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1. INTRODUCTION

In many engineering applications involving an
aging or partially damaged concrete structure, the
available information on structural integrity is often
confined to the crack-opening widths of several
distinct cracks in the structure. Take the concrete
lining of an aging waterway tunnel, one of the major
constituents of a hydraulic power facility, as an
example. Due to the formation of caves behind the
concrete lining in the ceiling area, structural
deformation progresses under external compression,
leading to the formation of several distinct
longitudinal cracks, as shown in Fig. 1. Obviously,

for evaluating the structural safety of these aging Fig. 1 An aging waterway tunnel with large longitudinal

waterway tunnels, crack-opening widths serve as an aBcks

important index. In these circumstances the
commonly adopted smeared crack approach for

multiple cracks is inapplicable because of its hence numerical analysis of multiple cracks using

continuum assumption for the cracked concrete, and  discrete modeling techniques is desirable.
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Fig. 2 The concept of the crack-tip-controlled modeling of multiple cracks

In the present study, the discrete crack approach,
which has been extensively used for analyzing
single cracks"?¥99)  is extended for numerical
analysis of multiple cracks, based on a fictitious
crack model and the crack-tip-controlled numerical
algorithm. An explicit formulation of the mode I-
type crack propagation for multiple cracks is
presented, and a minimum load criterion for crack
extension 1s proposed for its numerical
implementation. Other principles necessary for
analyzing multiple-crack problems are also
explained. Next, the newly developed finite element
program for discrete modeling of multiple cracks is
used for analyzing the failure process of.a.real-size
tunnel specimen under distributed load conditions,
and the numerical results are found to be in good
agreement with available- documented expenmental
resu]ts e S : S

2. DISCRETE CRACK MODELING OF
MULTIPLE CRACKS

The primary obstacle in applying the analytical
procedure of the crack-tip-controlled approach to
problems involving ' multiple .cracks ' lies :in the
ambiguity of determining the effective crack .or

(b) Forces and displacements at the cracks due
to a pair of unit cohesive forces at Crack A
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cracks among a group of potentially active cracks in
numerical analysis. To overcome this difficulty, the
strategy employed here. is to take turn to assume
each crack as an effective crack while restraining
the growth of others, and calculate the load required
for propagating this particular crack by solving the
relevant crack equations. The true effective crack, as
well as the force and displacement fields, is then
determined based on a minimum load criterion
which stipulates the propagation of the effective
crack at the minimum load. When an invalid
solution is encountered, manifested either by the tip
tensile stress exceeding the tensile strength or by
overlapping of the crack surfaces (with negative
crack opening displacements obtained) at restrained
cracks, the configuration’ of the corresponding crack
is then modified accordingly by releasing or closing
the tip dual nodes. Then the case is recalculated.
Eventually, this may result in other possible crack
propagation patterns besndes the initially assumed
single crack growth, which include simultancous
crack growth involving several cracks, and crack‘
growth accompamed by crack closure.

_Fig. 2 illustratés two prescribed cracks of the
mode I-type; crack. A and crack B, and the crack
equatnons that govern thelr propagatlon are denved‘
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Fig. 3 " A fracture test of a tunnel specimen and the numerical rﬁod’eling ‘

below. For clanty, the forces and dxsplacements of
the restrained crack are denoted using apostrophe
marks.

To ‘begin with, crack A is assumed to be the
effective crack. Along each fictitious crack the
cohesive forces and dlsplacements follow the strain-
softening law of concrete:

o)

f(W ) W

‘ ‘Fb".=f(W,,") )
wherei=1... N,j=1,., M, and N and M are the
number - of nodes inside each ﬁctitious crack,
respectively. :

For crack A to extend, the tensile force at its tip
must reach the limit value, t.e.,

: N M ‘
O =CR, P, +3 CLLF +3 CILF, (3)

i=1 Jj=1

where @, 1s the llmlt nodal force calculated from
the tensile strength of concrete. Note that the tensile
forces at the tip of crack A, CR,; CL and CI,/, are

Numerical modeling
(Initial notch 25 mm) -

y ot

due to a unit external load, a pair of unit cohesive
forces at the ith node of crack A, and a pair of unit
cohesive forces at the jth node of crack B,
respectively. The external load P, stands for the load

required for the propagation of crack A, while the

growth of crack B is restrained.
The displacements along the two fictitious
cracks are given by

w,=BK, P, +ZAK”‘F"+ZAK F7@)

_] =1

W",—BK’ P + AKJ’F'+ AK”‘F"‘ (%)
ba

Al<

Here, the compliances. BK,' at crack A and BKb at
crack B are due to the external.load P, The
influence coefficients AK,* and .AK,” are the
displacements at the ith node of crack A due to a
pair of unit cohesive forces at the kth node of crack
A, and a pair of unit cohesive forces at the jth node
of. crack B, respectively. Slmllarly, the influence
coefficients AK,;" and AK/* give the displacements
at the jth node of crack B due.to a pair of unit
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Fig. 4 The bi-linear strain-softening relation of concrete

cohesive forces at the ith node of crack A, and a pair

of unit cohesive forces at the kth node of crack B,
respectively.

Equations (1) to (5) form the so called crack
equations with the number of equations (2N + 2M +
1) matching the number of unknowns (2N + 2M +
1), and thus, the growth of the prescribed multiple
cracks is uniquely defined.

Alternatively when crack B is the assumed
effective crack, the crack equations are derived and
given by

Fr=foy (6)
F = fwy) S
: N M
Q, =CR, P, + ZCI,;,F;" +ZC1;‘F;’ ®)

W"—BK’ P, +ZAK”‘F"+ZAK E/ (9)

_/ =1

W) =BK]-P, +ZAK;;,F" +ZAK”‘F" (10)

i=1

Here, the external load P, is'the required load for the
propagation of crack B, while the growth of crack A
is restrained.

- .Equations (1) to (10) form the crack equations
for discrete modeling of two cracks.:Apparently, the
above equations can be readily extended to-include
any numbeér of cracks. For brevity 'of presentation,
the crack equations on' arbitrary number of cracks
are omitted hére. - = P

As’ previously stated, numerical implementation
of: the above crack equations is based “on the
minimum::load" criterion for -determining the true

Table 1 Material properties of the tunnel specimen

E AR G, W56, /)
(GPa) (MPa) | (MPa) | (N mm) (mm)
20.00 0.20 20.00 2.00 0.10 0.25

effective crack. Note that the solutions of the crack
equations are checked for negative crack opening
displacements (COD) and the reversing or
superficial increasing of the cohesive stresses during
the closing of a restrained crack. These invalid
solutions are corrected either by resetting the tip of
the corresponding fictitious crack backward and
recalculating the case, or simply by reducing the
increased cohesive stresses to the previous level to
ensure the decrease of concrete rigidity is an
irreversible process. Again, following the stress
analysis, the tip tensile stresses at restrained cracks
are checked against the tensile strength of concrete.
If a tip tensile stress is found to exceed the tensile
strength, the corresponding tip dual nodes are then
disconnected to propagate the crack, and the case is
recalculated. Because of the space limitation, the
flow chart showing the numerical procedures for
analyzing multiple cracks is omitted here.

3. NUMERICAL STUDIES ON TUNNEL
SPECIMENS WITH MULTIPLE
CRACKS ‘

A fracture test of a real-size concrete lining
specimen of a waterway tunnel under distributed
loads applied to the side walls, as previously
documented®, is shown in: Fig. 3. The test was
carried out to investigate the failure process of a
tunnel with caving above the ceiling area, and to
study the remaining load-carrying capacity after the
formation of cracks. The numerical case to be
studied is also shown in Fig. 3, which is a half
model. of the test specimen, taking into account the
assumed symmetric 'conditions of the experiment.
As illustrated, the numerical case contains three
initial notches whose positions are determined
roughly from the crack patterns of.the ‘test results.
The material properties of the- test specimen are
summarized in Table 1. Note that the bi-linear strain
soﬂemng relation in Fig. 4 is employed to solve the
crack equations.

Although no measurements of the CODs were
taken during the test, the ‘crack propagation patterns
were carefully recorded. The test and numerical
results' are shown in Fig. 5.t was reported that
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Fig. 5 Numerical results of the crack analysis of the tunnel specimen

during the experiment a certain degree of eccentric
loading occurred, generating a higher pressure-load
on the right wall. This is evident from the load-
displacement relations separately measured on the
left and right walls, as well as from the crack
propagation chart of the experiment. Despite this
discrepancy in the loading conditions between the
actual test and the numerical study, judging from the
load-displacement relations it is still reasonable to

conclude that the present numerical model
reproduces well the general structural response of
the tunnel specimen. Regarding the crack behaviors,
crack B in the middle of the wall and crack C in the
bottom plate are found to be most active, contrasting
sharply to the slow opening of crack A in the ceiling
area. The growth of crack A stops as the maximum
load is obtained at the fourth step of the
computation, and remains inactive till structural
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failure. Note that the maximum COD of crack B
reaches roughly 0.2 mm. Taking into consideration
the actual eccentric load conditions in the test, the
crack behaviors and crack propagation patterns
obtained from the numerical analyses are regarded
as in good agreement with the experimental
observations. '

4. CONCLUSIONS

The discrete crack approach is extended for
numerical analysis of multiple cracks, based on the
fictitious crack model and the crack-tip-controlled
numerical algorithm. Assuming each crack as an
effective crack while restraining the growth of
others in turn, an explicit formulation of mode I-
type crack propagation for multiple cracks is
presented. The true effective crack is then
determined based on the minimum load criterion
which stipulates the propagation of the effective
crack at the minimum load. By eliminating invalid
solutions to ensure proper crack behavior, this
numerical model is capable of producing a variety
of crack propagation patterns.

Although numerical analysis of multiple cracks
using the discrete approach is deemed difficult, the
proposed method presents a systematic solution to
the problem, based on simple and clear principles of
the fracture mechanics in concrete. The accuracy of
the model is demonstrated through solving a
structural problem containing multiple cracks, i.c.,
the fracture tests of a real-size tunnel specimen.

Comparisons are made between the numerical
analyses and the experimental results, with an
emphasis given to the load-displacement relations
and the crack propagation patterns. The agreement
between the two results is found to be excellent.
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