平成 12 年鳥取県西部地震による花崗岩斜面の崩壊挙動とその再現実験

山本 哲朗 1・鈴木 素之 2・千田 隆行 3・寺山 崇 3

1正会員 工博 山口大学教授 工学部社会建設工学科（〒755-8611 宇部市常盤台2-2-16-1）
2正会員 工技 鳥取大学助手 工学部社会建設工学科（同上）
3学生会員 山口大学大学院理工学研究科博士前期課程（同上）

平成 12 年 10 月 6 日に発生した鳥取県西部地震（M7.3）では多数の斜面・岩崩れが発生した。今回の地震による花崗岩斜面の崩壊の特徴として表面の強風化花崗岩（まき土）とその下位の弱風化花崗岩との境界で平面すべりが発生していた事が指摘できる。本文では、著者らが調査した斜面崩壊のいくつかの事例を報告するとともに、上述の特異な崩壊挙動を模擬するために花崗岩をまき土を貼り合わせた供試体に対して圧密排水三軸試験および弾性三軸試験を実施した。その結果、貼り合わせ供試体の方がまき土単体の供試体よりも内部摩擦角を小さく与えることが明らかになった。

Key Words: Tottori-ken-seibu earthquake, slope failure, rock failure, granite, Masado, weathering, cyclic triaxial test

1. はじめに

平成 12 年 10 月 6 日に鳥取県の西部地域に震源を持つ M7.3（Ms=6.8）の地震が発生した。この地震により幸い死者は出なかったものの、沿岸部の埋立地シルト地盤では液状化が起こり、岸壁やその付帯施設に被害が発生した。また、山間部では斜面崩壊や落石、道路には亀裂などが発生した。

著者らは、地震発生翌々日の10月8日から29日までに延べ11日間にわたって液状化被害や斜面災害等の調査を行った。本文では、まず鳥取県西部地震の概況を述べ、さらに、今回の地震による斜面災害を崩壊形態ごとに分類した上で、花崗岩斜面でみられた表面のまき土とその下位の弱風化花崗岩との境界で発生したすべり事例を位置づけるとともに、それを再現した弾性三軸試験を行ったので、その結果について報告する。

2. 平成 12 年鳥取県西部地震

(1) 地震概要

鳥取県西部地震は平成 12 年 10 月 6 日 13 時 30 分頃に発生した。マグニチュードは 7.3、震源位置は北緯 35 度 16.5 分、東経 133 度 20.9 分、深さは約 11 km である。余震分布から推定される断層は約 20 km の長さで北北西から南南東方向にかけて存在している。なお、この断層はこれまでに指摘された活断層と方向や位置が異なっている。この地震により日野町根雨と境港市東本町で震度 6 強を記録したのをはじめ、関東地方から九州地方にかけて有震となった。日野町で記録した地震の最大加速度は、南北方向で 927.2 gal、東西方向で 753.0 gal、上下方向で 775.8 gal であり、東西・南北方向 2 成分を合成した時の最大加速度は 1194 gal であった。

(2) 被害状況

この地震による被害は鳥取県を中心に 10 府県に広がり、負傷者 147 名、住家全壊 407 棟、住家半壊 2831 棟、一部破損 15740 棟、道路損壊 678 築所、崖崩れ 367 築所であった。図 1-1 に著者らが調査した地域を示す。調査は国道 180 号線および国道 181 号線沿いを中心に国道 183 号線、国道 482 号線およびそれらを結ぶ県道、農道、林道沿いの斜面を対象にした。図中的記号は斜面災害の発生した地点を示す。今回の地震による斜面災害は、著しく風化した表層土が崩壊する斜面崩壊（A）、節理面に沿って岩塊が滑動する岩盤崩壊（B）、斜面崩壊と岩盤崩壊の中間的な崩壊形態を示す斜面・岩盤崩壊（C），数
写真-1 溝口町福岡での斜面崩壊

写真-2 伯太町部張での斜面崩壊

図-1 斜面崩壊の発生地点

個の岩塊が斜面を落下する落下 (1)，吹付けコンクリートの破損 (2) の 5 つに分類される。これらの斜面災害の総件数は 136 件であり，その内訳は斜面崩壊が 48 件，岩盤崩壊が 36 件，斜面・岩盤崩壊が 22 件，落石が 18 件および吹付けコンクリートの破損が 12 件である。斜面災害の崩壊形態において特筆すべき事は，降雨時の斜面崩壊ではあまり見られない岩盤崩壊，落石，吹付けコンクリートの破損といった被害が多数発生していたことである。

特に，岩盤崩壊では既存の鎧網に沿った崩壊が多くみられた。これは地震動を受けて岩塊が鎧網に沿って分割されるとともに振動によって安定性を失ったためと考察される。図-1 には地震源と断層の位置を示しているが，これらの斜面災害の多くは震源を中心に関数半径 10 km 間内に集中していることがわかる。また，断層からは幅 6 km の帯状域に入る。これは兵庫県南部地震における崩壊の分布に酷似している。特に，鶴岡付近では斜面災害が密集していた。

(3) 花崗岩斜面の崩壊事例

調査地域の岩塊の大部分は中粗粒花崗岩，花崗岩，粗粒斜長石片岩，泥質片岩，その他の泥質片岩，泥質片岩，などの分布している。写真-1 に観察 25 線沿いの溝口町福岡の斜面崩壊 (A) の状況を示す。崩壊した土砂は強風化花崗岩（まさ土）からなり，すべり面には弱風化花崗岩が確認された。傾斜 N16° E，傾斜は 50° N である。対策工として植生工が施されていた。崩壊規模は幅 28.6 m，厚さ 0.7 m であり，平面すべりを呈していた。

次に，写真-2 に観察 35 線沿いの島根県伯太町部張で発生した斜面崩壊の状況を示す。斜面の走向は N50° E，傾斜は 72° SE で，かなり急斜面である。崩壊規模は幅 19.2 m，長さ 5.7 m および厚さ 0.6 m であり，平面すべりを呈していた。溝口町福岡の斜面崩壊状況と同様に，表層にまさ土がすべり面上には弱風化花崗岩が確認された。以上のことから，文献 5) で示したように，斜面内の潜在すべり面となるまさ土と花崗岩の境界では降雨時だけでなく地震時にもすべりが発生することが指摘できる。

3. 風化した花崗岩斜面の動土質力学的性質

地震時の斜面の安定性を評価する場合には，表層の強風化花崗岩（まさ土）とその下位の弱風化花崗岩（花崗岩）との境界で発生したすべりを説明するモデルが必要である。そのメカニズムを模式的に示すと図-2 のようになる。この現象を室内で再現するために新鮮な花崗岩の上にまさ土を貼り合わせた供試体を作製して静止三転試験を行った。また，同様な貼り合わせ供試体を用いて静的三転試験を行った。比較のために，両試験ともまさ土単体の供試体に対しても試験を実施した。以下にそれぞれの特性について述べる。
(1) 試料の物理特性
まず、まさ土の物理特性を調べるために土粒子の密度試験、粒度試験、液・塑性限界試験を行った。用いた試料は12土試料である。得られた結果を表-1に示す。土質分類は砂質通（GS），細粒分まで細砂質（GS-F），細粒砂質（GFS），細粒分まで細砂質（SF-G），細粒砂質（SF），細粒分まで細砂質（SF-F），細粒砂質砂（SFSG）および高液限性限界液限（SL）である。また、塑性指数がNPの土試料が目立つ。これらの多くは花崗岩の風化した粗粒土であった。

(2) 静的強度特性
静的三軸試験の試験手順と結果を以下に示す。写真-3に貼り合わせ供試体の設置状況を示す。供試体下部に現場で採取した新鮮な花崗岩を傾斜角45°となるように切り出し加工したものを敷き、その上部にまさ土をウェットタンピングで詰めた。試験は側圧σz=49 kPa，98 kPaおよび147 kPaの3通りで圧密化した後、軸ひずみ速度0.1 %/minで軸ひずみε=15 %まで排水せん断した。図-3(a)および(b)にそれぞれ貼り合わせ供試体およびまさ土供試体のε=15 %のときの破壊線を示す。図中に各供試体の初期相対密度のを示している。貼り合わせ供試体からはc=0 kPa，φ=32.4°，まさ土供試体からはc=0 kPa，φ=34.6°が得られた。この場合の内部摩擦角は、貼り合わせ供試体の方がまさ土供試体よりも小さくなる。

(3) 動的強度特性
動的三軸試験の試験条件および結果を以下に示す。試験は側圧σz=49 kPa，98 kPaおよび147 kPaの3通りで圧密化した後、排水状態で側圧を徐々に減少させながら、供試体に周期10秒で振幅一定の繰返し軸方向応力を載荷した。これは、繰返しなじみ応力の作用下で供試体に

<table>
<thead>
<tr>
<th>表-1 崩土の物理特性</th>
<th>ρa (g/cm³)</th>
<th>Uc (mm)</th>
<th>Dmax (mm)</th>
<th>Dw0 (mm)</th>
<th>Fc (%)</th>
<th>Fday (%)</th>
<th>wH (%)</th>
<th>wL (%)</th>
<th>wp (%)</th>
<th>Irp</th>
<th>土質分類</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.572</td>
<td>56.15</td>
<td>9.5</td>
<td>0.54</td>
<td>21.5</td>
<td>7.3</td>
<td>21.6</td>
<td>41.2</td>
<td>28.3</td>
<td>12.9</td>
<td>SF-G</td>
<td></td>
</tr>
<tr>
<td>2.603</td>
<td>171.4</td>
<td>19.0</td>
<td>1.5</td>
<td>15.8</td>
<td>6.4</td>
<td>14.1</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>SF-G</td>
<td></td>
</tr>
<tr>
<td>2.629</td>
<td>23.64</td>
<td>19.0</td>
<td>2.1</td>
<td>8.3</td>
<td>3.9</td>
<td>9.6</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>GS-F</td>
<td></td>
</tr>
<tr>
<td>2.613</td>
<td>9.22</td>
<td>19.0</td>
<td>3.8</td>
<td>3.0</td>
<td>1.0</td>
<td>6.8</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>GS-F</td>
<td></td>
</tr>
<tr>
<td>2.626</td>
<td>11.54</td>
<td>19.0</td>
<td>1.0</td>
<td>8.0</td>
<td>3.0</td>
<td>7.6</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>SG-F</td>
<td></td>
</tr>
<tr>
<td>2.603</td>
<td>1154</td>
<td>19.0</td>
<td>0.67</td>
<td>31.3</td>
<td>6.5</td>
<td>8.0</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>SFG</td>
<td></td>
</tr>
<tr>
<td>2.595</td>
<td>36.82</td>
<td>16.4</td>
<td>0.58</td>
<td>16.2</td>
<td>6.0</td>
<td>5.8</td>
<td>21.7</td>
<td>17.4</td>
<td>4.3</td>
<td>SF-G</td>
<td></td>
</tr>
<tr>
<td>2.596</td>
<td>12.50</td>
<td>19.0</td>
<td>1.5</td>
<td>6.6</td>
<td>3.0</td>
<td>9.0</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>SG-F</td>
<td></td>
</tr>
<tr>
<td>2.424</td>
<td>32.22</td>
<td>0.65</td>
<td>0.023</td>
<td>96.8</td>
<td>18</td>
<td>41.2</td>
<td>69.2</td>
<td>39.4</td>
<td>29.8</td>
<td>MH</td>
<td></td>
</tr>
<tr>
<td>2.591</td>
<td>17.25</td>
<td>9.5</td>
<td>0.50</td>
<td>14.7</td>
<td>3.8</td>
<td>24.1</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>SF-G</td>
<td></td>
</tr>
<tr>
<td>2.544</td>
<td>113.3</td>
<td>2.0</td>
<td>0.22</td>
<td>30.5</td>
<td>12.5</td>
<td>28.7</td>
<td>47.0</td>
<td>38.9</td>
<td>8.1</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>2.567</td>
<td>114.3</td>
<td>26.5</td>
<td>0.83</td>
<td>19.6</td>
<td>6.6</td>
<td>20.1</td>
<td>32.6</td>
<td>21.5</td>
<td>11.1</td>
<td>SFG</td>
<td></td>
</tr>
</tbody>
</table>
図-3 静的試験による破壊線および強度定数

作用する有効応力を減少させることにより供試体を破壊させるものである。なお、破壊の定義として軸ひずみ両振幅εₘₕ=5％と定義し、貼り合わせ供試体の試験結果の整理には、その境界で破壊面を規定するために最大主応力方向に対して45°面のせん断応力と垂直応力の値を探用した。

図-4 (a) および (b) にそれぞれ貼り合わせ供試体およびまさ土供試体の破壊線を示す。貼り合わせ供試体の粘着力c₀=0 kPa、内部摩擦角φ₀=26.1°であった。一方、まさ土供試体からはc₀=0 kPa、φ₀=29.3°が得られた。動的試験から求めた内部摩擦角は、貼り合わせ供試体の方がまさ土供試体よりも約3°小さくなる。ただし、試験結果における供試体の形状や寸法が影響する。また、軸ひずみ両振幅が5％近くになった時点で繰返し軸荷重が一定に保てなくなる。このように試験上の解決すべき点があるが、現状ではこれらを考慮していない。なお、この強度定数を用いて代表的な斜面の地震時安定性を検討したが、入射地震の大きさにより安全率が非常に低くなる。今後、斜面に入射した地震加速度とともに、断面形状・すべり線・単位体積重量の設定を詳細に検討する必要がある。

4. まとめ

本論文で得られた知見は以下のとおりである。
1) 今回の地震により花崗岩斜面では下位の岩と上位の風化土との境界で表層崩壊が発生した。この挙動は僅少な降雨量時に不連続面に沿って発生する斜面崩壊挙動と類似している。

図-4 動的試験による破壊線および強度定数

2) 上記1) を再現するために、まさ土と花崗岩を貼り合わせた供試体を用いて繰返し三軸試験を行った。その結果、貼り合わせ供試体の方がまさ土供試体よりも内部摩擦角を小さく与える。
3) 静的三軸試験の結果も、貼り合わせ供試体の方がまさ土供試体よりも内部摩擦角を小さく与える。

謝辞：土質試験の実施でご助力いただいた本研究室大学院生の松下英次氏、池田友義氏に感謝いたします。

参考文献
1) 山口大学調査団 : 平成 12 年鳥取県西部地震とその被害に関する緊急調査報告。土と基礎。Vol.49, No.1, pp.36-40, 2001。
2) 科学技術庁災害科学研究所：インターネット資料。2000。
3) 自治省消防庁 : インターネット資料。第36報【2000.12.19 18:00 現在】2000。
4) 内村光彦：兵庫県南部地震における斜面災害の発生と他の被害分析との関連性。第37回地すべり学会研究発表講演集。pp.401〜402，1998。
5) 山本哲朗・鈴木孝之・原田 博・宫内俊彦・寺山 崇：1999年6月末集中豪雨による花崗岩斜面の崩壊～広島市佐伯区・呉市の場合～。平成11年の広島県豪雨災害調査報告書（社）地盤工学会中国支部。pp.173〜178，2000。
7) 地盤工学会編：土質試験の方法と解説（第4回改訂版）。地盤工学会。pp.454〜455，2000。

(2001.5.25)