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In this study a 3D nonlinear parallel FEM formulation was derived for dynamic soil structure interaction
problems. To express the nonlinear property of the saturated soil the simplified bounding surface model
was used referring the Wolf and Crouch’s study. In the implementation of the parallel processing algo-
rithm for the 3D nonlinear FEM formulation, Domain Decomposition Method and Conjugate Gradient
Method were applied. To see the validity of the proposed parallel analysis a seismic earth pressure test
using a shaking table was simulated. The numerical results for the seismic active earth pressures and

" dynamic pore water pressures acting on the wall coincide well with those of the experiment.
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1. INTRODUCTION

As the severe damage of the port of Kobe in the
1995 Hyogo-Ken Nanbu earthquake, damages of
- water front structures such as quay walls are often
encountered in the great earthquakes. To understand
the dynamic behaviors of the water front structures
which retain saturated soil layers, dynamic interaction
between the water front structures and saturated soil
layers should be analyzed more exactly. There exist
two problems for analysis of the dynamic interaction.
The first problem is how to idealize the saturated soil
layer. It is required to assume the soil layer as the
composite of the soil grains and the pore water and to
solve a fluid and solid coupling problem. It is neces-
sary to use an appropriate material constitutive model
for the soil grains, which is able to represent the
nonlinear stress-strain relationship' and the load-
ing-unloading hysteresis loops. To solve the first
problem, the bounding surface plasticity model was
introduced referring the previous studies by Dafalias”
and Wolf-Crouch?. In this model the change of plastic

strain during cyclic loading is evaluated according to
the relative position of the current stress point on the
loading surface inside the bounding surface. The
model s applicable for both of clays and sands by
unifying the parameters in the single frame of a con-
stitutive model. In the model developed by Wolf and
Crouch the bounding surface is defined by three dif-
ferent equations. In this study the bounding surface is
determined by a single function .The number of the
parameter to specify the nonlinear relation is reduced
in this study.

The second problem is how to reduce heavy loads
on the computation processes. Long computation time
and large computer memory are needed to solve three
dimensional, coupling problem applying iterative
method for nonlinear analysis and time history re-
sponse analysis for a recorded earthquake motion. To
overcome this problem the authors proposed the par-
allel computation of the FEM analysis for the dynamic
response of a saturated soil layer which has a linear
stress-strain relation®. The proposed parallel FEM
analysis was conducted by allocating blocks of the
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computation into several individual processors. The
Domain Decomposition Method (DDM)*™-? was used
to partite the whole domain of the analytical model. As
this parallel computation is more effective for the
nonlinear case, the parallel FEM formulation is ex-
tended to the nonlinear problem in this study. The
nonlinear problem is iteratively solved by the modified
Newton-Raphson scheme®.

In the previous studies parallel FEM analysis was
applied for the linear dynamic problem of solid mate-
rials like metals. In this study the nonlinear dynamic
problem for saturated soils was solved first by parallel
3D FEM considering soil structure interactions and
coupling of two phase material.

In this paper the authors propose parallel 3D FEM
formulations to analyze more exactly the dynamic
soil-structure interaction problem. The validity and
efficiency of the proposed FEM analysis is investi-
gated by comparing the analytical results with the
experimental results of a shaking table test for the
seismic earth pressure of a saturated soils.

2. FORMULATION FOR NUMERICAL
ANALYSIS

(1) Governing equations

The governing equations are derived by assuming
that the saturated soils are composed of the soil grains
and the pore water. The density of the saturated soil, p
is expressed by the density of the soil grains p, and the
fluid density oy, as schematically shown in Fig. 1.

pP=(I-n)py+np, %))

where 7 is the porosity.
Assuming infinitesimal displacement the equations
of motions for saturated porous material are given as

follows.™®
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Fig.1. Idealization of the Saturated Soils

saturated soil, p is the pore water pressure, u; and w;
are the components of displacement of the soil grain
and the relative displacement of the pore water to u;,
respectively. The superposed dot implies time deriva-
tive, () denotes the derivative with respect to coor-
dinates x;. For o; and p tensile stress are defined
positive in this paper. k is the permeability and g is the
gravitational acceleration. As Darcy’s law, the re-
lation w =k * i is used ,where i is hydraulic gradient.

(2) Stress strain relations

The stress strain relation for the total stress in-
crement g, and the pore water increment p are
given as follows.

O'U =Dljkl éld +a 6 Kgfé’,d sk,+a Kgf‘su ;

p=Ker(a & +{)

(3a)
(3b)

where Dy, represents the stress strain relation of soil
skeleton, oz and Kgrare the values related to the bulk
modulus of the soil grain and the pore water. In the
above equations the effect of the pore water pressure
on deformation of the soil skeleton is considered.

The strain & and ¢ are defined in the following
equations.

(4a)
(4b)

&;; represents the strain of the soil skeleton and ¢ is
the volumetric strain of pore water.

Elastoplastic stress strain relatlon D"’P IS ex-
pressed in the following equation.?

D; o Al
D,e ikl "Dykl u(L) I”m o pq pq ®

y H + Qup Dopey Prg

where
Oy Dju &u ©3)
“H+ Oub Daea Boa
%, o

V=5 - Oy = 507, (6b)

where Dy, represents the elastic stress strain relation,
H is the plastic hardening modulus, g, and f are the
plastic potential and the yield surface. u(L) is the
heavy-step function, u(L)=1 for L>0 and u(L)=0 for
L<0.

The above relations are derived for the general type
of yield functions. In the bounding surface model,
these relations are applied not only for the bounding
surface but also for the loading surface inside the
bounding surface.
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To specify the relations in Eq. (5) in detail, the
elastic stress-strain relation D, , the failure surface
F}, the bounding surface F;, the loading surface f; and
the plastic strain potential g, should be determined.
The form of the functions mentioned above is ex-
plained in the followings.

Elastic stress-strain relation

The elastic stress-strain relation ,.Je.k, is expressed
as

D,;]d =2G 5ik§j1 + (K—%G)é‘y&kl @)

in which X is bulk modulus and G is shear modulus.
The bulk modulus X is expresses as

K l1+e,( 1Y’
e P ®
Pa kK \3p,

in which e, is the initial void ratio, xis the slope of the
swelling process in the consolidation curve, p, is the
atmosphere pressure, / is the first invariant of stress
(I =0 Yii) .

Assuming a constant Poisson’s ratio v, the shear
modulus G is written in the following expression.

_3(1-2v)

6= 2(1+v)

&)

Failure surface

The failure surface is represented by an elliptic
cone in the stress space as proposed by Wolf and
Crouch®. The shape of the cone is controlled by the
Lode angle & and the friction angle ¢,.,. The critical
state line in the meridional section is then defined as
follows.

2 Sin ¢,

= pp e 10).
gcr pc\/} (3-SI}1 ¢cr) ( )

where p, is the elliptic function and function of 6. The
detail form of p, is written in Wolf and Crouch’s
paper?.

The failure surface F;is defined as follows.

Ff =—¢,I+J =0 (1)
where J is the second invariant of deviatoric stress.

J= ,[%s,-jsﬁ = \/Z
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Fig.2 Single elliptic bounding surface model

The single elliptic surface with parameters R, ¢_
and I, are used as the bounding surface in this study.
The parameter R controls the aspect ratio of the el-
lipse, as shown in Fig. 2. The form of the bounding
surface F} is defined as the following equation.

o o), 1 (R Y.
o o el o

1, is the maximum isotropic compression stress in the
previous stress history. The size of the bounding sur-
face is defined by 7.

The evolution of the size of the bounding surface is
written as follow.

Lo Iren[To | g (14)
Pa A-x 3pa

where A is the compression index of the normally
consolidation curve. £7 is the plastic volumetric-
strain rate.

Loading surface

The shape of the loading surface is similar with the
bounding surface form. The plastic condition of the
loading surface, which is located inside the bounding
surface, should be related to the plastic condition on
the bounding surface. The relation is given by map-
ping the current stress point on the image point of the
bounding surface, as shown in Fig. 2. In order to
capture the wide range of the soil responses due to
loading histories, the combination of the radial and
deviatoric mapping rules have been used in this study.

The radial and deviatoric mapping rules are written
as follows.

1‘=(%J+ﬂ(1-%) J=pJ
IT=1I

I =BJ

15)

|

(16)

in which fis the similarity ratio.
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The equations which define the loading surfaces in
the radial and deviatoric mapping regions can be ob-
tained by substituting Egs. (15) and (16) into the
bounding surface equation, Eq. (13), respectively.

2

)J:o an
2

-1) ]:o (18)

The similarity ratio is obtained by solving the Eqs.
(17) and (18) for a given stress state.

2( 2
_ 2J2_(§cr10) B (Rl
=l R \ (R'I)zklo
2(
_ 2J2_(§cr10) o1 (ﬂ
L=k R (R—I)z Iy

Potential surface
The potential surface g, is assumed as the similar

form with the bounding surface.
. 2 2
g,,=12—(g°’21§g)(1- ! z(ﬁ’i-] =0(19)
B (-0 \os

in which subscript g denotes the parameters related to
the potential surface g,. All parameters except Iy, are
same with those of the bounding surface. Iy, is scaled
such that the current stress point lies on the potential
surface.

To determine the unit vector of the plastic strain
rate P easily, the deviatoric component of the unit
vector of the loading direction Qs is assumed to co-
incide with the deviatoric component of the unit vector
Ps.

Although the bounding surface, the loading surface
and the potential surface are the similar elliptic form,
these surfaces are not geometrically identical and the
responses of the soil are obtained based on the
non-associated flow rule.

Plastic hardening modulus

The plastic hardening modulus  on the loading
surface is defined referring the value of the plastic
hardening modulus /7 on the bounding surface.

H=H+H; 20
Assuming that the hardening function is I,, § can
be written as follows.

— l+e; oF
H=-——7—1%1], —

B
A-x 610

@n
OF [dl, is evaluated for the bounding plastic point on

the bounding surface. The bounding plastic point is
determined by projecting the current stress point from

the origin of the stress space onto the bounding surface
as shown in Fig, 2.
To determine the bounding plastic point, the fol-

lowing mapping rule is used.

I=B1 JT=p8J 22)
i =ﬁsz_(§crlo)2(1_ 1 (ﬂ_RI_1J2 =0(23)
L R | -1y

Hy is calculated using the following equations, de-
veloped by Wolf and Crouch?.
s
I+e h 1,
Hij=—*%o_— | 0 (24a)
4 A-k (ﬂ/(ﬂ_l)_se>[3paj

0.02 0.02
h=rh, [i) + 1 -[i] hethe 24p)
J, 7, 2

I
J;= g‘}'T" (24c)
_ 2(h, /h;)

"= 1+(h.[h;)~(1-(h.[h.)) Sin36 (24d)

h. =h, ‘<1‘£>(th ~h.3) (24¢)
I,

he = hel - <1 _£>(he1 - he2) (24f)
Iy

(3) Nonlinear dynamic parallel FEM analysis
a) Domain Decomposition

In the Domain Decomposition Method (DDM) the
analytical model is separated into several subdomains
and the FEM analysis of the subdomains are per-
formed parallel solving the interface problems among
the subdomains. As an example, a domain 2 is
decomposed into two subdomains 2" and 27 as
shown in Fig, 3. I'? is the interface between 2" and
7%, In each subdomain the fundamental relations,
Egs. (2a) and (2b), and the constitutive relations, Eqs.
(3a) and (3b) are satisfied. However, to enforce their
continuity on their interface, the additional boundary
conditions for the interface are required.

(1)
Ay nj . A ny
Ay n; Ay n;
u; n; (“ u;n;
w;n; " w, n;

where 4 is a traction tensor and #; is an outer normal
vector. The superscripts # and w denote the soil

(2)
} =0 on I'"? (25
and

(2)
} on 12 (26)
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Fig.3 Decomposition into two subdomains

skeleton and the fluid part respectively.
To obtain the solution for the whole domain, the

displacement based weighted residual formulation for
Eqgs. (2a), (2b) and (25), are led as follows.

s=1 o

(s)

P pr (4
[ sr{ou; sw ) 4 {"} do*) 27
£2 Py 7Pr |

(s)

0 0y
=] (s)t0u; Ow; ) ! dos)
R {L ,_HW}}

axn )"
+L_(12){5ui é'w,.}(”) {'j ]} +

A n
(2)
u
Ay n; dr(i? =g
w
;Llj nj.

where s denotes the number of subdomains. For the
inter-subdomains constraint the following equations
are given.

2 o (s)
) J_Q(s){aui ‘5”’:‘}(5){ w} a2
p

|

(n
w Y2 |#ny
{ (ot n; 62 )} {{w -

L

. 28
Y (28)
b oo g
w; n; [

b) FEM formulation

Applying the integration by part of Green’s theo-
rem to the first term of left hand side in Eq. (27) and
using the interpolation function as the weight in the
standard Galerkin method™, Eqs. (27) and (28) above
are converted as follows.

M

(s)j(s) (s)qls) (s)'(S)=2 (s)_glsJ
M) 4 prdls) + k()40 |=N| F(5) - B 4

s=1 s=1
(29a)
2
Y Bds) =0 (29b)
s=1
in which
(s) (s)
sy _ 45 ) _| Mu” M
dt?/ = M©¢ = T
d‘(vS) Mgs) M\(VS)
. (GO
: (s) (s)
D(s)z[Df) 0 ] K(s)leu K }
o D‘(vx) Kgs) K‘(‘,S)

where M®, D® and K are the mass, damping and
stiffness matrices for each subdomains. The subscript
u and w denotes the soil skeleton and the fluid part
respectively, the subscript ¢ designates the coupling
condition. The vectors d*/ and d(*/ are the relative
displacement of the soil skeleton and the fluid for the
base movement, respectively. The vector A is com-
posed of A; which is traction forces in the interface
nodes. The matrix B’ is signed Boolean matrix, which
localizes a subdomain quantity to the subdomain in-
terface. If the interior degrees of freedom are num-
bered first and the interface ones are numbered last,
the Boolean matrix B is expressed in the following
form.

B =0 I] 3D

where 0 is a null matrix and / is the identity matrix.

¢) Numerical solution _
To solve Eqgs. (29a) and (29b) in time domain, the
Hilber-o'” method is used as follows.

- a
2P

i =L +[1_%) i) +(1-27_B]m i) (326

di) =d(*) + adl’

i =L

Adls) -1

_ (s) " g(s)
B A’

52 (32a)

(320)

1-28 - (1-a@y
> s B= y (32d)

<@<0 ;7=

Us

Substituting Eqgs. (32¢) and (32d) into Eq. (2%a) and
extending the number of subdomain to N, the fun-
damental equations are expressed as follows.

N, N,
ZI:K;‘L)I Adf,s):I:Zl:AF,,(S)~B(”T Al"] (3a)
s=1 s=1
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or
N, . ] )T Ny ", =1
Z[B(’)K;‘fl B ]A}.ﬂzZ[B(‘)KI(.’) AF,,(‘)](33b)
s=I- " = s=1 !
Ny
ZB(S) Ad,(,s) =0 (33¢)
s=1
a3 (a5 o3
B =Lyt T _po) g (33e)
n-1 ﬂ Ar ﬂ At n-1
Aﬁ,f”:(F,f‘)—F,,{ff)+(ﬁLAlM(‘)+%D(’)]dﬁ)1
_ (330
| L) o[ L _p|a Do i)
28 2B

The vector A1 in Eq. (33b) is solved using Conjugate
Gradient (CG) algorithms®. Ad,, is evaluated from
Eq. (33d). In this study, the nonlinear stress strain
relation for the soil skeleton is assumed. The solution
of Egs. (33b) and (33c¢) in time domain is carried out
applying the modified Newton Raphson Method. In
the nonlinear analysis for £” iteration, the incremental
nodal force vector AF(*) in Egs. (33b) and (33d) is
replaced by residual */AR(*) in Eq. (34).

(k) AR(S) = AF(5) — (k=1) g ()
AR(S) = AF! AR

sy K . 34
~aF( - (RE Vaa?) 34
=1

The iterative process is terminated when the fol-
lowing convergence criterion in each subdomain is
satisfied.

k T (k
(K)AR(s) (k) pq(s)
AF(T (0 pd(s)

<e (35a)

where

k
k) adls) =y (1) pals)
J=1

(35b)

The increments Ac® and Ap® at the ¥” iteration
in the n™ time step are given in Eqs. (36a) and (36b).

Ask
{ " } (36a)
ack

(36b)

{Ac",,} D +85a%Kk, 8 aky s
4p, aKgy 8

Ko
k] 51
D =3(D:f,+D§P )

d) Parallel computation

In order to achieve efficient parallel computations
the Domain Decomposition Method described above

is implemented using Single Program Multiple Data
(SPMD) programming model. The interprocessor
communication is performed in the message-passing
paradigm and the PVM programming libraries'” is
used as a parallel interpreter.

To form and assemble the mass matrix, damping
matrix, stiffness matrix for each subdomain, the
computations are executed parallel in the assignment
processors.- For each time step, the dynamic loading
vector for each subdomain can be calculated in the
parallel manner. Although the CG algorithm requires
the interprocessor communication, the algorithm is
more amenable to parallel manner than direct solution
of Eq. (33b). For the efficient interprocessor com-
munication a model for three-dimensional hypercube
networking is considered in this paper. The explana-
tion of the hypercube networking is described in the
authors’ paper”.

The parallel computation of this study has been
done on the share memory type of multiprocessor SGI
Origin/2000 machine. The FORTRAN77 computer
code has been applied with message passing between
processors for exchanging the data.

3. NUMERICAL ANALYSIS

(1) A model for analysis

To evaluate the validity and the efficiency of the
proposed numerical analysis, the shaking table test'?
which was performed to investigate the seismic earth -
pressure of the saturated sand layer, was simulated by
the proposed method. In the experiment Toyoura sand
was used as the backfill soil. The soil was contained
every /0 cm deep in the steel box partially filled with
the water and compacted to a dense condition. The
dimensions of the steel box are /.00 m high, 2.00 m
long and /.00 m wide. The height of the saturated
backfill sand was 56.0 cm. The box was subjected to a
pure sinusoidal excitation with the frequency of 3 Hz.
One of the side wall of the box is equipped to move
outward during the excitation and the pressures acting
on the wall can be measured using the load cells as
shown in Fig. 4. The velocity of the wall movement in
the horizontal direction is 0.02 mm/sec. The move-
ment of the wall was measured at the middle of the
wall height. Pore water pressures are measured using
pore water pressure cells attached to the surface of the
moveable wall.

The model for the numerical analysis is the same
size of the backfill and the one side wall can move
outward. The FEM mesh of the model is shown in Fig.
5. The model was divided into eight subdomains as-
signed to eight processors individually without over-
lapping and the model was solved in parallel by the
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eight processors. To maintain the continuity condi-
tions between the subdomains, they were linked by the
interfaces expressed as the bold dashed lines. As
shown in Fig.5 the whole domain is separated of eight
subdomains-of soil, and two walls and two joint in-
terfaces .Each subdomain is composed of 150 hexa-
hedra element with eight nodes and 27 integration
points. The size of the subdomain was determined by
trial and error to obtain stable results for the stresses.

As the numerical integration method in time do-
main, Hilber-o method was applied with the time step
At = 0.01 second. The parameters of Hilber-a method
@, B and y are -0.25, 0.25 and 0.50, respectively.
The damping ratio of granular soil skeleton was as-
sumed as 0.05. The final solution in each step was
confirmed when the modified Newton Raphson con-
vergence criterion £=/0" was satisfied.

The joint element was introduced between the
backfill soil and the moveable side wall. The joint
element model developed by Beer' for two and
three-dimensional FEM analysis, was used in this
analysis. The criterion for the stress and the relative
displacement was defined referring the paper by Toki
et al.'”. Except for the upper surface of the model and
the moveable wall, both of the soil skeleton and the
pore water are not allowed to move outward at the
boundaries of the model. The pore water pressures on

T~~~ _moveable wall

horizontal pipe s
counter weigk. r

x— 56.0cm —\

Fig. 5 FEM mesh of the numerical model

the upper surface of the model are kept equal to zero
during the analysis.

The horizontal acceleration is applied along the
longitudinal direction and perpendicular to the wall.
The stresses acting on the wall are compared with the
measured loads acting on the movable wall. As the
boundary condition the displacement to the outward is
only fixed. The slippage between the wall and the
backfill soil is allowed but the opening is not permitted
at the joint interface. The initial condition for the pore
water pressure is hydrostatic. The coefficient of the
earth pressure at rest which is related to the initial
condition for the effective stress, was specified as 0.6
based on the experimental data and the fact that in the
experiment the backfill was compacted artificially as
resulting in a moderate dense condition.

(2) Material parameters

To apply the bounding surface model successfully
several parameters should be defined properly based
on the experimental results. An experimental work for
sands including Toyoura sands was conducted by
Been et al."” to define the properties in the framework
of critical state soil mechanics. Pradhan et al.'® in-
vestigated the properties of Toyoura sand under cyclic
loads through the series of laboratory tests. Kawa-
mura'? also tested to obtain the physical properties of
saturated Toyoura sand which was used for the
shaking table tests. The material properties of Toy-
oura sand which is the backfill sand for the numerical
analysis, are defined using the experimental data by
Been et al., Pradhan et al. and Kawamura. The values
of the parameters are listed in Table 1. The angle of
friction in the critical state ¢, is used to define the
failure surface. The value of ¢, is approximated 3/°
for Toyoura sand'” and the same value was assumed
for both of compression and extension meridian. The
parameters A and « are the slope of the normally
consolidation line and the swelling line, respectively.
These values were determined by standard isotropic

Table 1 Material properties of the backfill soils

Property Symbol Value Unit

Effective frictional angle Ber 31 degree

Slope of isotropic cons. Line 2 0.02

Slope of elastic rebound line x 0.002

Parameter def. shape of ellipse R 225

Elastic nucleus parameter Se 1.0

Hardening shape factor heilhes 0.02/0.001
heilhe: 0.02/0.002

Initial void ratio en 0.64

Poisson’s Ratio v 0.33

Bulk modulus of granular soil K, 370x10 GPa

Bulk modulus of pore water K, 2.08 GPa

Density of saturated soi | p 2.0 g/em’

Density of pore water o 1.0 g/em®

Coefficient of permeability k 12x10*  mss

Coeficient of Contact area a 1.0
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consolidation tests. The aspect ratio of the ellipse for
the bounding surface R lies in the range of /.5 to 3.0.
In this analysis R is specified 2.25 as the typical value
for sands'®. A parameter s, defines the elastic nucleus
where only elastic strains are developed. Plastic
strains are found in a very low stress level in the case
of sands. In this study s. is assumed to be one, so that
the elastic nucleus shrinks to a point. The hardening
shape factor h.> and A, control the hardening
behavior through the additive plastic modulus within
the bounding surface. The hardening shape factors
were determined by standard triaxial tests'®. A coef-
ficient ¢ is close to unity for most of soil-like mate-
rial®. o was taken to unity in this analysis.

The material properties for the joint element and
the steel wall are listed on Table 2 and Table 3, re-
spectively. The values of the normal and the shear
stiffness for the joint element were referred to the test

performed by Hazarika and Matsuzawa'®.

(3) Numerical results and discussion
a) Validation of parallel computation
The velocity of the wall movement is 0.02 mm/sec at
the middle of the height s,, in Fig. 6, which is the same
condition with the experiment

The numerical values at the center of the elements
behind the wall as shown in Fig. 7, are discussed as
the typical results of the analysis. As an example,

Table 2 Material properties of interface el t

Property Symbol Value Unit
Normal stiffness kn 440x10 GPa
Shear stiffness k, 220 GPa
Cohesion C 10.0 kPa
Friction angle ] 35.0 degree
Table 3 Material properties of wall el t

Property Symbol Value Unit
Shear Modulus G 84x10 GPa
Poisson’s Ratio v 03

Density p 78 g/em’

wall

e
@

f
\ bacidfill taye!

56.00 cm

20.00 cm
[ T e— -

'\center of ratation

Fig. 6 Illustration of movement of the wall

change of the lateral effective stresses, which is
normal to the wall and the pore water pressure at the
point e-3, is shown in Fig. 8. In this section the ef-
fective stress and the pore water pressure are ex-
pressed positive for compressive deformation. The
effective stress is reduced due to the wall movement
and the pore water increases at the beginning of the
wall movement. These tendencies were observed in the
experiment.

In Fig. 9 the dynamic pore water pressures acting
on the wall at the point e-/ to e-6 are compared with
the experimental values measured by the pore water
cells. The dynamic pore water pressure corresponds

Fig.7 The positions of the picked up responses
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stress/pressure (x 10 4 xPa)
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Fig.8 Effect of the wall movement on the lateral effective stress
and the pore water pressure
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Fig.9 Comparison of the amplitude of the pore water pressure
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with the amplitude of the pore water pressures after
ten seconds excitation when the wall movement is
about 0.2 mm. Fig. 9 shows the good agreement be-
tween the analysis and the experiment.

The pass of effective stress at point e-/ is plotted

on the I-J plane in Fig. 10. The stress pass moves close
to the critical state line according the increase of the
wall movement. It is presumed the soil at the bottom of
the soil layer is highly sheared and becomes close to
the critical state when the wall moves outward. The
shear stress-strain relation at point e-/, shown in Fig.
11, suggests the shear stress-strain relation has a
nonlinear properties due to the wall movement. The
effect of the dynamic loading is relatively small.
The numerical results of the effective lateral stress
distribution at the wall are shown in Fig. 12 for the
wall movement 0.2 mm in which the effective lateral
stresses is the maximum in the one cyclic loading. In
the experiments the lateral pressures were measured
as the total force using the two load cells because it is
not reliable to observe the small earth pressures by the
carth pressure cells. The earth pressure distribution
acting on the wall was not measured directly in the
experiments. The experimental values are plotted in
Fig. 12 assuming the hydrostatic distribution. The
total areas of the numerical results and the experi-
mental ones are close. It is suggested the total force
predicted by the analysis coincides well with the ex-
perimental one.

In the experiments the value of the lateral earth
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Fig.10 Effective stress path at Point e-]
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~
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Fig.11 The Response of the shear stress-strain at Point e-/

pressures was defined as the seismic active earth
pressure based on the study on the active earth pres-
sures'?. The slope of the experimental values in Fig.
13 represents the active earth pressure coefficient
during earthquake, K, which is applied for the current
design criterion of the quay walls. The value of K in
the experiment was 0. 45 and nearly equals to the value
calculated by the Mononobe-Okabe equation using the
seismic coefficient K and the density of the soil con-
sidering the effect of buoyancy. The value obtained by
the analysis is 0.43.

For the experimental data, the relative height of the
applied point of the total force acting on the wall ~/H
is calculated solving the equilibrium equation of the
moment for rotation center of the wall.

The effect of the wall movement for X and #/H are
shown in Fig. 13. According to the wall movement X
is reduced and A/H is also reduced at first and turned
to increase after the wall movement s,,=0.06 mm. The
coefficient of the wall friction f, in the analysis is
increased due to the wall movement, as shown in
Fig.14. These characteristics for K, &/H and f, are
also confirmed in the experiments.
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Fig.12 Comparison of the lateral pressure distribution
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Fig.13 Responses of the earth pressure parameters
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Table 4 Performance of parallel computation

a8 4+— f— — — _ Num of Prob M Y (GB) Executing Time (SE)
= ‘ A ﬂ m ﬂ Procs. Linear | Nonlinear
= L : Mﬂbﬂw L 1 1x392 5406 71.066 204.148
H ' M’mj 2 AAA 2 2x392 5410 75782 206.019
5 ) M(\cﬁd\» 4 4x392 5418 80.933 212.539
3 Mr— — JQ;“V‘JW — 8x392 5434 82.497 225473
= /A 16 16x392 5.468 84.007 230.981
024+ — — — —_— —
. . N . . ) Table § Parallel computation indicators
0.05 0.10 0.15 0.20 025 030 Scale of  Increment of ji of  Executing Time(%)
wall movement (mm) Model Memory (%)
. . . Linear Nonli
Fig.14 The response of the friction coefficient T 0.000 0.000 0.000
2 0.068 6.635 0.916
4 0.222 13.884 4.110
8 0.506 16.084 10.446
16 1.143 18.210 13.144

Fig.15 Deformation and failure mode of subdomain 1

The distribution of p,; which denotes the tangent of
the mobilized angle of friction similar with ¢, is
shown in Fig. 15, for the subdomain / in the saturated
soil layer and the wall movement 5,=0.2 mm. The
darker points represent the stress conditions close to
the critical state. The darker areas starting from the
bottom is presumed as a failure zone in the backfill
soil. It is difficult to define the failure line in the
saturated soils. In the experiment the active state
where the failure occurs was defined for the wall
movement s,=0.2 mm but it is not confirmed by this
numerical analysis because of the accuracy of the
analysis close to the failure surface and the limitation
of the infinitesimal small strain analysis.

b) Performance of parallel computation

To evaluate the performance of the nonlinear par-
allel computation, series of the analysis were carried
out and results are shown in Tables 4 and 5. In the
series of the analysis the results for nonlinear soil
materials are compared with those of linear soil ma-
terial. In both of the linear and the nonlinear cases the
model size and the number of processors are increased
keeping the specified number of elements assigned to
one processor constant. The subdomain for each
processor is composed of 392 elements and 3072

numbers of degrees of freedom. The executing time
and the computer memory requirement were investi-
gated as the parallel computation indicator. These
indicator values were recorded after the first step of
the dynamic analysis. The execution time is sum of the
elapsed time for the calculation processes in each
processor and the inter-processor communications.
The memory size in Table 4 represents the maximum
value for all the processors .

The percentage of the increment of the computer
memory requirement and the executing time for each
scale of the model are shown in Table 5. For the model
memory requirement are/ 3.1% and 1. 1%, respectively
in the nonlinear case. The increment of the executing
time in the linear case is/8.2%. These results suggests
that the performance of the parallel computation is
very efficient and more effective for nonlinear analysis
than the linear case. '

4. CONCLUSIONS

The followings are obtained as the results of this
study.

(1). The 3D nonlinear FEM formulation for the dy-
namic response of saturated layers was derived
simplifying the bounding surface model devel-
oped by Wolf and Crouch. This formulation is
applicable to dynamic soil-structure interaction
problems for saturated soil layers and time his-
tory response analysis.

(2). The 3D nonlinear FEM formulation was solved
by the parallel processing procedure to reduce the
computation time and the memories for 3D and
nonlinear FEM models. In the implementation
Domain Decomposition Method was applied and
the Conjugate Gradient algorithm was used to
solve the displacement in the whole domains in-
troducing the modified Newton-Raphson proce-
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dures.

(3). The parallel processing FEM was applied to
simulate the dynamic earth pressure of a satu-
rated soil which was observed in the shaking table
tests and affected by the lateral movement during
the excitations. The dynamic pore water pressure
acting on the wall by this analysis coincides well
with those of the experimental data as shown in
Fig. 9. The numerical value for the total force of
seismic active earth pressures acting on the wall,
which is the effective stress, was close to the
experimental values as shown in Fig. 12. The
validity of the numerical results was confirmed by
the comparison with the experimental data.

(4). The efficiency of the parallel processing algorithm
was made clear by the comparison of the exe-
cuting time for different sizes of the model.

(5). The 3D nonlinear parallel FEM analysis was
applied successfully to the seismic active earth
pressure problem first by this study. It is also first
analytical study to show the relation of the ef-
fective stresses and pore water pressures in the
saturated soil layer under cyclic loading and with
the effect of the wall movement.
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S tRoOREE TR IZEET 5 3RTTIEREXENE IR ELZEWN
PI&E - Jafril Tanjung

ZOBNTE, BSNLBIEESY280HEEEABEIINT S, 3RTIESEEFNFRER
B HFE4E2TT. BT VE LENFICESERELNEZNETHLERHT LD
{Z, Bounding Surface Model Zft 7. 7/, SKREESFEBHHBITOBALHEATLE
BT B0z, BREZXNHEBT7NVTY XALZiE, Domain Decomposition Method &
Conjugation Gradient Method Z 7z, DFIZ, BRENFEOBRYUEERITT 571-5
12, EOS4ARCHEEIFEROBEY I 20—V a v A3 fFT-7. HEnTe+EEm
BB IC B3 A BERITR RIERER B —HAR L.
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