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1. INTRODUCTION

We have been developing a new method, termed
Applied Element Method (AEM), to simulate total
behavior of structures from elastic to highly nonlinear
behavior including failure process. With this method,
various nonlinear behaviors, such as material nonlinear
behavior, collapse process with separation and
recontact between elements can be simulated
accurately with reasonable CPU time. Complicated
material modeling and special knowledge on location
and/or direction of cracks is not necessary before the
analysis. _

The AEM assumes virtual discritization of
structural members. Each element totally represents
stresses, strains, deformations and failure of a certain
area. The accuracy of the method in small deformation
range including Poisson's ratio effect was checked in
Refs. (1), (2), and (3). Non-linear behavior such as
crack initiation, propagation and opening and closing
of cracks during cyclic loading are investigated in Refs.
(2) and (3). Since the failure criteria is based on the
principal stresses of the material, element shape and
discritization pattern will not effect the simulation
results unlike the Extended Distinct Element Method,
EDEM,? and the Rigid Body Spring Model, RBSM,®
whose simulation results heavily depend on the
element shape and discritization.

Although our final goal is to simulate the collapse
process of the structure accurately for reducing human

causalties due to earthquake, before discussing the
collapse behavior, accuracy of this method would be
verified in large deformation range. This paper
introduces a numerical technique capable to follow the
large deformation behavior of structures. Unlike the
FEM, there is no need to formulate the geometrical
stiffness matrix and this makes the method general and
it can be applied for any case of loading or structure
type. Accuracy of the proposed new technique is
discussed by comparing the numerical analysis results
with the theoretical results. :

2. SIMULATION OF BUCKLING AND
POST BUCKLING BEHAVIOR IN
STATIC CONDITION

. The formulation presented in Ref. (1) cannot be
used to study large-scale deformation because only
the material non-linearity is taken into account and
not the geometric non-linearity. To account for
these geometrical changes, a simple numerical
procedure is introduced. The main assumption in
the formulation is that the direction of applied
forces does not change during the analysis. The
general equilibrium equation is '
[K][aU}=af + R, + R, @)
where [K] is nonlinear stiffness matrix; Af the
incremental applied load vector and [AU] the
incremental displacement vector. The terms, R,, and
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R are residual force vectors due to material and
geometrical non-linearity respectively.

The method is implemented by assuming the. zero
initial values for R, and R and then the equation is
solved to get incremental displacement, [AU]
Structure geometry is modified according to calculated
incremental displacements. Spring force vectors are
modified according to the new element configuration.
With these geometrical changes incompatibility occurs
between applied forces and internal stresses. Then
check the situation of cracking and calculate the
material residuals load vector R, (In elastic analysis,
R, equals zero). Calculate the element force vector, F,,
from surrounding springs of each element. And then
calculate the geometrical residuals around each
element from the equation below.

RG =f'Fm _ )

Equation . above means that the geometrical
residuals account for the incompatibility between
external applied forces, f, and internal forces, F,,, due
to modification of geometry of the structure.
Calculate the stiffness matrix for the structure in the
new configuration considering stiffness changes at
each spring location due to cracking or yield of
reinforcement. Then apply again a new load or
displacement increment and repeat the whole
procedure. Residuals calculated from the previous
increment can be incorporated in solution of Eq. (1) to
reduce the time of calculation. o

Although this technique is simple, the numerical
results showed high accuracy in following the
structural behavior. However, the following limitations
were encountered:

1. Complete symmetry of the structure and loading
should be avoided during the large deformation
analysis. _

2. It should be emphasized that small deformation
theory is assumed during each increment.

3. NUMERICAL ANALYSIS & RESULTS
(a) Fixed Base Cantilever

The first case study is performed using a fixed base
elastic cantilever under axial load. The height of the
member is 12.0 m and the cross section is 1.0 m x 1.0
m. The Young's modulus assumed is 8.4 x 10* tf/m?.
The load is applied at the top of the column with the
constant-rate vertical displacement. To break
symmetry of the system, the stiffness of one of edge
elements was increased by just 1% relative to the other
elements. Figure 1 illustrates the deformed shape of
the cantilever during and after buckling. Figure 2
shows the horizontal and vertical displacements at the
loading point in three different cases with and without

Fig. 1 Post buckling behavior of a cantilever
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Normal Strain (*1000)

Distance

Fig. 3 Variation of intemal stress distribution during

buckling

-200—



consideration of the geometrical residuals together
with the theoretical load-displacement relations®. The
theoretical results can be obtained by the following
procedure:

1. Assume the angle o (ranges between 0 and ).

2. Solve Eq.:(3) below numerically and calculate the
applied load.. Where P is. the applied load; E
Young's modulus; I moment of inertia; L the
cantilever length and @ the integration parameter.

2‘
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5

3. Calculate the hbri_zontél-and vert‘ic_allldisplécements.

And then assume a new angle a and go to the step

2-

In theoretical results, the effects of axial and. shear

deformations are neglected. Although these effects are
relatively small, they are taken into account in our
analysis. From Flgs 1 and 2 the followmg can be
notlced :

1. The load- dlsplacement relation obtamed when the
* geometrical residuals are considered is close to the
theoretical values till very large dlsplacements

2. The calculated buckling load without consideration
.of geometrical residuals, 'only with modification of
geometry; was about 47 tf which is quite larger
than the theoretical one (7.8 tf). This means that
modification of the geometry only during - the
analysis is not sufficient.

3.. The calculated load-displacement relation ' is
tangent to the horizontal line at the buckling load
value which agrees well with the theory.©

4. Slight increase in the load after buckling results in
very large displacements.

5. When the vertical displacement is .about 9 m,
horizontal displacement begins to decrease.

6. The cantilever shape changes after buckling to an
arch, which makes the stiffness of the specimen
increase after buckling.

Changes in internal stresses of an intermediate
section during analysis are shown in Fig. 3. Before
buckling, stresses are mainly uniform compression and
only axial deformations are observed. After reaching
the buckling load, although the applied load is constant
(P~7.8 tf), bending moments generates and large
deformation occurs because of the buckling bending
moments. This shows one of the strong points in our
analysis that mechanical behavior of any point in the
structure can be followed accurately even if large
deformations occur.

(b) Snap Through Buckling of Two-Member Truss

The second case study is a simulation of buckling
behavior of two-member truss. The truss dimensions
and loading point are shown in Fig. 4. The Young's
modulus is assumed 2.1 x 10* t/m? Half of the truss is
analyzed because of symmetry. The analysis was
performed by controlling the displacement at
intermediate hinge. The load-displacement relation and
the member force are shown in Fig. 4. The results of
the load-displacement are compared with the
theoretical ones. : '
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Almost no difference ex1sts between the- calculated
and theoretical results. The truss during deformation
passes through the following stages:

1. Because the member length decreases during
loading, compressive member force increases. The
'shortest member length, maximum member force, -
is achieved when the member becomes horizontal.

2. When the member is horizontal, compression force
is maximum while the applied load value is zero
since it is applied in vertical direction.

3. Increasing the displacements after horizontal
position leads to increase the member length, and
hence, compressive force is released. The direction
of applied load is reversed. :

4. When (d/H) value equals 2.0, the member length
becomes the same as the initial value and hence,
member force and applied load become zero.

5. Increasing the applied displacement leads to
increasing the tension force in the members.

(¢) Elastic Frame with Fixed Support Conditions

The third case study is a simulation of buckling of
elastic frame with fixed base. The frame cross section
is 0.5 m x 0.5 m. Modulus of elasticity is assumed 2.1
x 10* tf/m® The frame dimensions and loading points
are shown in Fig. 5. The load is applied at constant-
rate. To break symmetry of the system, the stiffness of
one of edge elements was increased by just 1 %
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relative to the other elements. This analysis cannot be
performed wunder displacement control because
displacement of frame corners after buckling are
different because of change in values of axial force in
the columns. Making the analysis under load control
necessiates that the applied load increment should be
very small after buckling.
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Fig.5 Load-deformation relation of a fixed-fixed frame under
vertical loads. (Side sway is permitted.)

The results are shown in Fig. 5. It can be noticed
that the buckling load obtained is very close to the
theoretical one®. After buckling, displacements
increase drastically in few increments because the
loading is applied under load control. -

4. CONCLUSIONS

A new extension to AEM for studying the large-
scale geometrical changes is introduced in this paper.
It was proved through numerical simulations that this
technique has the following advantages:

1. Simple compared to the other existing numerical
methods.

2. Structural behavior can be accurately followed
even in large deformation range. The simulated
buckling loads, buckling modes and internal
stresses agree well with the theoretical resulits.

3. Since the technique is general, it can be applied to
any structure or material type.

4. This technique can be easily extended to follow the
complete collapse process of structures.

However, there are some limitations in the

application of this method:

1. Since the load direction is assumed constant,
follower loading condition, which means that
applied load direction changes when the member
buckles, and non-conservative loads in general
cannot be studied using the proposed formulation.

2. Although the applied load condition can be adopted
as load and displacement control, both of them
have their own limitations. Load control can not
follow post peak behavior while displacement
control technique can not follow cases when the
tangent to the load-deformation curve tends to be
vertical). In addition displacement control
technique cannot be adopted to cases where load is
applied at many points. However, the method can
be extended easily to follow other methods of
loading like energy control or arc length control
methods®.
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