砂のP波速度及び液状化特性に及ぼす
飽和度の影響

中澤博志1・石原研2・塚本良道3
鍵田邦夫4・大山敬道5

1正会員　工修　東京理科大学助手　理工学部　土木工学科（〒278-8510 千葉県野田市山崎2641）
2正会員　工博　東京理科大学教授　理工学部　土木工学科（〒278-8510 千葉県野田市山崎2641）
3正会員　Ph.D.　東京理科大学講師　理工学部　土木工学科（〒278-8510 千葉県野田市山崎2641）
4学生会員　東京理科大学大学院　理工学研究科土木工学専攻（〒278-8510 千葉県野田市山崎2641）
5正会員　工修　日本工営株式会社　代理事業本部（〒102-0083 東京都千代田区麹町2-5）

通常、室内において液状化強度を求める際、地下水位以下の土層が完全飽和状態を前提条件に先立ち試験が実施される。しかし、必ずしも地下水位以下土層が完全飽和状態であるとは限らないことが既往の研究から明らかになっている。

本研究では不飽和砂の液状化強度を把握するために、豊浦砂を使用し液状化度を変化させながら、P波速度計測及び非排水繰返し転軸試験を実施した。その結果、液状化強度はP波速度やB値の低下に伴い増大し、完全飽和時の液状化強度に対し、最大約2倍を示すという結果を得た。一連の検討から、P波速度を考慮することにより、原位置の飽和度を考慮した砂の液状化強度の把握が可能であることを示唆した。

Key Words : B-value, P-wave velocity, undrained cyclic shear behavior, liquefaction strength

1. はじめに

一般に液状化強度を求める場合、地下水面以下の飽和砂質土を対象としている。これは、地下水位以下の飽和砂質土層が一様に完全飽和しているという前提に立つものである。しかし、流れ1は、慣性速度の現地測定に基づき、地下水位以下と地盤に不完全飽和と見られる砂層が存在することを指摘している。また、吉見2は、不飽和砂層における砂の液状化強度が完全飽和飽和状態における液状化強度より大きいことを報告している。

本研究では原位置の飽和度を直接測定することが困難であることから、室内試験において、慣性速度(Vp・Vs)計測と非排水繰返し転軸試験を実施し、P波速度Vp、飽和度Sr及び間隙水圧係数B値の各々の相関性をについて検討し、飽和度砂のVpと液状化特性に与える影響を把握すること及び飽和度を考慮した砂の液状化強度について評価することを目的とした。

2. 試料及び試験概要

(1) 試料及び供試体作成方法

本研究で使用した試料は豊浦砂である。その物性値はD50=0.18mm、Gs=2.65、Uc=1.41、Uc’=0.78、
κmax=0.968、κmin=0.609であり、粒形の揺れた特徴を有している。

供試体は、三軸試験機にセットされたモールド内に空気落下法により気乾状態の豊浦砂を満打ちから落とし堆積させ作成した。本研究では、試料落下高さを変えることによりDrr=40、60、70の供試体を作成した。以後の試験結果はDrtに対応させ、TS40、TS60、TS70とそれぞれ呼ぶこととする。

(2) 試験方法

作成された供試体は脱気水を通し、σ′
=98kPaを保持しながら背圧を供試体に負荷し、減圧法によりB値を測定することで飽和度の制御を行った。

Vp・Vs計測は、B値が不完全飽和状態であるB=0.1, 0.2, 0.6, また、完全飽和状態と見られるB≧0.96を示した時に実施した。Vp・Vs計測では、図-1に示すように三軸試験機のキャップ、ベダスタルにそれぞれP波発信子及び受信用の加速度計、S波発信及び受信用のヘルダーを内蔵させ使用した。キャップ内部の両発信子はクランションジェネレータと電圧増幅アンプを通じて起動され、ベダスタル内部の受信子からチャージアノプ、オシロスコープを通して発信波を受信する。
図-2 走時波形(P波)の一例(TS60)

図-3 Sr, B値、弾性波速度の関係

図-1 弾性波発信・受信部

図-2に、Vp・Vs計測で得られた走時波形の一例を示す。伝播速度の算定にあたり、発信・受信子間の距離Lを供試体に付加した発信波と受信波の初動の立ち上がり時間を差分で除して求めた。

Vp・Vs測定後、平均応力一定条件の下、非排水約三軸試験を載荷周波数0.1Hzのsin波で実施し、所定のDrとB値に対する液状化強度Ri(軸ひずみ両振幅DA=5%)、繰返し載荷回数Nc=2000)を求めた。試験終了後、含水比を測定することによりSrを算出した。なお、平均応力一定条件は、平均応力を繰返し載荷中、常に一定に保つことにより、供試体に繰返し応力のみを作用させることを目的としている。したがって、不完全飽和状態において、飽和度を考慮した液状化強度の把握が可能になるという利点を有している。

3. 試験結果及び考察

(1) 弾性波速度計測結果

図-4にSr, B値及び弾性波速度の関係を示す。図中に示す理論値は、石原による多孔質弾性理論より求めた。

B値とSrの関係において、実験値と理論値を比較すると、B値に対してSrは同様な傾向を示すものの、実験値の方が低い値を示している。これは供試体内の気泡の不均質性や試験後の含水比測定の際に生じた人为的な誤差によるものと考えられる。また、B≦0.2の範囲ではSrの低下が顕著であり、Sr≦90%の範囲において曲線がB=0に漸近していく様子がわかる。次にSrとVpの関係を見ると、Vpは理論値でSr≦99%、実験値でSr≦98%の範囲でほぼ一定値を示し、Srがこれ以上増加するとVpが敏感に応じて急増している。一方、B値とVpの関係を見ると、B値の増加に対しVpが緩やかに増加し、B=0で示すVp=400〜500m/sから完全飽和状態ではVp=1700m/sに達している。また、SrとVpの関係と比較すると、B値とVpの関係の方が良い相関を示している。

以上より、Vpを測定することにより、地盤の飽和度の推定が可能であることがわかる。また、測定上、比較的誤差が生じにくいB値が精度が高いと考えられる。しかし、Sr≦95%の範囲では、B値にほとんど変化が無いため、VpからB値を判断する際には極めてSrが高い場合に限られる。

(2) 非排水約三軸試験結果

図-4にTS40とTS70の代表的な軸ひずみ両振幅DA及び過剰間隙水圧ひずみの時系列を示す。両試験体にB値が低下することにより、変形が生じるまでに多くの繰返し載荷回数Ncを要している。
図-4 DA、$\Delta u \sigma_{ii}'$ の時系列変化

図-5 有効応力経路（TS40、TS70）

図-6 B 値と N_5/N_1 の関係

（3）飽和度を考慮した液状化強度の評価

図-7にSr、B値及びVpの各値と液状化強度Rr（DA=5%、Nc=20）の関係をそれぞれ示す。B値に関しては、Drに関わらず同様な曲線形状を示し、B値の低下に伴いRrは緩やかに増加傾向を示す。一方、VpとRrの関係における曲線形状の傾向は、緩やかな変化を示すB値やSrと様相が異なっている。TS40ではVp=500～1700の範囲ではRrはほぼ一定であるものの、Vp=500m/sにおいてRrが急激に増加する傾向を示す。また、Drが増加すると、TS40で示す様子の傾向はやや緩和されて、Vp=700m/sを下回る範囲でRrが徐々に増加する傾向を示す。

ここで、完全飽和時の液状化強度（B≥0.95）をRs不飽和状態（B<0.95）における液状化強度をRrとして、図-8にSr、B値及びVpの各値と液状化強度増加率Rr/Rrの関係をそれぞれ示す。Rr/Rrは飽和度の低下、あるいはVpの減少に伴う完全飽和状態に対するRrの増加比率を示すものである。なお、比較として既
図7 Sr, B値及びVpと液状化強度の関係

図8 Sr, B値及びVpと液状化強度増加率Rv/Rsの関係

往の研究24)における試験結果を併記した。SrやB値に対するRv/Rsには若干ばらつきが認められ、試料やDrに関わらず、Sr, B値及びVpに対し、Rv/Rsは概ね単一な相関関係が認められる。また、完全飽和状態からB=0.1まで飽和度が低下することで、VpはVp=1700ms/からVp=400〜500msまで低下し、これに伴い、Rv/Rsが最大でRv/Rs=2に達することがわかった。

4. まとめ

今回、Drの異なる豊浦砂(TS40, TS60, TS70)において、弾性波速度計測と非排水継返し三軸試験を実施した、飽和度低下がP波速度及び液状化特性に及ぼす影響について検討した結果を以下にまとめる。

1) 饱和度低下は、軸ひずみ、過剰間隙水圧の発達を抑制する効果がある。特に乾砂では、飽和度を低下させることにより有効応力経路が密な砂に類似する。ただし、飽和度低下による影響は、継返し載荷回数の増加にのみ寄与し、変形そのものはB値に関わらず、一気に破壊に至る傾向を示す。

2) 豊浦砂の飽和度を低下させることにより、P波速度は完全飽和状態で計測されるVp=1700m/sからVp=400〜500m/sまで低下する。また、これに伴い、試料や相対密度に関わらず最大で約2倍の液状化強度を発揮する。

本研究の結果から、原位置のP波速度が既知であれば、原位置の飽和度や液状化強度増加率を求められるため、飽和度を考慮した原位置液状化強度を推定できるものと考えられる。

参考文献
1) 回春長男：気泡を含む不完全な氷の液状化強度とその応用上の意義、物理探査、Vol.39/No5，pp.42-57，1986。
4) 石原新平、土屋正，黃元男：不規則構造の液状化抵抗とP波速度の関係，第34回地盤工学研究発表会講演概要集，pp.979-980，1999。