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The difficulty of modeling underground structures is a bottleneck in quantitatively studying
earthquake phenomena. Stochastic modeling that accounts for the uncertainty of modeling is an
alternative, and the authors have been developing two analysis methods for a stochastic model.
This paper presents these methods in a unified manner, emphasizing the efficiency of numerical
computation. The earthquake wave propagation and the surface earthquake fault formation are
solved as examples, and the results are compared with observed data to examine the validity and
limitation of the analysis methods of the stochastic model.
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INTRODUCTION accounts for the uncertainty of the underground

Understanding earthquake is indispensable for
earthquake engineering, since rational counter
measures for earthquake must rely on the sound-
ness of such understanding. As seismology and
geophysics are adva,ncedl)72), we are able to make
more quantitative reproduction or prediction of
earthquake phenomena such as strong motion or
faulting, both of which cause diverse disasters.
While a simple homogenous model is sufficient for
qualitative understanding of these phenomena, a
more detailed model is required to make more
quantitative analysis. However, it is difficult to
reliably construct the detailed model, since ac-
curately measuring underground structures, such
as geological layers and surface deposits, is not
an easy task. In this sense, modeling the under-
ground is a bottleneck in quantitatively studying
earthquake phenomena.

An alternative of a deterministic model is a
stochastic model®). Here, a deterministic model
means a model which has properties and config-
uration of the underground given in a determin-
istic manner, while a stochastic model has mean,
variance or covariance for parameters of the prop-
erties and configurations. Variance or covariance

that is due to the limitation of measurement. An-
alyzing such a stochastic model is more laborious;
the behavior of the stochastic model becomes sto-
chastic as well. The key issue in analyzing the
stochastic model is the fact that

the wvariability of behavior is not neces-
sarily proportional to the variability of
model.

For instance, the variability of the behavior will
be magnified if non-linearity is considered for
the stochastic model. In dynamic state, there
will be cases when the variability is drastically
changed since the effects of the spatial variabil-
ity on various frequency components are different.
A Monte-Carlo simulation is usually chosen as an
analysis method of the stochastic model. How-
ever, it is not suitable for earthquake problems if
one simulation requires huge numerical computa-
tion.

In order to efficiently analyze a stochastic
model, the authors have been developing several
analysis methods?)5):8). The developed methods
are an extension of analyzing the spatial distribu-
tion of heterogeneity to analyzing the spatial and
probabilistic distribution; see a monograph7) for
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a list of the analysis methods for spatially dis-
tributed heterogeneity. Two classes of analysis
methods are available, the first for evaluating the
mean behavior of the stochastic model and the
second for efficiently computing the variable be-
havior of the stochastic model. These two are
called the bounding medium analysis4) and the
spectral methodG), respectively, here.

In this paper, we are aimed at presenting the
two analysis methods of the stochastic model in
a unified manner. Since they are applied to dis-
tinct problems, the two methods are formulated
differently and it is not easy to understand that
the basic idea of stochastic modeling is common.
We pose a stochastic variational problem for a
stochastic model and show that the two methods
are for solving this problem, i.e., the bounding
medium analysis for estimating the mean behav-
ior and the spectral method for computing the full
stochastic characteristics of the behavior. The
stochastic variational problem will be of interest
for those who apply or improve the analysis meth-
ods of the stochastic model, which, in our view
point, is essential for the quantitative analysis of
earthquake phenomena.

The content of this paper is as follows. First,
in Section 2, we show the unified formulation
of the bounding medium analysis and the spec-
tral method, using the simple two-dimensional
problem. Section 3 presents examples of apply-
ing the analysis methods to the stochastic model
for two earthquake problems, namely, the earth-
quake wave propagation and the surface earth-
quake fault formation. Some new results are
presented, and they are compared with available
data to discuss the validity and limitation of the
analysis methods of the stochastic model.

Cartesian coordinates, denoted by z;, is used.
Index notation is used for a vector or tensor quan-
tity, the summation convention is employed, and
indices following a comma denote partial differ-
entiation with respect to the corresponding coor-
dinates.

2. FORMULAITON OF ANALYAIS
METHODS

For simplicity, we consider a two-dimensional
anti-plane shear problem; the formulation pre-
sented here is applicable to a more complicated
setting such as two-dimensional in-plane prob-
lems and three-dimensional problems or even to
problems of structural mechanics. We let B be

an isotropic but heterogeneous elastic body, and
denote by u and ¢ the out-of-plane displacement
and the elastic modulus (v = ug and ¢ = ci313 =
g323). When, say, boundary displacement % is
prescribed, the following boundary value problem
is posed:

(e(x)u,i(x)); =0 in B,
{ u((x) = u(x) on 0B. (1)

This boundary value problem is transformed to
a variational problem, in which the stochastic
model is more easily treated with. The varia-
tional problem uses a functional for u satisfying
u =7 on 0B,

T, = [ 3euitouxds, @)

The solution of Eq. (1), denoted by u®, minimizes
J and the minimum value coincides with the total
strain energy stored in the body, denoted by F.

We suppose that the elastic modulus c is sto-
chastic, i.e., the value of ¢ at each x is not given
deterministically, but the mean, variance or cor-
relation is provided. To be specific, denoting a
stochastic event by w, we regard ¢ as a random
field in (Q,F, P), where  is the whole events,
F is Borel sets of w and P is the probabilistic
measure, and put argument w to emphasize that
¢ is a random field. The displacement u(w) that
satisfies Eq. (1) for such a stochastic ¢(w) is a
random field as well.

(1) Bounding medium analysis

Our first interest is to evaluate the mean of the
stochastic displacement that corresponds to the
mean behavior of the stochastic model. It should
be emphasized that the mean behavior is not the
displacement when B has the mean of c(w); see
later in this subsection. Computing the mean be-
havior is difficult since the joint probability of
u(w) and c(w) which satisfy Eq. (1) needs to be
evaluated. Instead of finding the mean behav-
ior directly, we seek to find certain displacement
fields which bound the mean behavior by taking
advantage of the bounding medium theory®. This
theory determines two fictitious but deterministic
media which provide such bounding displacement
fields; see Fig. 1.

One bounding medium is determined by using
the functional J of Eq. (2). For one realized c(w),
due to c(w) > 0, the following inequality holds:

E(c(w)) = J(u(w), c(w)) < J(u,¢(w))-



deterministic modeling:
material parameter is uniquely given,
though it can be heterogencouschanges
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Fig. 1 Boundmg medium analysis for stochastic modeling; stochastic models are constructed by probabilistically chang-
ing material parameter, and bounding media provide mean behavior of these stochastically generated models.

Here, u®(w) and E(w) are the exact solution of the
boundary value problem and the total strain en-
ergy when c(w) is realized. Since c(w) is a random
field but u is a deterministic, taking the mean for
both sides of the above equation, we arrive at

(E) < J(u,(c)) 3)

for u satisfying u = 7 on &B. Here, ((.)) =
Jo(.)P(dw) stands for the mean of (.), and the
spatial mtegratmn and the probabilistic integra-
tion are commuted in deriving Eq. (3). The
sharpest bound for (E) is obtained by the so-
lution of the variational problem that uses (c),

e., displacement of a deterministic body that
has the mean elasticity (c). Thus, in the sense
that an upper bound for the mean total strain
energy is given, this fictitious but deterministic
body is a bounding medium which overestimates
the mean behavior of the stochastic body. It
should be noted that the mean elastic modulus,
(c), does not give the mean behavior since (c)
overestimates the mean total strain energy.

Another bounding medium is determined by
considering the complementary strain energy. We
define a functional for stress o; as

/ 2¢(x Joi(x) + A(x)os,(x)ds

+ /3 i ni(x)ai(x)ﬂ(x)df, 4)

where ) is the Lagrange multipliers which enforce
the equilibrium and n; is the outer unit normal

I(o,1/c) =

of the boundary. Note that the first variation of
Iis

5T = / Soi(oi)c — N)ds + / nibos(n — @),
B OB

and hence it is required that strain given by o;/c
is compatible and A coincides with the exact dis-
placement u®. In the same manner as for J, the
following inequality is derived for I with stochas-

tic c(w):
(B} = 1(0,(1/c)), (%)

since the maximum value of I with 1/c(w) co-
incides with E(w). The sharpest lower bound
for (E) is obtained for stress that minimizes
I(0,(1/c)). Thus, Eq. (5) shows that a ficti-
tious but deterministic body with ¢ = 1/(1/¢) is
another bounding medium in the sense that the
mean total strain energy is underestimated.

The bounding medium analysis uses the two
bounding media to estimate the mean behavior
of the stochastic model. The difference of the two
bounding media corresponds to the uncertainty of
the stochastic model, i.e., as the uncertainty be-
comes larger, the bounding media behave more
differently. It should be mentioned that the
bounding medium analysis is an extension of an-
alyzing heterogeneous materials; the elastic mod-
uli of the bounding media, {c¢) and 1/(1/c), cor-
respond to the Voigt and Ruess bounds?) for the
effective moduli if the mean is replaced by the
volume average. Sharper bounding media can be
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Fig. 2 Comparison of spectral stochastic finite element
method with ordinary stochastic finite element
method.

constructed if other analysis methods of the het-
erogeneous materials are used; see Appendix A
for the case of the Hashin-Shtrikman variational
principle.

(2) Spectral method

Our second interest is to fully evaluate a ran-
dom field u(w) which describes the variable re-
sponses of the stochastic model. As mentioned,
the difficulty of solving Eq. (1) lies in the eval-
uation of the joint probability of ¢(w) and u(w).
Instead of Eq. (1), we transform a variational
problem given by Eq. (2) to a stochastic varia-
tional problem, such that a correct random field
will be obtained just by minimizing the functional
without considering the joint probability. To this
end, we take the following weak form of the gov-
erning equation of u{w):

/B/Q&z(x,w) (e(x, w)u,i(x,w)) ; dsP(dw) =0,

where du(w) is an arbitrary random field satisfy-
ing du(w) = 0 on 8S. The probabilistic integra-
tion is carried out since u(w) is a random field.
Integration by part leads to the following stochas-
tic functional for u(w) satisfying u(w) = % on 6B:

Il w) cw )) =

Julzet

This J“ gives a stochastic variational problem for
a stochastic model of B. It immediately follows
from ¢(w) > 0 that the random field that mini-
mizes JY is the solution of the stochastic model.
The joint probability of u(w) and ¢(w) does not
have to be considered in minimizing J*. The joint
probability will be automatically computed when
the solution of the variational problem is found;
see later in this subsection.

The spectral method of Ghanem and Spanos3)
is applicable to solve a variational problem of
J¥. The advantage of this method is that a ran-
dom filed is expanded in a probabilistic space,
just like the Fourier series expansion. Unlike the
Fourier series expansion, however, the expansion
in the probabilistic space is abstract and does
have physical values, except that the probabilis-
tic moments such as mean and variance are com-
puted, which is sufficient in solving a stochas-
tic problem. We present the formulation of the
spectral method which is slightly different from
the original formulation®)-8):9). For simplicity, we
consider a case when c(w) is a Gaussian random
distribution and the covariance function

r(x,y) = /Q (%, w)ely, w)P(dw)

X, w)u (X, w)dsP(dw). (6)

is given. It is shown®) that ¢(w) admits the fol-
lowing Karhunen-Loeve (KL) expansion:

= > AN (x)E" (w), (7
n=0

where {(A%)2,
functions of r,

@™} are the eigen-values and eigen-

(2700 = [ rx,y)e" (3)dsy,
and £” is formally given as
N () = [ elx,w)d" (x)dsx.

Both ¢ and £° are uniform in B and 2, respec-
tively, the mean of ¢” is zero, and {£{"} is the
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orthonormal complete system of Gaussian distri-
butions in 2. The base for non-Gaussian ran-
dom distributions in  is constructed by using
the polynomial chaos {or the multi-dimensional
Hermit polynomials) of {¢™}. That is, for a k-
th dimensional vector of (£™1,£™2, ... &™), we
define

1 8k7k({£mk b
F({ene)) - o6me”

with v* = exp(—%}:p(me)Q). A group of T'y’s
which are computed by using various £™’s and
order k£ is the base for non-Gaussian distributions
and denoted by {¥™}; for instance, ¥0 is uniform
and U™ coincides with ! (£7) = £™.

The random field u(w) is now expanded in the
following polynomial chaos (PC) expansion:

u(x,w) = Z u™(x) ¥ (w). (8)

m=0

Iy =(-1)F

When Eq. (7) is truncated up to n = N and the
K-th order polynomials is taken, the PC expan-
sion ends up to M = 1+ 35 1/n! H;L;&(N +p).
Substituting Eqgs. (7) and (8) into J* of Eq. (6),
we arrive at

P= Y [ e e (dss, ()

where ¢ (x) = Y, At¢™(x)(EMEE™); the
mean of £"U™Y™ is computable since U™’s are
given by computable €™’s. The boundary condi-
tions for u™’s are derived from u = @, and we
can pose the following boundary value problem
for the expanded coefficients {u™}:

M , .
37 (@™ (x)u™ (x)); =0 in B,

W) = w(x) (T on 8B,

(10)

form=20,1,---, M.

Equation (10) is numerically solved by spatially
discretizing u™. This is the spectral stochastic
finite element method®). When the coefficients
u™’s are determined, the joint probability be-
tween c(w) and u(w) can be computed since they
are expanded in {¢"} and {¥™}. It should be
mentioned that the spectral stochastic finite el-
ement method is different from an ordinary sto-
chastic finite element method which takes pertur-
bation for stochastic parts assuming that the sto-
chastic parts are smaller than deterministic parts;

see Fig. 2 for the comparison of the spectral sto-
chastic finite element method with the ordinary
one.

In closing this section, we point out that
the bounding medium analysis and the spectral
method are for solving the stochastic variational
problem of J¥ of Eq. (6). If a deterministic func-
tion is used, J“ leads to the (upper) bounding
medium, and one deterministic response which
overestimates the mean response is obtained. The
spectral method solves the stochastic variational
problem by expanding random functions in J“,
ie., c(w) and u(w). For a common stochastic
model, therefore, we can regard the bounding me-
dia analysis as a method to estimate the expecta-
tion of the responses and the spectral method as
a method to approximately but fully obtain the
stochastic characteristics of the responses.

3. APPLICATION TO EARTH-
QUAKE PROBLEMS

Now, we present examples of applying the sto-
chastic model to earthquake problems and solv-
ing the problem with the aid of the bound-
ing medium analysis and the spectral method.
Three-dimensional setting is considered. For sim-
plicity, we assume that the undergrounds are sto-
chastic but isotropic; Young’s modulus is hetero-
geneous and stochastic although Poisson’s ratio
is deterministic and uniform. Symbolic ¢ is now
used to denote Young’s modulus.

For the bounding medium analysis, we deter-
mine bounding media by replacing cuju; in J of
Eq. (2) with chyjriu;jury, where hijg is a con-
stant forth-order tensor given by Poisson’s ratio.
The elasticity tensor of the bounding media is

(hijre and  1/((1/))hijur-

For the spectral method, taking the PC expansion
of ¢(w) and the KL expansion of u;(w), we can
derive boundary value problems for the coeflicient

m)
U; S

M
3 (™™ (x)higrrugy (x)) s =0 in B,

W) = T (x) (T on 8B,

(3

for m = 0,1,---, M. In taking the KL expan-
sion, we consider a case when the covariance is
expressed in terms of the correlation length L
as o exp(— 2 ,(zp — yp)/L) where o is the vari-
ance. The KL expansion is carried out numeri-
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Table 1 Characteristics of target earthquakes.

a) epicenter

Date Lat. Long. Depth
casel 08/11/1999 35.4N  139.8E  53km
case2  05/28/1999 355N  139.5E  38km

b) properties
Strike  Dip  Rake Mag.
casel 620 859 739 4.0Mw
case2 2839 709 1129 3.5Mw

35.5N

140.5E

140.0E

Fig. 3 Epicenter of simulated earthquakes and location
of measurement sites.

cally, by solving the discretized equation of A2¢ =
Joexp(— 2, (zp — yp)/L)¢ds with [ ¢*ds = 1.

(1) Simulation of earthquake wave prop-
agation

As the first example, we consider the earth-
quake wave propagation; see recent advance-
ment of seismologyw)’l1)712)713)’14) for comput-
ing the wave propagation process; see also
related works!%)16),17),18),19).20)  The ynder-
ground structures consist of several geological lay-
ers which are not necessarily stratified, and it is
not realistic to assume that these structures are
accurately measured. Thus, stochastic modeling
is an alternative of deterministic modeling, i.e.,
the mean and variance are given to material prop-
erties of each geological layer, as well as the loca-
tion of the interfaces between two layers.

The two bounding media are defined from the
stochastic model. For a given focal mechanisms,
these media provide estimates for the mean wave
that propagates in the stochastic model, i.e., the
earthquake wave that is most likely to occur.
It should be recalled that the bounding media
are defined such that the total strain energy is
bounded. The behavior of the bounding me-
dia cannot provide bounds for local dynamic re-

sponses, such as waveforms, peak ground mo-
tions, or some seismic intensities. However, the
behavior of the two media becomes closer to each
other as the variability of the stochastic model
becomes smaller. Therefore, we can expect that
the average of the behavior of the two bounding
media will be an estimate of the mean behavior
and that the difference in the behavior of the two
bounding media will be a measure of the uncer-
tainty in the mean behavior due to the variability
of the stochastic model. Since this interpretation
is naive, the behavior of the bounding media is
called optimistic and pessimistic estimates of the
mean behavior.

For engineering purposes, the spatial resolution
of the order of, say, 1[m] is needed for the under-
ground structure model to estimate higher wave
frequency components of the order of 1 ~ 10[Hz],
since these components have shorter wave length.
The length scale of modeling the heterogeneity
is much smaller than the length scale of the
wave path that connects the fault and a target
structure. Thus, the bounding media will have
wild change in the elasticity, especially near the
ground surface. To solve a highly heterogeneous
body problem, we apply the macro-micro analy-
sis method®) or the multi-scale analysis based on
the singular perturbation expansion. The macro-
micro analysis method sequentially computes the
wave propagation in the geological length scale
(macro-analysis) and the wave amplification near
the surface (micro-analysis). The micro analysis
is capable to compute non-linear responses5) of
surface layers.

While the macro-micro analysis method is rig-
orous, it results in an ordinary analysis of com-
puting dynamic ground responses when input
wave is given to the bed rock mass. However,
there is one major difference that the macro-
micro analysis method inputs the wave of the
macro-analysis to the whole surface layers. In-
putting macro-analysis solution to the surface
layers is the same as the dynamic analysis of
structural responses in which ground motion is
input to all elements of the structure, not only
to its foundation nor footing. The macro-micro
analysis method also accounts for the effects of
the surface layers on the wave propagation; the
surface layers are homogenized in modeling the
crust structures, and this influences higher fre-
quency wave components when the whole crust
structures are densely discretized.
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Fig. 4 Model for macro-analysis method.
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Fig. 5 Example of model for micro-analysis method.

High frequency wave components, say, > 1[Hz],
must be estimated for engineering purposes.
However, it is still difficult to determine such
higher wave components through the numerical
computation of the wave propagating from the
fault. The major reasons of this difficulty are

the following two: 1) information on the focal
mechanisms that emits high wave components
is limited; and 2) discretization needed for the
computation is beyond the capacity of high-class
computers. In the current macro-micro analysis
method, we apply the stochastic Green function
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Fig. 6 Comparison of velocity wave form.

method, which extrapolates lower frequency com-
ponents to higher ones using the probabilistic as-
semble of previous events; note that the stochas-
tic Green function is different from the empirical
Green function?!) that uses the past record of the
target site.

We carry out numerical simulation of the earth-
quake wave propagation applying the macro-
micro analysis method to the bounding media
of the stochastic model®. Two earthquakes
which occurred near Yokohama City are simu-
lated; see Fig. 3. The characteristics of the tar-
get earthquakes are shown in Table 1. The focal
mechanism uses simple rump functions??). The
three-dimensional model for the macro-analysis
method, which consists of four layers, is pre-
sented in Fig. 4; there are four distinct geolog-
ical layers24), and the properties and interfaces
are shown in a) and b), respectively. Examples
of models for the micro-analysis method are pre-
sented in Fig. 5; a) presents the 40{m] mesh
data stored in a GIS provided by Yokoyama City,
and b) and ¢) are the pessimistic and optimistic
models which are constructed by connecting mesh
data and computing the bounding media. The
GIS stores 40[m] mesh boring data of soil lay-

100

lower

amplitude{cm]

0.25 1.25 2.25 3.25 4.25
frequency{Hz]

a) NS

100
lower

meas.

amplitude{cm]

upper

0.25 1.25 2.25 3.25 4.25
frequency[Hz]

b)EW

lower

amplitude[cm]

upper

1 N L 2
0.25 1.25 2.25 3.25 4.25
frequency[Hz]

¢)UD

Fig. 7 Comparison of velocity spectral.

ers down to engineering rock mass together with
layer properties; see the reference® for the de-
tailed explanation of these data. The difference
of the two bounding media is negligible in the geo-
logical length scale, and only one model is used for
the macro-analysis. The two media are quite dif-
ferent in the length scale of the surface soil layers,
as shown in Fig. 5. The numerical computation
of the micro-analysis uses spatial discretization
of 2[m], and hence frequency components up to
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5[Hz| are accurately computed.

The target earthquakes were measured at sev-
eral sites of Yokohama City Seismograph Net-
work; see Fig. 3. The results of the numeri-
cal simulation are compared with the measured
data. For site hd01d, Fig. 6 shows the com-
parison of the velocity waveform of the EW com-
ponent; frequency components higher than 5[Hz]
are filtered out in the measured data. In Fig.
7, the velocity spectral of the three components
is compared. The synthesized waveforms do not
bound the measured waveform. This is natural
since the bounding media are defined such that
the overall strain energy is bounded, we cannot
expect that the media provide bounds for local re-
sponses. However, the synthesized waves produce
similar waveform and spectral. In particular, the
similarity in the spectral up to high frequency
(4[Hz]) cannot be overlooked. This similarity sug-
gests the bounding media defined for a stochastic
underground model serve as an alternative of a
deterministic model for uncertain ground struc-
tures, in order to estimate the possible strong
motion. Figure 8 presents the comparison of
the peak ground velocity. The bounding media
do not provide bounds for the measured data, al-
though they are close to the measured values at
most of sites. The estimation is quite different
from the measured data at two sites; see the data
of sites 4 and 10. This is mainly due to the lo-
cal topographical effects?®) which the stochastic
model fails to capture and due to the simple fo-
cal mechanism that is used in the macro-analysis.
These two are the limitation of the current macro-
micro analysis method.

(2) Simulation of surface earthquake

fault formation

The second example is the formation of sur-
face earthquake fault; see Konagai?® for a con-
cise list of recent achievements on the fault prob-
lems. For a large earthquake, rupture process
on the source fault reaches the ground surface,
forming a surface earthquake fault; see numerical
researches26),27),28),29) 54 experiment and field
researches?’o)’m); see also related works32):33),
Echelon fault, a periodic array of oblique cracks
caused by lateral sliding, is a typical example of
the surface earthquake fault. Large variability in
fault displacement is often observed for echelon
faults, which is mainly due to the complicated soil
layers and the bifurcation during the formation

max. vetocity{kine] lower bounding medium

upper bounding medium

measured
P

N P S S S S T T
1 2 3 4 5 6 7 8 9 10 11 12

site number
a)case |

n, &
R goéﬁé%éoéé

" " s
9 10 11 12

1 2 3 4 5 6 1 8
b) case 2

Fig. 8 Comparison of peak ground velocity.

pl'ocesses?’4). For engineering purpose, the eval-

uation of the variability is important for consid-
ering rational remedial measures against surface
earthquake faults. The variability is numerically
computed for the stochastic model of soft surface
deposits, by analyzing the echelon fault formation
when the bed rock mass slides®)»35),36),

Since the surface deposits are softer and more
ductile than the base rock mass, they are modeled
as elasto-plastic materials such that fault is mod-
eled as the accumulation of plastic shear strain.
A Mohr-Column type yield function is employed
to account for the confining pressure effects on
the plastic deformation, i.e., a yield function is
given as

f=7—(fo +tango)

where 7 and ¢ are the maximum shear and the
confining pressure, and f, and ¢ are the cohe-
sion and the internal friction angle. Stochastic
modeling is applied to the elasto-plastic surface
layers; only Young’s modulus ¢ is stochastic and
deterministic values are given to other material
parameters such as Poisson’s ratio, the cohesion
and the internal friction angle.

For the evaluation of the variability, we seek
to find a random field u;(w) in this stochastic
and non-linear elasto-plastic body. In incremen-
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Fig. 9 Characteristics of model experiment and numerical simulation.

tal form, the governing equation of u;(w) is given
as

(11)
where ; is displacement increment and cg{’k,f is
instantaneous moduli defined as

(e (%, W)t (x,w)) s = 0,

Piipg Vipghrirs Virs

L. _ S

ep ¢ (h”kl VipghparsVfrs .

Cijkt = f=0& f=0,
4 hijkl otherwise.

(12)
with Vf;; = 0f [80s;.

In Eq. (11), both ¢ and f are stochastic, and
hence computing ¢, given by Eq. (12) is labo-
rious; the joint probability of ¢ and f needs to
be evaluated to compute cf;-’ w- We approximateG)
the stochastic f as deterministic, and stress in
the bounding medium is used to compute the de-
terministic f. This approximation means that
the perturbation expansion of the stochastic f
is taken at the mean stress and that the mean
stress is approximated as stress in the bound-
ing medium. Hence, the approximate solution
approaches the exact one as the variability of ¢
decreases; the accuracy of the approximate solu-
tion will be higher as the variability in stress be-
comes smaller. Although this is approximation,
Eq. (11) yields a linear stochastic problem for
Ui(w) with stochastic cffkl(w). This linear sto-
chastic problem is solved by applying the spectral
method.

The spectral stochastic finite element, which
computes the boundary value problem of the ex-
pansion coefficients in the same manner as an or-
dinary non-linear finite element method, is devel-
oped for this purpose. The validity of this numer-
ical method is verified®)®) from the comparison

Table 2 Comparison of echelon fault configuration.

experiment  simulation
orientation of fault direction 26cm 27.9¢cm
base slip causing failure 5cm 5.2cm
interval between adjacent fault 1lcm 11:+1cm

with the Monte-Carlo simulation. Thus, the sto-
chastic behavior of the non-linear elasto-plastic
body can be evaluated even though it includes
some approximation. Relatively laborious numer-
ical computation is required for the spectral sto-
chastic finite element method; one node uses large
degree-of-freedoms as the degrees correspond to
the expansion coefficients u]* form =1,2,..., M.

For quantitative evaluation, we carry out nu-
merical simulation of a model experiment of ech-
elon faults and compare the results with avail-
able data. The model experiment uses sands,
and Riedel shears appearing on the surface are
a model of echelon faults; Fig. 9 summarizes the
characteristics of the model experiment and the
numerical simulation. First, we plot in Fig. 10
the distribution of the mean and standard devia-
tion for the maximum shear strain on the top sur-
face when the plastic deformation reaches the top
surface. Oblique Riedel shears are reproduced in
the mean distribution, even though uniform slid-
ing is applied on the bottom surface. The vari-
ability in the location of the Riedel shear can be
estimated from the standard deviation distribu-
tion. The configuration of the computed Riedel
shears is compared with the observed ones in Ta-
ble 2. The agreement of the configuration ap-
pears fair.
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Fig. 10 Examples of echelon fault formation on surface
with its variability.

However, we should mention that the numer-
ical simulation does not fully reproduce Riedel
shears. In forming Riedel shears, a so-called em-
bolic or flower structure is developed from the
bottom, in which Riedel shears grow overlap-
ping each other like flow lips. In Fig. 11, we
present the maximum shear strain distribution
on several horizontal planes. As is seen, the com-
puted Riedel shears are evolved without overlap-
ping each other, which does not correspond to the
actual Riedel shears. The current numerical sim-
ulation cannot reproduce the embolic structure
mainly due to the lack in sufficient discretization
of the interface between the sliding base and the
layers at which Riedel shears are initiated. The
usage of simple constitutive relations, as well as
the assumption of infinitesimal small deformation
and the quasi-static state, may contribute. Fur-
ther improvement of the numerical computation
is required, although it is not easy since the sto-
chastic finite element method sets large degree-
of-freedom for nodes.

Admitting the limitation of the numerical sim-
ulation, we compute the probability of failure to
examine the accuracy of estimating the variabil-
ity. Here, the failure is defined as the appearance
of Riedel shears on the top surface, and, in the
numerical simulation, the failure is regarded as
the sudden increase in the maximum shear strain
on the top surface as the base slip gradually in-
creases. The sudden increase of the maximum
shear strain takes place when it approximately
attains a critical value of 55%. The probability
of failure is given as a function for the amount
of the base slip, and is numerically computed
through the following procedures: 1) compute
the probability density function of the maximum
shear on the surface; 2) compute the probabil-
ity that the maximum shear exceeds the critical
value; and 3) differentiate it to derive the prob-
ability density function of the failure. The prob-
ability density function for failure is plotted in
Fig. 12. The form of the function is relatively
complicated, not like Gaussian nor Poisson dis-
tribution. This suggests the complexity in the
probabilistic processess) of the Riedel shear for-
mation; recall that the source of the variability is
the Young modulus that obeys a Gaussian distri-
bution. The mean and standard deviation of the
base slip at the failure are calculated from the
experimental data, and they are plotted in Fig.
12. While the variability given by the standard
deviation is underestimated, the mean is well re-
produced in the simulation. The variability esti-
mation may be improved if the definition of fail-
ure is changed, although this is out of scope of
the current paper.

4. CONCULDING REMARKS

In this paper, we present the two analysis meth-
ods, the bonding medium analysis and the spec-
tral method, for stochastic models of earthquake
problems. These methods are rigorously formu-
lated in the same manner as for the deterministic
case; the stochastic variational problem that uses
the integration of the strain energy in the sto-
chastic space is a key for the formulation. While
only limited comparison is made at this stage,
the numerical simulations based on these meth-
ods show that the earthquake wave propagation
and the surface earthquake fault formation can
be reproduced to some extent. The fact that the
variability due to the model uncertainty is eval-

21(1158)



0.1

<

bottom lem above from bottom

top

2cm above from bottom

Fig. 11 Distribution of maximum shear strain on four horizontal planes from bottom to top.
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Fig. 12 Probability density function of failure with respect to base slip.

uated in efficient numerical computation should
be emphasized.

In closing this paper, we mention the Monte-
Carlo simulation which usually severs as an anal-
ysis method of the stochastic model. Beside that
simulation of one model requires heavy numerical
computation, the Monte-Carlo simulation will be
expensive if only mean, variance, or probability
density function is derived from the numerous re-
sults of the simulation. The Monte-Carlo simula-
tion is definitely inevitable to accurately compute
the probabilistic characteristics. However, such
computation is not adequate only to estimate
simple probabilistic characteristics of the variabil-
ity. The spectral method presented here will be
a suitable replacement of the Monte-Carlo simu-
lation even if the fact that the spectral method
has the limitation in the accuracy is accepted.

APPENDIX A SHARPER BOUND-
ING MEDIA

When the probability distribution of c(w) is
spatially uniform and isotropic, we can define
bounding media which provide sharper bounds
for the mean behavior of a stochastic model, ap-

2

plying the generalized Hashin-Shtrikman varia-
tional principle4). This principle is based on the
equivalent inclusion method”) that replaces a het-
erogeneous body B to a homogeneous body B°
with eigen-stress of. The eigen-stress is defined
as the difference in stress of the two bodies, i.e.,
o} = (¢ — ¢°)e; with ¢; being strain in B. Thus, a
stress in B is given as cu;+o}, and the displace-
ment is explicitly expressed in terms of Green’s
function of the homogeneous body.

The generalized Hashin-Shtrikman principle
uses the following functional for eigen-stress:

1
K(o?,¢) :/Biggf((c—cf))—la;—eg—Qeg)ds.

Here, e? and € are strain due to the presence of
of with zero boundary displacement and strain
caused by the boundary displacement % in the
absence of o, respectively. It is shown that the
stationary value of K is the difference of the total
strain energy stored in these two bodies, E° —
E with E° = [ 1c%€0e0ds, and that if ¢ — ¢° is
positive or negative, the stationary value becomes
the minimum or maximum, respectively.

The stationary value of K is approximately
computed by using section-wise constant eigen-
stress with Green’s function, and is given as
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E° — E* where E* is the strain energy of the
body consisting of

"= (L+s(c—)Nc/(L+ple~ ),

and subjected to the boundary displacement .
Here, p corresponds to Eshelby’s tensor, and the
value is 1/3. This ¢* is the Hashin-Shtrikman
bounds”) for the effective moduli if ((.)) is re-
garded as the volume average. By choosing suit-
able ¢® which makes ¢ — ¢® positive or negative, a
shaper bounding medium is determined.

APPENDIX B MULTI-SCALE
ANALYSIS

Denoting by e the ratio of the large and small
length scales, the multi-scale analysis5) first de-
fines a fast spatial variable y = 1/ex and regards
Young’s modulus ¢ as a function of x and y; for a
fixed x, local wild change in Young’s modulus is
represented by the dependence of c on y. Thus, a
small region around x, denoted by Sy, is a domain
of y. In this setting, the homogenization method
takes the singular perturbation expansion of u;,
as

ui(x) = uf? (%) + euf (x,3) + -+

In view of u;; = uz(-g-) + aug”/ay,- + -+, the sec-

ond term is given as ul(-l)(x, y) = Xipq(y)u,(,?g(x),

where x;p, satisfies

0 Ik
9 ey (PXpa >) _
0y; <c Ikt ( Ay * Tkipg 0

and a governing equation for uz(-o) is derived, as
(Eijklug?l) )i = 0. Here, &g is the effective elas-
ticity which is defined as the volume average of
chijpq(Ipgkt + OXpri/Oyq) taken over Sy.

The multi-scale analysis assumes periodic
boundary conditions for Sx since it is originally
aimed at composite materials. Such periodic-
ity, however, cannot be assumed for the under-
ground. Instead of periodic boundary conditions,
we use the uniform stress boundary conditions
(t; = n0y; with constant &y;) for the upper
bounding medium or uniform strain boundary
conditions (u; = y;€; with constant €;) for the
lower bounding medium. This is because these
boundary conditions, respectively, give the maxi-
mum and minimum total strain energy among all
boundary conditions that produce the same av-
erage strain, i.e., denoting by e the strain energy

density, we have

/ e’ duy </ e7dvy </ e‘dy,
x Sx Sx

where superscript o or € stands for the uniform
stress or strain boundary conditions and g for
general (possibly mixed) boundary conditions; all
these boundary conditions produce the same av-
erage strain. The above inequality is called the
universal bounds”) for the elastic body, since it
holds for any arbitrary linearly elastic body.
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