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Long term earthquake observations at different tunnel sites within a variety of alluvial soil deposits have
clearly demonstrated that a circular tunnel is liable to deform in such a way that its two diagonal diameters
crossing each other expand and contract alternately. Based on this knowledge, the soil-tunnel interaction for
this particular vibration mode is investigated. The soil surrounding a tunnel is assumed to be a homogeneous
elastic medium, and two extreme boundary conditions on the soil-tunnel interface are considered; the
condition of fixed tangential strain and the shear stress-free condition. The former case suggests a firm bond
between the tunnel lining and the soil, whereas the latter case is associated with an artificial slippery soil-

tunnel interface.
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1. INTRODUCTION

The South-Hyogo Earthquake of Jan. 17, 1995 did
serious damage to some subway stations in Kobe",
and showed again the importance of estimating the
motion of a soil deposit surrounding an underground
structure. Use of a finite element method with wave
transmitting boundaries is a general and direct
approach to analyzing the soil-tunnel interaction.
The direct method, however, requires a computer
program that can treat the behavior of both a tunnel
and the surrounding soil with equal rigor. Moreover,
variation of the soil profile in a 3D expanse should be
provided for the analysis. Hence, there yet remains
an important place for simple approaches even in
these days of highly manipulative numerical
solutions to problems of increasing complexity.

Among a number of simplified approaches, Multi-
step methods have been used for evaluating the
earthquake resistance of an underground structure
within a soft soil deposit. These methods use the
principle of superposition to isolate two primary
causes of soil-structure interaction, that is, the
inability of a tunnel to match the free-field

deformation (kinematic interaction) and the effect of
inertia force of the structure on the response of the
surrounding soil (inertia interaction). When a hollow
structure like a tunnel is concerned, inertia
interaction is often of less importance than kinematic
interaction. For this reason, it is usual in a practical
design process that free-field ground displacement is
applied through Winkler-type soil springs to a tunnel
in order to evaluate stress patterns induced within its
structure members. The evaluation of soil springs,
however, is often as cumbersome as the analysis of
the whole soil-structure system. Moreover, the
obtained stiffness depends on the vibration mode of
the tunnel and the excitement frequency as well.
Long term earthquake observations at different
tunnel sites within a variety of alluvial soil deposits
have demonstrated that a circular tunnel is liable to
deform in such a way that its two diagonal diameters
crossing each other expand and contract alternately”,
which fact has been found to be linked with the
motion of the surrounding soil at resonance. It is
therefore worth attempting to derive soil stiffness
assuming this particular vibration mode. Two
extreme boundary conditions are considered on the
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wall of the hollow; the condition of fixed tangential
strain and the shear stress-free condition. The former
case suggests a firm bond between a tunnel lining
and the surrounding soil, whereas the latter case is
associated with an artificial slippery soil-lining
interface reducing shearing stress on the lining”. The
derivation is presented here in a brief form as it is
similar to the elastic solution® *; it is given in more
detail in Ref. 6).

2. DERIVATION OF SOIL STIFFNESS

The soil deposit discussed in this chapter is a two-
dimensional medium of an infinite extent (Fig. 1).
The governing equations of a visco-elastic medium
undergoing harmonic motion are expressed in the
cylindrical coordinates as:
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Here A, x4 = complex Lame’s constants whose
imaginary parts describe soil viscosity, p = density

of soil, i =+~1, w = circular excitement frequency, ¢
= time and u,, u,= displacements in » and 8
directions, respectively. From eqgs. (1a) and (1b), the
displacements and the soil reaction to the motion of
the cylindrical hollow can be obtained by means of
the following two potential functions:
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The functions @, and y, are found to have the
following forms:
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It is assumed that a circular cross-section of a
cylindrical hollow of radius 7, deforms in such a
way that its two diagonal diameters orthogonal to
each other (8 = +45°) alternately expand and contract.

Fig. 1 Cylindrical hollow in an unbounded
medium under shearing
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equations. Thus the displacements are found to be:
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Normal and shear stress components are then
obtained as:
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From egs. (7) and (10), 6, and 7,, are finally
expressed in terms of 4, and #, as:
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where
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3. EFFECT OF SOIL-TUNNEL
INTERACTION

The motion of a soil deposit at resonance is, in
general, the most responsible for this inclined elliptic
vibration mode of a cylindrical hollow. The
thickness H of this layer is thus considered to be
about one fourth of the stationary shear wave length
L ie.,

H=zL/4=n, /20, (14)
where f, = w, /27 = resonance frequency of the
soil deposit. Needless to say, the tunnel diameter 2r,

should not be greater than the surface soil thickness
H. This condition calls for:
Sy _ Oy 7

i v, 4

and limits the following discussion within this range
of s7,. In the following discussion, the concept of a

multi-step method, that has been mentioned briefly
in the introduction, is employed to evaluate the soil-
tunnel interaction.

First, the motion of the cylindrical hollow, which is
not affected by the presence of a tunnel lining, is to
be obtained. Though its rigorous solution is available
in a number of papers”, radial and tangential
displacements  u and u, , are tentatively

(15),

r.soil
approximated by the static solutions for a cylindrical
cavity inclusion in an unbounded medium under
alternate shearing (Fig. 1), because the tunnel’s
diameter is expected to be noticeably smaller than
the predominant wave length in many cases
encountered. Therefore,
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Where’ izr,sm'l = 2"219,xai1 (= ﬁsotl) = 2}/r0(1 - V) (16)3
and ¥ is the applied shear strain (Fig. 1). It is noted
ineq. (16) that @, , and i, ,, are identical to each

other irrespective of Poisson’s ratio. Thus, #_, is

viewed as a representative displacement parameter
of soil. The tunnel lining is then assumed to have a

perfect bond with its surrounding soil, and to be stiff
enough in its tangential direction for the tangential
Strain £ gg ;... 0 be kept zero at the wall of the lining.

Thus, the lining’s displacements u, , .. and ...
eventually satisfy the following equation at r = r,:
10u, ;. u,,
869 iming -~ 8,lining r.lining - 0 (17)
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Substituting equation (6) into equation (17) yields:
ur,lming = zue,lining (= ulining) atr = rO (18)
The soil-tunnel lining interaction thus causes the
displacement parameters of the stress-free

cylindrical cavity to deviate from #, , and #,
by #, and #@,, respectively, where,
U, = ulining = Uit and Ug = ulining /12— Uit
(19a), (19b)

Substituting eqs. (19a) and (19b) in eq. (12) yields
soil reactions to the tunnel lining as:
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Assuming the tunnel lining to be a circular
Bernoulli-Euler beam, its displacement parameter

is expressed in terms of o, and 7, as:
4
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where, E/ =bending stiffness of the lining. From egs.
(20) and (21), the following equation is finally
obtained:
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The absolute value of #,,. / #,,, shows the extent

to which the tunnel lining is deformed by the given
motion of the surrounding soil. Since #_, in eq.(16)

includes yr,, this value is also noticed to be
proportional to the strain ratio (i, /7,)/ 7 , and

thus, is considered to be an appropriate index for
examining the soil-tunnel interaction effect.

Another possible extreme case is worth
considering; a case of artificial slippery soil-tunnel
interface, which condition yields:
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Fig. 2 Ratio between lining deformation and soil
motion at resonance

Fig. 3 Effect of introducing a slippery soil-tunnel
interface
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In either case, the index ‘u,,nmg/u

@4

is a

soil

function of three parameters, namely, Poisson’s ratio
of soil, v, relative soil stiffness & (eq. (23).) and
wr, /v, . When the motion of the soil is at resonance,
wry/v, is noticed to be identical to
(w/4)-2r,/ H. Therefore, 2r, / H, namely, the

ratio between a tunnel diameter and the thickness of
a surface layer is readily used in place of wr, /v_ to

describe lft,mmg /4, Fig. 2 shows the variation of

soil

for the perfect-bonded

A
soil

the index [u,mmg ] pond

lining case. The variation of the index with respect to
2r, / H is rather small when compared to that with

Fig. 4 Effect of introducing a slippery soil-tunnel
interface

Poisson’s ratio. The index increases as Poisson’s
ratio comes close to 0.5, indicating an increase in the
strain induced within the lining.

for the case of an

The index ‘ulmmg /4, i

artificial slippery soil-tunnel interface (eq. (24)) is
divided by |, / @

y to examine the effect of

ulmmg soil

hon

introducing the slippery interface. The variation of

/ with
ship

this ratio )ﬁ,mmg /0

sotl ulmmg / u soil

bond
respect to both Poisson’s ratio and 27, / H is shown

in Fig. 3. In this figure, relative soil stiffness & is set
at 1. As Poisson’s ratio of the soil comes close t0 0.5,
shear stress 7,, converges on zero, and eventually,
setting the shear stress free causes little difference.
As Poisson’s ratio decreases, however, it exhibits

more the reverse effect of increasing the deformation
of the lining.

/

Fig. 4 shows the variation of ‘ulmmg la,, iy

& and

2r, / H . Since Poisson’s ration is set at 0.497 close

Upning | U o with respect to both

to 0.5, the variation of this ratio with £ is very small

and is about identical to 1 particularly at smaller
values of 2r,/ H .

Setting the shear stress free on the soil-tunnel
interface leads to redistribution of stress, and the
normal stress on the lining is increased. As has been
shown in eq. (21), the normal stress is twice as
responsible for the lining’s deformation as the shear
stress is. The tunnel isolation effect is, thus, not
satisfactory in the above examples. It is, however,
not readily concluded that tunnel isolation has no
advantage in that strain components within a lining
are reduced. Tunnel isolation, at least, is expected to
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reduce tunnel axial strain  considerably’.
Furthermore, its effect depends on other factors like
expansion and contraction of soft coating materials
that spread over tunnel linings. These factors have
been ignored in the present approach as they are
beyond the scope of this note, but will be discussed
in later publication.

4. CONCLUSIONS

It has been observed through long-term
observations that a circular tunnel deforms during an
earthquake in such a way that its diagonal diameters
(@ = 145" alternately expand and contract. Based on
this knowledge, the soil-tunnel interaction for this
particular vibration mode was investigated.
Narrowing down vibration modes for discussion to
this particular and the most important mode, the soil
stiffness becomes completely independent of &, thus
allowing the soil reaction to be described in terms of
discrete springs of Winkler type spreading uniformly
over the entire soil-tunnel interface. The index

/0

lining is deformed by the given motion of the
surrounding soil, was demonstrated to be an
appropriate index for examining the soil-tunnel
interaction effect. Two extreme boundary conditions
were discussed; the condition of fixed tangential
strain and the shear stress-free condition on the soil-
tunnel interface. The latter case is associated with an
artificial slippery soil-tunnel interface. It has been
shown that reducing the shear stress on the soil-
tunnel interface causes little difference when

Uyping | Hyon| > Showing the extent to which the tunnel

Poisson’s ratio is close to 0.5, whereas, as Poisson’s
ratio decreases, it can exhibit more the reverse effect
of increasing the deformation of the lining. The
effect, however, depends on other ignored factors
like expansion and contraction of soft coating
materials that spread over tunnel linings. Further
detailed study on this point will be addressed in later
publication.
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