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The damage-based hysteretic restoring force model proposed by Kumar

Usami"?

is an effective tool in inelastic seismic response analysis and seismic

damage evaluation of thin-walled steel bridge piers. Toward practical application
of the damage index and the hysteretic model with pipe-section steel bridge piers,
a method for systematically identifying the free parameters contained in the
damage index is proposed, and relationship between the free parameters and
structural parameters is clarified. Empirical equations for strength and ductility
parameters are also given based on FEM analysis results. Finally, performance of
the hysteretic model is illustrated by simulation of pseudodynamic tests of pipe-

section steel bridge piers.
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1. Introduction

Thin-walled steel bridge piers find wide use in highway
bridge structures in Japan. The structural characteristics of
these bridge piers make them susceptible to damage in the
form of local as well as overall interaction buckling and their
hysteretic behavior is marked by relatively high rate of
degradation in strength and stiffness. Based on cyclic
loading tests of thin-walled steel box columns , a
comprehensive damage index formulation has been
proposed by Kumar + Usami for seismic damage evaluation
of this type of structures”. This damage index formulation
combines the deformation-based and hysteretic energy-based
damages, and forms the basis for the development of an
evolutionary-degrading hysteretic restoring force model™.
This damage-based hysteretic model proves to be capable of
_ simulating pseudodynamic tests of thin-walled box columns.
Toward practical application of the hysteretic model in
seismic response analysis, there is a need to extend the
damage index to steel bridge piers of other cross sections
and to systematically determine the model parameters and in
particular the free parameters (B and ¢ in EqJ(l) )
contained in the damage index expression. An attempt has
been made by Kumar * Mizutani - Okamoto® to apply the
model to predict seismic response of pipe-section steel
bridge piers. However, there is a drawback in their analyses:
the values of the free parameters are unchanged from those
for box-section columns. According to a study on the
sensitivity of model performance to the values of the free
parameters ( Section 7 of this paper ), cautions should be
taken in choosing the free parameters since model
performance is cumulative sensitive to the values of the free
parameters especially the value of ¢. Thus systematic
parameter identification is indispensable for extending the
damage-based hysteretic model to seismic analysis of pipe-

section steel bridge piers.

Unlike other structural parameters, the free parameters
have no concrete physical meanings; however, they play
important analytical roles in damage evaluation. And since
the damage-based hysteretic model relies heavily on damage
evaluation, choice of the damage index parameters shall
definitely affect performance of the damage-based hysteretic
model. Main purpose of this study is to relate the free
parameters to the basic structural parameters for pipe-section
steel bridge piers thus overcoming arbitrariness in choosing
the free parameters which is the major obstacle in applying
the damage-based hysteretic model.

Based on experimental observations, the criterion of
cyclic residual strength dropping to initial yield strength has
been proposed for defining structural failure in the damage
index formulation™®. With this definition of collapse, a
method for systematically evaluating the free parameters of
the damage index providing realistic hysteretic curves is
proposed in this study. The method is basically a numerical
least-squares procedure aimed at selecting the statistically
optimum system parameters. More importantly, this method
opens the way to rationalize choice of the free parameters in
the light of bringing the damage index close to unity at
collapse.

Immediately following this introduction is a brief
discussion on the damage index and the hysteretic model.-
Next, the parameter identifying method is presented.
Applying this method, correlation between the damage index
free parameters and basic structural parameters is then
investigated for thin-walled pipe-section steel bridge piers.
This investigation leads to simple equations for determining
the free parameters. To further facilitate application, other
structural parameters involved in the damage-based
hysteretic model are also given in a series of empirical
equations obtained from FEM analysis results. Finally, as an
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overall test on the success in this parameter identifying effort,
inelastic seismic response analysis is carried out to simulate
pseudodynamic tests on pipe-section steel bridge piers using
the damage-based hysteretic model.

2. Damage index and the damage-based hysteretic model

2.1 Damage index formulation

Single bridge piers of cantilever type are usually idealized
as single-degree-of-freedom system with the mass
_concentrated at the top. And in cyclic loading tests,
specimens to model such bridge piers are usually tested as
cantilever columns fixed at the base and subjected to a
constant axial load and cyclic lateral loading at the free end
(Fig.1). Based on cyclic tests of thin-walled box-section
columns modeling thin-walled steel bridge piers, the
following damage index has been proposed":

< 8max"'5 ’
p=(1-B)3, (Ts-—s“]
. .5,

+B —_—
i=1 [Hy(au'sy),

wherein H, and &, are yield horizontal load and yield
8, is the
displacement at collapse under monotonic loading;

N (D
N

horizontal  displacement respectively;

smax,j
is maximum absolute displacement for the j-th half-cycle;
N is the number of half-cycles producing &, ; such that
O nax,j > Omax,j—1 +8, and the initial reference &0 is
designated as &,; E; is the hysteretic energy absorbed
during the i-th half-cycle; B and ¢ are the two free
parameters in this damage index formulation. It is evident
that this damage index formulation is a mixed-type
development from the deformation-based damage index
model and plastic fatigue index definition; the first term
considers the effect of large displacement, and the second

term accounts for plastic low-cycle fatigue. From this
damage index expression, it can be seen that the role of 8
is to specify the relative importance of deformation-based
damage and hysteretic energy-based damage. And the
parameter ¢ has two major functions: firstly, ¢> 1.0

gives relatively more importance to larger half-cycles; on the
other hand, since it is the power to both the normalized half-
cycle deformation and the normalized half-cycle hysteretic
energy, it serves to relate damage under general cyclic
condition to damage under simple monotonic condition.
Collapse state is defined as when the residual strength

H, (strength on the descending branch) drops to H y @
shown in Fig.2. By normalizing the deformation term and
the plastic energy term in the damage index formulation, it is
intended that the damage index always come to unity at
collapse. At this point, it is worth noting that an easy-to-
calculate quantity H, (8,, -8 y) is used in the denominator

of the second term instead of E,,, — the absorbed
plastic energy up to collapse under monotonic loading
(Fig.3(a)). Due to such a treatment, the damage index does
not strictly come to unity at collapse under monotonic
loading ( i.e. when N;=N =I; §,,, ;=8,; E,=E
but an analytical form of energy is still preferable for its
simplicity. However, this error becomes increasingly larger
with higher ductility in steel bridge piers as actual
E,,.» departs farther from H y(Su -8, ) To bring the error

ax, j mon )’

to an acceptable level and at the same time keep the
advantage of using an analytical quantity for normalizing the

hysteretic energy, this study replaces H y(s,,-sy) with

05(H,+H,, ,)8,-8,) to normalize E;, wherein
H . is the maximum strength reached under monotonic

loading (see Fig.3(b)). With this modification, the
expression for the damage index now becomes:

@

N E; g
+p.2 {0.5(H_v+Hmax,, )(8,,—8y)]

Fig.3 shows the physical meaning of H,(§,-8,) and
0.5(H y+Hmax’, X 8u—8y ); it is obvious that the latter
comes closer to E,,,, , thus with Eq.(2), the damage index

under monotonic loading up to &, comes satisfactorily
close to unity whether the bridge pier under question is of
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Fig4 Damage-based hysteretic model

high-ductility class or not. Since H,,,, ; is also an inherent

parameter in the damage-based hysteretic model, this
modification does not add to the overall number of
parameters.

2.2 The damage-based hysteretic model

Based on the above formulation of damage index, an
evolutionary-degrading hysteretic restoring force model has
also been developed". Purpose of such a model is to
simulate inelastic response of structure under dynamic
loading by means of simplified hysteretic rules. The damage
index forms the basis of this model in that degradation of
strength and stiffness is prescribed as depending solely on
damage index :
H,

H, =Hy (55" ©)
H
K=K -(3-) @

mn

s Monotonic curve

H -

Skeleton of
the model
' C

S

Fig.5 Evaluationof «

where D) denotes the damage index; K; is the initial
elastic stiffness; Hp,

See Fig.2 for an illustration of strength degradation from
H,, to H, atcollapse under monotonic loading.

is the imaginary strength at D=0.

Calculation of H,, is as follows: first calculate the
(using Eq.2)) at &§=§,,
H=H,, , ( ie. maximum loading point, see Fig.2),

damage index value D,,

: , - Hy b,
according to Eq.(3), there is H,,. ;=H;,( 7 ) ,
in
from which
InH -D,:inH
H=exp(— 22" ), )
1-D,

The hysteretic model is of piecewise multi-linear type.
Basically the loading branch follows a tri-linear skeleton
of an elastic limb, a hardening limb and a perfectly plastic
limb. With updating of the damage index and residual
strength, there may also be a descending limb in addition to
the above three limbs. Fig4 illustrates the loading and
unloading rules of this model: The loading is initially elastic

of stiffness K; up to point A corresponding to a
displacement of &,; From point A to point B, the strain
K,;; The point B

hardening stiffness is @ times
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corresponds to a load of H,,, =H,, and from point B, a

perfectly plastic limb is followed until point C at which the
damage index is updated and so is the residual strength;
From point C and on, the loading follows a descending
limb; Unloading from point D to point E is ruled to have the
same stiffness as that of elastic loading OA; At the end of
the first half cycle O-A-B-C-D-E, the damage index D,
residual strength H, as well as elastic stiffness K are
updated thus reloading in the opposite direction from point E
to point F has the updated stiffness of K,; Point F

corresponds to a displacement of &, from point E; FG is

another strain hardening limb with a stiffness of & times
K, ; and a perfectly plastic limb follows point G and so on.
It is ruled that D, H, and K be updated at the end of
each half-cycle, but when to update D and H, during a
loading branch thus triggering a descending limb can be a
matter of choice. Kumar * Usami suggested that D and
H, be updated at every increment of &, during a
particular half-cycle'?. A simpler treatment is that they be
updated whenever 8, ; exceeds the recorded maximum
so far; in this case, there will be a significant increase in the
damage index. And the latter is adopted in this study.

The parameter o defines the ratio of hardening stiffness
to elastic stiffness, and can be extracted from the monotonic
H -8 curve under an equal-energy principle”, that is, in
Fig.5, area under skeleton O-A-B-C should equal that under
actual monotonic curve up to peak point C. It can be inferred
that knowing @, &, and H,, ;, with determined free

parameters B and c, the damage index value D,, can be

calculated, and in tum H,,. Hence D, as well as H,,

are taken as secondary quantities while @, &, and
H,,,.  are deemed basic parameters of the model.

2.3 Model parameters

Given a certain thin-walled steel pier ( with definite size ,
material and axial force ratio ), the following parameters are
needed in the damage-based hysteretic model:
(1) Free parameters in the damage index — B and ¢;
© é,,
extracted from the monotonic H -8 curve.

In the practical design of thin-walled steel bridge piers of
pipe section, three structural parameters are of major
concern —radius-thickness ratio R,, the slenderness ratio

H,,. 8, and a ; these parameters are to be

A and axial force ratio P/ P, (P, is the squash load of

the column cross section). The parameters R, and A are
defined as:

R, =3(1-v?) L2 ©

E 2t

- 2h1/
A=V E ™

wherein @, is yield stress of steel; E is Young’s

modulus; ¥ is Poisson’s ratio; D and ¢ are diameter and
thickness of the cross section respectively; # is column
height and r radius of gyration of the cross section.

Bs[—

B

-C
Fig.6 Selected grid in B — € space

For the damage-based hysteretic model to enter practical
application, the above model parameters must be related to
the three basic structural parameters and be related as simply
as possible.

3. Method for identifying free parameters — B and ¢

It is evident that evaluation of damage is pivotal to the
hysteretic model. In particular, when D=1, the strength of
the bridge pier according to Eq.(3) comes to:

H,.=H, ( )— , which means the structure has

reached the assumed collapse point. For the model to
faithfully reflect the real hysteretic behavior of the structure,
it is essential that the two free parameters should bring the
damage index close to unity at collapse under general cyclic
loading conditions. Note that it is unnecessary and also
impossible to have the damage index strictly come to unity
at collapse because of imperfection of the damage index
model —it takes into account only the major factors and
neglects minor ones for sake of simplicity. Therefore, the
damage index actually comes higher or lower than unity at
collapse. In the light of this, statistical approach is most
appropriate in calibrating B and ¢.

Given a definite steel bridge pier ( characterized by R,,

) , and axial load ratioP/Py) , and supplied with analysis
results or test data under both monotonic and various cyclic
loading paths up to collapse ( in the form of Horizontal force
—Horizontal displacement curve), determination of B and
¢ can be regarded as a nonlinear parameter estimation
problem in the field of mathematical statistics. Desired B
and ¢ are those that would make the value of damage index
closest to 1.0 at collapse for all kinds of cyclic loading paths,
Note that H,, 8,, 8, , H,, ; can be viewed as
constants in this parameter estimation problem since they are

deterministic functions of R,, A,and P/ P, . Suppose a

total number of M cyclic H -8 curves are available.
Overall deviation of the damage index at failure from unity
can be measured by the following error sum of squares
( heretofore referred to as deviation of damage index ):

M
S(Be)=Y [Du(B,c)-10) ®)

u=1
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(Note: each plotted point marks the lowest deviation of damage index that is
reached under a certain B ; Different curves correspond to different bridge piers.)

wherein D, is the calculated value of damage index at

collapse under the u-th cyclic loading path and shall be a
function of B and ¢. With the aid of a computer, this

parameter estimation problem can easily be solved by the
following grid-and-plot procedure(Fig.6):

(1) Select a grid of points in B —¢ space. Make sure the
interval of the grid suit the precision need for the two
parameters and the grid cover the possible variation range
of these two parameters.

(2) Evaluate the deviation of damage index at every point
of the grid. Desired values B and ¢ then can easily
identified by comparing deviation of damage index.

From a pure mathematical point of view, when two
different hysteretic curves are available, two simultaneous
equations can be formulated and solved for the two
parameters, but the B ,¢ values obtained in such a way is
not necessarily the statistically optimum parameters in view
of inevitable imperfection of the damage index model. Thus
a statistical approach to obtain B ,c¢ requires a minimum

number of three cyclic H —& curves for a particular bridge
pier. '

4. Determination of free parameters for pipe-section steel
bridge piers

As suggested by the above parameter identifying method,

calibration of B and ¢ requires knowing the real
hysteretic behavior of the structure. It has already been
established that FEM analysis equipped with realistic
constitutive law can predict very accurately cyclic behavior
of thin-walled steel bridge piers”, and numerical study has
the advantage of flexibility in structural parameter selection.
In this study, general purpose FEM program ABAQUS? is
used to generate hysteretic curves for a series of pipe-section
steel bridge piers with different structural parameters. An
accurate plasticity model — the two-surface model for
structural steels with yield plateau” is employed in the
analysis. Details of the large-deformation inelastic analysis
can be found in Ref. 5).

Structural parameters for the analyzed piers are
listed in Table 1. Note that most of them have the

same axial load ratio of 0.15 but varying R,, 2 , and

P5, P9, P11, P16 series are intended to study the
effect of axial load ratio on the free parameters. For
each of these piers, H -8 curves are obtained under
monotonic loading and three types of cyclic loading
path: 1) Increasing-amplitude one-cycle loading (1-
cycle); 2) Three-cycle loading (8-cycle); and 3)
Constant-amplitude loading with one large first cycle
( CA-L). These three types of cyclic loading path are
considered to be representative in damage
progression: Under 1-cycle, both deformation-based
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Table 1  Structural parameters of analyzed piers

Pier R, I P/ Py Remarks

P! 0.050 0.20 0.15

P2 0.075 0.20 0.15

P3 0.088 0.20 0.15

P4 0.110 0.20 0.15
P5-10 0.075 0.25 0.10
P5-15 0.075 0.25 0.15 P5
P5-20 0.075 0.25 0.20 Series
P5-30 0.075 0.25 0.30

P6 0.088 0.25 0.15

P7 0.110 0.25 0.15

P8 0.050 0.30 0.15
P9-10 0.075 0.30 0.10
P9-15 0.075 0.30 0.15 P9
P9-20 0.075 0.30 0.20 Series
P9-30 0.075 0.30 0.30

P10 0.088 0.30 0.15
Pi1-10 | 0.110 0.30 0.10
Pl1-15 § 0.110 0.30 0.15 Pil
P11-20 | 0.t10 0.30 0.20 Series
P11-30 | 0.110 0.30 0.30

P12 0.075 0.35 0.15

P13 0.088 0.35 0.15

Pi4 0.110 0.35 0.15

P15 0.075 0.50 0.15
P16-10 | 0.088 0.50 0.10
P16-15 | 0.088 0.50 0.15 Pl6
P16-20 | 0.088 0.50 0.20 Series
P16-30 { 0.088 0.50 0.30

P17 0.110 0.50 0.15

Table4 Deviation of damage index
using Eq.(7) to get ¢ (B =0.27)

Table2 Bestvalues of ¢ with B =0.27(P/ P,=0.15)

P/ P, =0.15
R
_ 0.050 0.075 0.088 0.110
A
0.20 0.1125 | 0.0357 | 0.0226 | 0.0126
0.25 0.0167 | 0.0124 | 0.0040
0.30 0.1400 | 0.0062 | 0.0588 } 0.0427
0.35 0.0431 | 0.0508 | 0.0781
0.50 0.0729 | 0.0845 | 0.0585
P/P
Piers J
0.10 0.20 0.30
P5 0.0185 - 0.0260 ! 0.0504
P9 0.0035 0.1270 | 0.0052
P11 0.0600 0.0636 | 0.0925
P14 0.0598 0.3224 | 0.2226

damage and plastic energy-based damage increase from
cycle to cycle; 3-cycle loading differs from [-cycle in that
repetition of each cyclic amplitude gives more weight to
energy-based damage; Under CA-L, deformation-based
damage occurs only .in first cycle, afterwards only plastic-
energy based damage.

R,
_ 0.050 | 0.075 | 0.088 | 0.110
A
0.20 1.37 1.28 1.25 1.30
0.25 1.31 1.29 1.36
0.30 1.56 1.40 1.32 1.40
0.35 1.54 1.61 1.37
0.50 1.70 1.76 1.82
Table 3 Best values of ¢ with 8 =0.27
(Effect of axial load ratio)
, P/P,
Piers
0.10 0.15 0.20 0.30
P5 1.36 1.31 1.42 .39
P9 1.40 1.40 1.57 1.44
P11 1.52 1.40 1.28 1.34
P14 1.69 1.76 1.84 1.90
2 [ T T
L5 [ .
o 1k -
N N
05| c=1.692+0.93
X 4
" 1
) S SN I S R B
0 0.2 _ 0.4 0.6
A’ —
Fig.8 Dependence of € on A

Since the role of B is to specify the relative importance of
deformation-based damage and plastic-energy-based damage,
variation of S(B,c) with B is studied first. Based on the
above grid-and-plot procedure, it is possible to find a local
minimum deviation of damage index associated with a
certain B value, that is, ¢ is allowed to vary in giving the

local minimum for each B . Plotting these local minimum

deviation values using B as the abscissa, B values

associated with the global minimum deviation can be
identified for each bridge piers. It is found that irrespective
of differing structural parameters, the global minimum
deviation comes around B =0.20~0.30 (Fig.7). In other
words, global minimum of deviations are rather concentrated
at this particular B interval. This fact justifies a fixed B
value for all thin-walled pipe-section steel bridge piers of
normal structural parameters. From analyzing the numerical
results obtained in this study, B is fixed at 0.27 where
overall local minimum deviation for all the analyzed piers
becomes lowest.

With a fixed value of B, it is just logical to assign the
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Fig.10 Response of TS11-30-11 to HKB accelerogram

very c¢ that corresponds to the local minimum deviation at
B =0.27 to each bridge pier. Note that although these values

resulted are still acceptably low since deviation of damage
index has already got controlled in fixing B . Table 2 gives

of ¢ paired with B8 =027 do not necessarily give the.

global minimum deviation of damage index, the deviations
such best values of ¢ for all the analyzed piers with axial
load ratio of 0.15 . From Table 2, it is evident that with the

same A, there is only random fluctuation of ¢ with

change in R,, while there is a definite trend of ¢

becoming higher with larger A. Also under B =027,

investigation into variation of best ¢ values with axial load
ratio is summarized in Table 3. With identical structural

parameters of R, and P} , there seems to be only slight
random fluctuation of ¢ under different axial load ratios,
while it can surely be said that increasing in 2 results in a
definite increase in ¢ (note Table 3 is in increasing 2
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order, P9 and PIl series have the same 4 of 0.30).

Combining the results listed in Table 2 and Table 3,

dependence of ¢ on A can readily be summarized by a

linear equation (Fig.8):

c=1.69A+093 (0.2054<0.50) )
Using the approximate equation to get ¢ combined with

B =0.27, the deviation of damage index for the analyzed

piers are listed in Table 4. It can be said that the
performance of the proposed equation for ¢ combined with

fixed B of 0.27 is quite satisfactory.

It is worthwhile to point out that such simple rather than
convoluted statistical correlation between the free
parameters of the damage index and the structural
parameters should come as no surprise. Of course,
damageability of the structure has a lot to do with the
structural parameters, but the free parameters are not directly
related with damageability of the structure: B allots the

two forms of damages and ¢ relates damage under general
seismic loading with the damage under simple monotonic
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condition. In other words, values of the free parameter do
not represent the very damageability of the structure. Hence
it can also be rationalized that monotonic deformation and
energy used as normalizing quantities in the damage index
are significant in damage evaluation and performance of the
hysteretic model. Monotonic loading parameters involved in
the damage-based hysteretic model are addressed in the next
section,

5. Monotonic loading parameters

As pointed out in section 2.3, apart from free parameters
B and ¢, other parameters of the damage-based hysteretic

model are extracted from- monotonic H —& curve of the
steel bridge pier. Based on large-deformation inelastic FEM
analysis with ABAQUS program, these parameters are also
given as functions of the basic structural parameters (See
Appendix, Eqs.(A1) —(A4)).

6. Simulation of pseudo-dynamic tests

In this section, time-history analysis is carried out to
simulate pseudo-dynamic tests on pipe-section steel bridge
piers®. The single bridge piers of cantilever type are
modeled as SDOF system in the inelastic seismic response

analysis. Input earthquake excitations are two accelerograms
of Hyogoken-Nanbu earthquake of January 17, 1995: one
was recorded by Japan Meteorological Agency JMA) ( NS
component , ground type I) and the other was observed at
Higashi Kobe Bridge ( HKB ) ( NS component, ground type
IIl ). The linear acceleration method (time interval:
At =0.02 with JMA and At =0.01 with HKB) is used
to solve the equation of motion with the restoring force
given by the damage-based hysteretic model. Damping ratio
is assumed as 0.05 . Structural parameters of the analyzed
specimens are listed in Table 5. Parameters of the hysteretic
model are calculated according to the empirical equations
obtained in this study and are also listed in Table 5. Table 6
lists major analysis results in comparison with the test
results. The predicted dynamic responses are compared with
test results in Figs.9-12. Hysteretic loops predicted by the
model show strong correlation with those from the tests, and
maximum and minimum displacement show very good
agreement with experimental results. Although there are
occasionally  noticeable  discrepancies in  residual
displacement, it can still be said the damage-based
hysteretic model is an effective and adequate tool
considering many uncertainties about inelastic seismic
response analysis.

Table 5 Structural parameters of pseudodynamic test specimens
R, | 2 |P/P)| Mass H 5, |« | B ¢ |Hypgil8,78,(8,78)
Test specimen 2 —
(Accelerogram) (kN5 [y (KN) | (mm) H,
TS11-30-16(JMA) [0.102]0.316] 0.155 1.84 [{534X10° 59.4 0.676| 027 | 1.46 | 1.41 | 833 | 2.15
TS11-30-11(HKB) |0.119]0.338} 0.111 148 1627%10°] 71.1 107521027 | 1.50 | 1.37 { 6.62 | 1.72
TS11-30-11 0.117]0.337] 0.111 1.49  |6.31x10°] 70.7 ]0.744] 027 | 1.50 | 1.37 | 6.82 | 1.76
(1.5XHKB)
TS08-30-18(IMA) [0.081]0.3181 0.181 275  lesoxi0?] 580 1058510271 1471 146 | 11.6 | 3.06

Note: Mass, H, and &, have been converted to those of the assumed real bridge piers (scale factor=8.0)

Table 6 Comparison of Test and Analysis results

. |8max|/8y 8, /8, D
(';ecscteslz:;:;r;emn) Analysis| Test Analysis{ Test Analysis| Test
(D Q) 1dye | @ B 1WAy (D (2) | (12)

TS11-30-160MA) | 298 2.96 1.01 -0.67 | -0.14 4.79 0.29 0.33 0.88
TS11-30-11(HKB) | 2.69 2.47 1.09 -1.21 | -0.82 1.48 0.10 | 0.075 1.33

TS11-30-11 4738 4.69 0.93 274 | -3.10 0.88 0.53 0.53 1.00

(1.5 X HKB)
TS08-30-18(JMA) | 3.42 3.39 1.01 -1.25 | -0.85 1.47 0.25 0.24 1.04

8,05 - Mmaximum response displacement; 8p : residual displacement; D : damage index

7. Sensitivity of model performance to free parameters

This analytical study is aimed at investigating the effect
of the values of free parameters on computed seismic
response with the damage-based hysteretic model. Using
different values of B and c, the responses of pipe-section

steel bridge pier TS08-30-18 (structural parameters listed in
Table 5) to two representative earthquake accelerograms
are examined. Both are spectrum-fit accelerograms of Level
2 specified in JRA Specification™:

1) ITAJIMA (maximum acceleration: 362.6 gal)—Level 2,

Type I, Ground type II accelerogram;

2) JR-Takatori, N-S component (maximum acceleration:
686.8 gal )—Level 2, Type II, Ground type II accelerogram
modified from the record of Japan Railway Technical
Research Institute near JR Takatori station during
Hyogoken-Nanbu Earthquake of 1995.

Two values of B are employed: 0.27 obtained in this study
and 0.11 used by Kumar et al.”; a series values of ¢: 1.0,
1.2, 1.5, 2.0 paired with the two B values are used in the

analyses.
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7.1 Responses to ITAJIMA accelerogram

Progression of the damage index under different
combinations of B and ¢ is shown in Fig.13. It can be
seen that calculated damage to the structure is generally
insignificant with all combinations of the free
parameters( D g,y <0.5), and patterns of damage index

progression are all quite similar. As is expected from the
formulation of the damage index, with the same B value,

the calculated damage index is lower with higher values of
¢. With the same ¢ values, calculated damage with
B =027 is always higher than with B =0.11. That is
because a larger B gives more weight to hysteretic energy-
based damage, and energy-based damage is the frequent case
while deformation-based damage is a relatively rare

occurrence according to the damage index formulation.
It is found that at such a low damage level, difference in
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calculated displacement response under the two different
values is negligible if the value of ¢ employed is the same.
Fig.14 compares the responses under the two B values
paired with the same ¢ =1.0, and the difference is still less
conspicuous with other ¢ values. On the other hand, the
same B value paired with different ¢ values produces

noticeable difference in response. Fig.15 gives the responses
with different ¢ values under the same B =0.27. Besides,

-1

difference in response, just like the progression of damage,
seems to be cumulative: during the earlier cycles, calculated
responses with different ¢ values almost coincide with each
other, while they go separate ways as the difference in
calculated damage becomes larger.

7.2 Responses to JR-Takatori accelerogram

Progression of damage is shown in Fig.16. It can be seen
that JR-Takatori accelerogram inflicts much higher level of
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damage in the structure than ITAJIMA accelerogram
(D fina around 1.0). Still different combinations of B and

¢ do not seem to cause much difference in the pattern of
damage progression. Calculated damage indices under
B =0.27 are generally higher than those under 8 =0.11, and
higher values of ¢ make the damage index go lower.

While the displacement response is still cumulatively
sensitive to the difference in ¢ values, difference caused by
different B values ( under the same ¢ ) seems to be
more conspicuous than when under ITAJIMA accelerogram.
This is possibly because of the higher damage level under
JR-Takatori. Fig.17 shows responses under different B

values with ¢=1.5 . Fig.18 compares the responses under
different ¢ values with B =0.27.

The following conclusions may be drawn from this
investigation: Structural responses vary with different values
of B and ¢, and are especially sensitive to the value of ¢ .
And for the hysteretic model to realistically reflect the actual
behavior of the structure, cautions should be taken in
choosing the two free parameters.

8. Conclusions

To extend the damage-based hysteretic model for use
with pipe-section steel bridge piers, a statistical approach is
taken to determine the two free parameters— B, ¢. The
role of B
deformation based damage and plastic energy based damage;
while ¢ serves to link damage under general cyclic loading

to damage under monotonic loading. It is found that with
pipe-section steel bridge piers, it is adequate to fix B value

is to specify the relative importance of

at 0.27, and relate ¢ to slenderness ratio A with a simple
linear equation. Axial load ratio and radius-thickness ratio
are found to have no significant influence on the free
parameters. Thus through the systematic - parameter
identifying procedure, correlation between the free
parameters and the structural parameters is clarified. In view
of similarity of problems, relationship between the free
parameters and the structural parameters is expected to be
similar with box-section bridge piers although the specific
values might be different.

Based on monotonic FEM analysis, other parameters of
the hysteretic model are also given as functions of structural
parameters. These efforts to determine model parameters
culminate in simulation of pseudo-dynamic tests.
Comparison of analytical and experimental results indicates
the damage-based model is successfully extended to inelastic
seismic response analysis of pipe-section steel bridge piers.
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Appendix : Monotonic loading parameters

Monotonic loading parameters of the damage-based

hysteretic model are: H,,,; (maximum strength), &,

(displacement  corresponding  to H 1) é,

(displacement at collapse) and @ (ratio of strain-hardening
stiffness to elastic stiffness). Based on monotonic H ~§
curves obtained from large-deformation inelastic FEM
analysis, empirical equations for these parameters are given
as follows:

H .204(1+ P/ P, )|*¥
;”I‘“”=[0 (2_ og)] +1.32 (A1)
y (R72)"
i—'"=———0’0(’f6: —+1.04 (A2)
(=)
S _ 0.037 ——+1.15 (A3)
s, (1+P/Py)’~5R,"”/1'
0.081Y"” —o01r
a=(' ] A" +63R,~0.1 (A4
(4

And Eqgs.(A1)-(A4) shall apply to 0.I0S P/ P,<030,
0.050<R,<0.110, 0.20< 2<050.

References

1) S. Kumar and T. Usami: An evolutionary-degrading
hysteretic model for thin-walled steel structures,
Engineering Structures, Vol. 18, No.7, pp.504-514, 1996

2) T. Usami and S. Kumar: Inelastic seismic design
verification method for steel bridge piers using a damage
index based hysteretic model, Engineering Structures, Vol.
20, Nos4-6, pp.472-484, 1998

3) T. Kindaichi, T. Usami and S. Kumar: A Hysteresis
Model Based on Damage Index for Steel Bridge Piers,
Journal of Structural Engineering, JSCE, Vol. 44A,
pp-667-678, March, 1998 ( In Japanese )

4) S. Kumar, S. Mizutani, T. Okamoto: Nonlinear Dynamic
Response of Thin Circular Steel Tubes, in * Stability and
Ductility of Steel Structures’ edited by T. Usami and Y.
Itoh, pp.319-326, Pergamon, 1998

5) S. B. Gao, T. Usami and H. B. Ge: Ductility Evaluation
of Steel Bridge Piers with Pipe Sections, Journal of
Engineering Mechanics, ASCE, Vol. 124, No.3, pp.260-
267, 1998

6) ABAQUS/Standard User’s Manual. (1996). Hibbitt,
Karlsson and Sorensen, Inc., Version 5.6, Vol. I & II.

7) C. Shen, Mamaghani LH.P., E. Mizuno and T. Usami:
Cyclic Behavior of Structural Steels. II: Theory, Journal
of Engineering Mechanics, ASCE, Vol. 121, No.ll,
pp.1165-1172, 1995

8) Joint Research Report on Limit State Seismic Design of
Highway Bridge Piers (VII), Public Works Research
Institute, Tokyo Highway Association, Hanshin Highway
Association, Nagoya Public Highway Corporation, Kozai
Club, Inc. and Japan Bridge Construction Institute, Inc.,
1997 (in Japanese )

9) Design Specifications of Highway Bridges (Part V.
Seismic Design), Japan Road Association, December
1996 )

(Received September 18, 1998)

—1016—



