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Earthquakes in different geological regions show drastic variations in their effects such as, large surface
uplifiment/displacements of unconsolidated soil deposits. For this reason, we attempted to develop a new
application of Applied Element Method (AEM) to study the ground surface deformation near fault
rupture zone. First, preliminary analysis is carried out to check the applicability of the method. Results are
compared with the results from analytical and experimental methods and they showed good agreement.
Non-linear modeling is carried out to study the effects of dip-slip faults on the ground surface. Detailed
study is carried out using two cases of dip angles in both normal and reverse dip-slip fault conditions.
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1. INTRODUCTION

Two enormously disastrous earthquakes hit the
globe in 1999. The first one was an earthquake of
magnitude 7.4 (Mw) occurred in Turkey on 17®
August 1999, and immediately following that,
another event of magnitude 7.3 (Mw, Central
Weather Bureau, Taiwan) occurred in Taiwan on
21% September 1999”. Both events caused immense
loss to property and lives. The earthquake fault
(North Anatolian Fault) in Turkey was traced over
100 km. The magnitude of right lateral movement of
the fault on the ground surface was measured to be 2
to 4 m. Normal faults, which were caused
secondarily, sunk huge area by a depth of 2-3 m.
And in Taiwan, severer effects were observed. The
earthquake fault (Cher-Lung-Pu Fault) was traced
for about 80 km, here the fault movement directly
caused severe damage. The magnitude of maximum
vertical differential movement was measured to be
nearly 10.0 m as shown in Fig. 1. Though these
carthquakes were tragic, also provided us the
momentum to the process of improvement in
understanding the behavior of nature. From the
above two events, it is clear that the severe damage
can be caused not only by the strong ground motion
but also due to large surface deformations lying

Fig. 1 About 10 m vertical displacement is seen at the Shih-
Kang dam site, Taiwan

directly over the seismic faults. Hence, it is
necessary to direct our efforts to study the relation
between seismic fault characteristics, thickness of
soil deposit and surface deformation. Many
researchers conducted experiments to understand
the phenomena of surface failure, Cole and Lade®
have tried to determine the location of surface fault
rupture and width of the affected zone in alluvium
over dip-slip fault using fault test box. Lade et al.¥
studied to determine the multiple failure surfaces by
conducting the experiments on sand using fault test
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box. Onizuka et al® have modelled the
deformation of ground using aluminium rods.
Through experiments, they investigated bedrock
stresses induced by reverse dip-slip faults. Using the
above experimental methods, we can find the
influence length. However, replicating the actual
field conditions using experiments is very difficult,
especially, controlling the material properties and
modelling the boundary conditions. Moreover, large
amount of data is necessary to establish a
relationship between seismic fault parameters and
resulting surface deformation. On the other hand,
studying this phenomenon using numerical model
has the advantage of controlling the parameters like
material properties, size of the model, boundary
condition, dip angle, etc.

2. ELEMENT FORMULATION

With the AEM ©~® structure is modelled as an
assembly of small elements that are made by
dividing of the structure virtually, as shown in Fig.
2 (a). The two elements shown in Fig. 2(b) are
assumed to be connected by pairs of normal and
shear springs located at contact locations that are
distributed around the element edges. Each pair of
springs totally represents stresses and deformations
of a certain area (hatched area in Fig. 2 (b)) of the
studied elements. The spring stiffness is determined
as shown in Eq. (1):

_ExdxT 1

a

_ GxdxT

K, and Ky

where, d is the distance between springs, T is the
thickness of the element and "a" is the length of the
representative area, E and G are the Young’s and
shear modulus of the material, respectively. The
above equation indicates that each spring represents

Fig. 3 Spring connectivity

Fig. 4 Fault terminology
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the stiffness of an area (d x T) with length "a" of the
studied material. In case of reinforcement, this area
is replaced by that of the reinforcement bar. The
above equation indicates that the spring stiffness is
calculated as if the spring connects the element
centerlines.

Three degrees of freedom are assumed for each
element. These degrees of freedom represent the
rigid body motion of the element. Although the
element motion is a rigid body motion, its internal
stress and deformations can be calculated by the
spring deformation around ecach element. This
means that although the element shape doesn't
change during analysis, the behavior of assembly of
elements is deformable.

The two elements shown in Fig. 3 are assumed to
be connected by only one pair of normal (stiffness:
Kn) and shear (stiffness: Ks) springs. The values of
(dx and dy) correspond to the relative coordinate of
the contact point with respect to the centroid. To
have a general stiffness matrix, the location of
element and contact springs are assumed in a
general position. The stiffness matrix components
corresponding to each degree of freedom are
determined by assuming a unit displacement in the
studied direction and by determining forces at the
centroid of each element. The element stiffness
matrix size is only (6 x 6). Equation (2) shows the
components of the upper left quarter of the stiffness
matrix. All used notations in this equation are
shown in Fig. 3. It is clear that the stiffness matrix
depends on the contact spring stiffness and the
spring location. For more details, please refer ref. 7.

~KpSin(0+a)Cos(0+a) | Cos(6+a)K LSin(a)
+ KSin(0 + o)Cos(8+ o) | - Sin(6 + K ,LCos(e)
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The stiffness matrix in Eq. (2) is for only one pair
of contact springs. However, the global stiffness
matrix is determined by summing up the stiffness
matrices of individual pair of springs around each
element. Consequently, the developed stiffness
matrix is an average stiffness matrix for the element
according to the stress situation around the element.
This technique can be used both in load and
displacement control cases. The governing equation
is

K Jal=[F] 3)

where, [Kg] is the global stiffness matrix; [A] the
displacement vector and [F] the applied load vector.
In load control case, the vector, [F], is known before

the analysis. In displacement control case, the load
is applied by unit virtual displacement for one or
more degrees of freedom. By using the advantage of
AEM's simplicity in formulation and accuracy in
non-linear range, fault rupture zone shown in Fig. 4
is modelled.

The mechanism shown in Fig. 4 is called Reverse
Dip-Slip Faulting. This is one of the types of faults
where the hanging wall moves upward relative to the
footwall. If the direction of the movement of the
hanging wall is downward then it is called normal
faulting. In the study discussed in this paper, both
normal and reverse dip-slip faults are considered. To
analyse the mechanism of fault rupture zone near
dip-slip faults, the model shown in Fig. 5§ (a) was
prepared. In this numerical model, soil deposit of
thickness, H (=140 m), is assumed to be overlay on
the bedrock. The length of the model, L, is assumed
as 1,000 m (Fig. 5 (b)). Influence lengths (affected
area), L; and L, in Fig. 5 (a), on the surface towards
left and right side from the point exactly above the
seismic fault, respectively, are calculated by giving
the hanging wall a displacement along the direction
of dip angle. Whole deposit is discritized into 1500
square shaped elements each of size 10x10 m.

3. BOUNDARY CONDITION

Generally, soil strata and bedrock extend upto tens

of kilometers in horizontal direction. Numerical
modeling of such a large media is a difficult task and
moreover, for studying the surface behavior near the
active fault region, it is necessary to model the small
portion of the region that will include all the effects
when the bedrock moves. For studying the selected
region numerically, we need to assume an
appropriate boundary condition such that it will not
affect the numerical results greatly. Since the present
formulation is done for static case, we assume the
boundary on left side to be fixed in horizontal
direction, and free to move in vertical direction and
can rotate. In order to avoid the interference of
boundary condition on numerical results, left side
boundary is kept at sufficient distance from the fault
zone. The Bottom of the bedrock is assumed as
fixed. We think that this kind of boundary condition
is appropriate for this problem because more
emphasis is given to the near fault behavior of the
formulated model. In case of dynamics, modeling of
radiation condition is very important and the
boundary condition discussed here can be easily
replaced by viscous boundary condition or
transmitting boundary’ ),
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Fig. 6 Analysis results for Case 1

4. ELASTIC ANALYSIS

To verify the proposed model, analysis is carried
out in elastic case (sec Table 1. for description of
analysis) by assuming two different dip angles. In
Case 1, dip angle is assumed as 90° and in Case 2,
it is assumed as 45°. Density and Young's modulus,
E, shear modulus, G and unit weight, y of bedrock
and soil deposit are assumed as shown in Table 2.
In Case 1, analysis is carried out by giving a
displacement of 5 m to hanging wall in vertical
direction. Vertical component of displacement on
the surface is plotted in Fig. 6(a), for every 1-m
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Fig. 7 Analysis results for Case 2
Table 1 Description of analysis
Case | Dip Fault Type Analysis Type
1 {90 Reverse Linear
2 145 Reverse Linear
3 19 Reverse Non-linear
4 |45 Reverse Non-linear
5 |90 Normal Non-linear
6 |45 Normal Non-linear

displacement of the hanging wall. From this figure,
it can be understood that the hanging wall portion
on the surface is lifted in proportion to the hanging
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horizontal and vertical direction. From Fig. 7 also, it
! i i . ‘ s
Table 2 Material Properties can be understood that the hanging wall portion on
the surface is lifted in proportion to the hanging wall
E G y displacement. In Fig. 7(b), stresses in vertical
(KN/nr') (KN/m’) (KN/m®) direction taken along the horizontal lines at different
_Bedrock 66x10: 33x10§ 26.5 heights in soil deposit are plotted. Here also stresses
Soil deposit 20x10 10x10 18.0 show high values near the zone of rupture. As we

wall displacement. Figure 6(b) shows stresses in
vertical direction taken along the horizontal lines at
different depths in soil deposit. Here stresses show
high values near the central region where the
underlying base fault is located. As we can see
clearly from the figure, the stresses are reducing
when we move near to the surface. Figure 6(c)
shows the shear stresses in the soil deposit at regular
intervals. From this figure it can be observed that
the shearing stress are high near the zone of rupture
and they are reducing when we move away from the
rupture zone. All the shear stress curves are showing
peak values at the same point, this is because of the
dip angle, which is 90° in this case.

In Case 2, since the dip angle is 45°, analysis is
carried out by giving a displacement of 5 m to
hanging wall both in vertical and horizontal
directions. This means that the hanging wall is
moving along the direction on dip angle i.., 45°.
Displacement on the surface is plotted Fig. 7(a), for
every 1-m displacement of the hanging wall in

can see clearly from the figure, that the stresses are
reducing when we move near to the surface. Figure
7(c) shows the shear stresses in the soil deposit at
regular intervals. From this figure it can be observed
that the shearing stress are high near the zone of
rupture and they are reducing when we move away
from the rupture zone. However, in this case all the
shear stress curves are not showing peaks at the
same location. This is because of the influence of
the dip angle, which is 45° in this case.

5. VERIFICATION OF RESULTS

To verify the accuracy of the results from the
analysis, the results are compared with the results
obtained by experiments conducted by Onizuka et
al.”Y and the results obtained from the analytical
expressions given by Okada'”.

For comparing with experimental results, model
size similar to the experimental model is prepared
(i.e. 1600x300 mm). This model is discritized into
1200 square elements, each of size equal to 20 mm
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square. Bottom of the model is assumed as fixed
boundary and right side boundary is assumed to be
fixed in horizontal direction. In the bottom layer, i.e.
elements at the base, first 30 elements from left side
are treated as the elements to which displacement is
given. Displacement of 1% of the thickness is given
to these elements and the stresses inside the soil
deposit are observed. Figure 8(a) represents the
normal stresses obtained from the strain gauges
fixed at the interface of bedrock and the deposit. For
other details of the experiment please refer ref. 5.
Figure 8(b) shows the results obtained by AEM
analysis. From this figure it can be seen that the
accuracy is comparable with the results of
experiments.

For comparing with the results obtained from
the analytical expressions of Okada'”, analysis is
performed using the model size of 1500x150 m.
Since the analytical model is for three dimensions,
the 2D model is treated 3D by assuming the
thickness as the third dimension. Length of the fault
is 200 m and width of the fault is 150 m and the top
edge of the fault is assumed to be buried at the depth
of 100 m from the surface. Equations given by
Okada'? for finite rectangular source are used. A
relative displacement of 5 m is given to the
contacting surfaces and the deformation on the
surface is observed. Figure 9(a) shows the results
obtained from analytical expressions. These
expressions are given for the surface displacements
due to shear and tension faults in half space. Figure
9(b) shows the results obtained from the AEM
analysis assuming the similar conditions.
Displacement is given to the bedrock and the
surface deformation is calculated for every lm
displacement. From the figures, we can easily see
the agreement of the numerical results with the
results of the analytical expressions. However,
there is a small discrepancy in the range of influence
and this is because of the difference is boundary
condition. In numerical analysis boundary condition
is prescribed where as in the analytical expressions,
it is infinite space.

6. MATERIAL MODELING

It is logical to assume that any stress-strain curve of
soils is bounded by two straight lines that are
tangential to it at small strains and at large strains as
shown in Fig 10. The tangent at small strains
denoted by Go represents the elastic modulus at
small strains and the horizontal asymptotic at large

strain indicates the upper limit of the stress 7,
namely the strength of soils. The stress-strain curve
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for the hyperbolic model can be obtained directly
from Eq. (4)

The above equation has been extensively used
for representing the stress-strain relations of a
variety of soils. Since the target of this paper is to
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show the new application of AEM, so we adopted
the simple material model which is based on only
two parameters, namely, initial modulus, G, and
reference strain, y. (=7,/G,, where 7, is the

upper limit of the stress). However, any type of
material model can be adopted by AEM. For further
details on material modeling please refer ref. 7.

7. EFFECT OF ELEMENT SIZE

To discuss the effect of element size on the
surface displacement and crack distribution,
analyses is carried out by varying the element size.
Size of the model considered for this analysis is
500x75 m. Material properties used in the analysis
are shown in Table 3. All the properties are
assumed constant and non-linear analysis is
performed by changing the element size. Figure 11
shows the comparison of vertical displacement
distribution on the surface for different element
sizes. From this figure, it can be clearly seen that the
element size has no effect on the vertical
displacement. Upon observing the crack pattern (see
Figs. 12 (a)~(d)) for different element sizes, it can
be clearly said that the element size has little to no
effect.

8. NON-LINEAR ANALYSIS

Analysis is carried out for four cases. Cases 3
and 4 shown in Figs. 13 and 14 respectively are for
reverse faulting where hanging wall is moving in
upward direction and the stresses in the soil deposit
are compressive and the cases 5 and 6 shown in
Figs. 15 and 16 are normal faulting where the
hanging wall is moving in downward direction and
the stresses in the soil deposit are tensile. In the
results of all the cases, displacement on the surface
is plotted for every 1-m displacement of the hangin
wall along the direction of dip angle ie., 45"

(2) Element size 3.0x3.0m

(c) Element size 7.5x7.5 m

Material properties for bedrock and soil deposit in
case of non-linear analysis are shown in Table 3.
Figures 13 (a) and (b) show the displacement
and internal stresses for dip angle 90° reverse
faulting respectively. From the figures, it can be
observed that the displacement on the hanging wall
side is in proportion to the movement of the hanging
wall movement and the affected zone is
concentrated near the fault region only. From Fig.
13(b), it can be seen that the stresses near the zone
of rupture are high and these stresses are reducing
when we move towards the surface. Figure 14 (a)
and (b) show surface displacement and internal
stresses for dip angle 45° reverse faulting,
respectively. From the surface displacement in Fig.
14(a) the effect of dip angle can be seen. Due to the
change in dip angle the influence length has
increased. Figures 15 (a) and (b) show the surface
displacement and internal stresses for dip angle 90°
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Table 3 Material Properties
E y L k,
KN/m’)  Nm?) Nm) (KN
Bedrock 66%10° 26.5 2.5x10°  2.5x10°
Soil deposit _20x10° 180 __15x10° _1.5x10°

(b) Element size 5.0x5.0 m

(d) Element size 10x10 m

Fig. 12 Element location and crack distribution
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normal faulting respectively. In this case, hanging
wall is moving in downward direction creating the
tensile stresses in the deposit. From Fig. 15(a), we
can easily observe that the influence length is
shorter than that in the case of reverse faulting.
Figure 15(b) shows the stress distribution at regular
intervals in soil deposit. From this figure, it is clear
that the stresses are concentrated near the zone of
faulting. Figures 16 (a) and (b) are similar to Figs.
15 (a) and (b) respectively, except for the case of
dip angle. Figures 17 and 18 show the clements
location after the final displacement for 90° normal
and reverse faulting respectively. From these
figures, we can observe the developed rupture zone
from the bedrock to the surface.

A parametric study has been carried out to show
the relationship between the surface displacement
and the hanging wall displacement. Vertical
displacement of 5m is given to the bedrock along
the direction of dip angle and the displacement at
the surface is observed. Figure 19 shows the
influence length on the surface towards the left side
and the right side normalized with the thickness of
the soil deposit. In this figure, the solid lines are
indicating the normalized surface displacement of
reverse fault case and the dashed lines show the
normal fault case. It is clear from the figure that the
influence length on the hanging wall is increasing in
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Fig. 14 Analysis results for Case 4

case of normal fault and decreasing in case of
reverse fault. And the influence length on the
footwall side is decreasing in case of normal fault
and increasing in case of reverse faulting.

This kind of study is necessary to establish the
possible locations of the faults appearing on the
surface due to future earthquakes because engineers
are more concerned about the damage that might be
caused when the structures are located on the
vulnerable arca. According to seismological point of
view, some difference between the real fault and the
expected fault line is acceptable but for the
engineers, this difference might be sometimes of a
major concern. Moreover, from the recent
earthquakes, it was observed that the structures
which are located very near to the zone of faulting
have survived and the structures that are far have
experienced major damage (JSCE (1999, a) and b)).
This shows that there is a strong relation between
site conditions and the dynamic characteristics of
wave motion. Hence it is important to study the
surface behavior based on the local soil conditions
and fault characteristics. This kind of study is
difficult to perform experimentally because it is
difficult to prepare a model similar to actual case.
On the other hand, numerical models which can
predict the behavior of the media accurately in small
and large deformation range and in non-linear range
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Fig. 15 Analysis results for Case 5

(b) Normal stresses in soil deposit at regular intervals

Fig. 16 Analysis results for Case 6

Fig. 17 Elements location after displacement (Case 3)
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have the advantage of modelling any kind of soil

Fig. 18 Elements location after displacement (Case 5)

9. CONCLUSIONS

and flexibility to change the parameters such as

strength of soil, thickness of the deposit and dip

angle.

A new application of Applied Element Method
is proposed in this paper. A dip-slip fault zone is
modelled numerically to study the influence of dip
angle, bedrock displacement and the thickness of the
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soil deposit on the length of affected zone. Since
this is preliminary model, dynamic aspects such as
ground motion, slip rate of fault movement, etc, are
not taken into consideration. The boundary
condition discussed here can be improved for
qualitative discussion since there will be some
movement in the horizontal direction along the
boundary. Although the discussion done here is for
the static case, the method can be extended to
dynamic case such as modelling of the unbounded
media for studying more realistic phenomenon like
wave propagation and dependence on soil
parameters.
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