earthquake Studies of Tehran (CEST), Iran, A. NOORZAD, Visiting Research Fellow, IIS, University of Tokyo, and A. ANSARI, University of Tehran, Iran)

REFERENCES

Building and Housing Research Center (BHRC) web site. http://www.bhrc.gov.ir

- Zare M., (2002), The changureh (Avaj) Earthquake of 22 Julay 2002, Mw6.3, Geological-Seismological Overwiew. <u>http://www.mehdizare.com</u>.
- Zare M., P-Y Bard, M. Ghafory Ashtiany (1999), Site Characteristics for the Iranian Strong Motion Network, J. soil Dyn. Erq. Eng. **18**(2), 101-123.
- Lermo, J and F. J. Chavez-Garcia (1993), Site effect evaluation using spectral ratios with only one station, Bull. Seism. Soc. Am, 83, 1574-1594.