周波数領域での地盤材料の動的変形特性に基づく地盤の非線形地震応答解析法の提案

中村 晋1・吉田 望2

1正会員工博日本大学工学部土木工学科助教授〒963-8642群馬県前橋市徳音寺中川原10
Email:s-nak@civil.ce.nihon-u.ac.jp
2正会員工博応用地質(株)技術本部技師長〒330-8632栃木県さいたま市土呂町2-61-5

時間領域での非線形地震応答解析より得られた応力ひずみ関係のフーリエ変換により定常不規則過程下での周波数領域における応力ひずみ関係を求めめた。次に、周波数領域でのひずみより換算された時間領域に相当するひずみに基づく周波数領域でのせん断剛性と減衰定数のひずみ依存性をモデル化した。最後に、このモデルを用いた周波数領域での非線形解析手法を提案した。提案手法と従来の周波数領域での２つの解析法を時間領域での解析結果と比較したところ、基盤波入力に対する順解析、地表面入力に対する逆増幅解析のいずれでも提案手法は時間領域の非線形解析と同程度の推定精度があり、他の二つの手法よりも優れていることが明らかとなった。

Key Words: earthquake response analysis, nonlinear, equivalent linear, frequency dependent characteristics, frequency domain

1.はじめに

地盤の非線形挙動の数値解析による評価手法には、時間領域での逐次積分法と周波数領域での複素剛性法が用いられてきた。前者は、数理モデル等の土の構成式を用い、地盤材料の非線形挙動の波形の変化を逐次解析する手法である。一方、後者の手法は、周波数領域での線形の応答解析法を用い、地盤材料の非線形性の影響を非線形解析と等価線形化法により考慮する手法である。この手法は、最大応答の評価を主目的としており、設計・計算の両面で多く用いられてきたが、等価線形化法の適用範囲は応答ひずみが10⁻²を少し越える範囲であり、大きなひずみ領域では加速度波過大評価すること、高周波数成分の減衰を過大に評価すること、有効ひずみ評価時の係数に起因するせん断強度を過大評価すること等の精度面での課題が指摘されている。しかし、解析に際して、前者の手法では、用いる物性モデルによるものの、ほとんどモデルに必要なパラメーターの設定に解析者による差異が生じる。これに対し、後者の手法では動的変形特性試験の結果などをそのまま利用でき、データ作成が容易であるとともに解析者による差異が生じ難いという実用面での容易さがあること、逆増幅解析、つまり地表面で規定された設計地震動による構造物位置での入力地震動の再評価、さらに基盤波を推定することが可能であること等、設計面での利点が多い。

周波数領域での非線形解析法の課題は、地盤の塑性化に伴う震動特性の時間的変化、つまり強い非定常な挙動を適切評価できないことと原因があると考えられる。この課題は、時間領域における非定常不規則な応力ひずみ履歴を地盤数領域、つまり定常不規則過程の枠組みの中での適切にモデル化することにより改善があると考えられる。これに対して、杉戸らはひずみの周波数応答を着目し、周波数ごとの有効ひずみにより地盤材料の動的変形特性を求める手法を提案している。これら動的変形特性の周波数依存性の提案は、高周波数成分の応答ひずみは一般に小さいことから、減衰を小さく評価でき、高周波数成分における減衰の過大評価という周波数領域での解析法の課題への対応が可能となっている。しかし、周波数領域での応力ひずみ関係の評価に関する先駆的研究である前の手法および後の手法は、周波数毎の応答ひずみに応じた有効ひずみに対する動的変形特性が時間領域でのひずみと動的変形特性の関係と等価であることを見極めた前提とし、その物理的根拠が希薄となっている。このことから、時間領域と周波数領域における土の応力ひずみ関係を適切に評価し、モデル化することが地盤材料の非線形性を考慮した周波数領域での地震応答解析法を確立する上で必要であると考えられる。
<table>
<thead>
<tr>
<th>地点</th>
<th>土質</th>
<th>厚さ(m)</th>
<th>質量密度(t/m³)</th>
<th>せん断強度(GPa)</th>
<th>せん断応力(kPa)</th>
<th>R-Oパラメータ α</th>
<th>β²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ローム</td>
<td>5</td>
<td>1.17</td>
<td>0.225</td>
<td>68.6</td>
<td>0.16</td>
<td>2.47</td>
</tr>
<tr>
<td>2</td>
<td>砂質粘土</td>
<td>5</td>
<td>1.53</td>
<td>1.536</td>
<td>460.6</td>
<td>0.02</td>
<td>2.29</td>
</tr>
<tr>
<td>3</td>
<td>細砂</td>
<td>30</td>
<td>1.99</td>
<td>1.996</td>
<td>1078</td>
<td>0.12</td>
<td>2.29</td>
</tr>
<tr>
<td>4</td>
<td>砂礫</td>
<td>5</td>
<td>1.55</td>
<td>2.09</td>
<td>651</td>
<td>2.27</td>
<td>2.41</td>
</tr>
<tr>
<td>5</td>
<td>砂粒</td>
<td>2.5</td>
<td>1.84</td>
<td>0.346</td>
<td>640</td>
<td>1.61</td>
<td>1.52</td>
</tr>
<tr>
<td>6</td>
<td>砂粒</td>
<td>5.3</td>
<td>2.14</td>
<td>1.50</td>
<td>1200</td>
<td>2.28</td>
<td>2.43</td>
</tr>
<tr>
<td>7</td>
<td>粘土</td>
<td>2.9</td>
<td>1.68</td>
<td>0.584</td>
<td>1080</td>
<td>1.61</td>
<td>1.53</td>
</tr>
<tr>
<td>8</td>
<td>砂粒</td>
<td>4.3</td>
<td>2.04</td>
<td>1.429</td>
<td>2643</td>
<td>1.61</td>
<td>1.53</td>
</tr>
<tr>
<td>9</td>
<td>砂礫</td>
<td>3.8</td>
<td>2.04</td>
<td>4.515</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

2. 検討地盤モデルと地震応答特性状の概要

時間領域での土の応力～ひずみ関係は、東京大学生産技術研究所の千葉実験所および関西電力技術研究所（以後、関電技研と呼ぶ）の2地点を対象とし、逐次積分非線形解析コード『YUAYUSA2』を用いた地震応答解析により提案した。2地点の解析地盤モデルを表-1に示す。また、解析に用いた土の応力～ひずみ関係は各地点ともMasing則を基準としたRamberg-Osgoodモデル（R-Oモデル）であり、その解析パラメータも表に合わせて示した。ここで千葉実験所における解析地盤モデルおよびパラメータは、地震が発生し地域と比較に基づいて設定した値を用いた。また、関電技研では、地震波の強さ50%点のひずみを基準ひずみとし、吉田らの解析モデルを用いた解析を行い、動的変形特性と低ひずみ時の推定値（10%程度までのR-Oモデルの各点曲線を基準）に合致するようにパラメータを設定した。千葉実験所における入力地震動は、1987年千葉県東方沖地震（Mj=6.7）で観測された地震の記録（GL-40m、NS成分）を基準地盤における最大せん断ひずみが基準ひずみ（3.0×10⁻³）程度となるように振幅調節（原記録を3倍）して用いた。関電技研では、兵庫県南部地震で
観測された地中の記録（GL-24.9m、EW成分）を用いた。解析には、これら入力地震動を複合波として入力した。また、初期減衰特性に、Rayleigh減衰のうち質量に関する係数αをゼロとし、関電技研の1次固有周期における減衰定数が1%程度となるように係数β (=0.001)を設定した。剛性比例型減衰を考慮した。各入力地震動の加速度時刻歴を図-1に、そのフーリエスペクトルを図-2に示す。また、両地点における初期地盤モデルに対する周波数応答関数を、各層の減衰定数を2%としたS波重複反射理論に基づいて算出し、図-3に示す。千葉実験所における各層の固有周波数は1次より2.7、6.2、8.8Hzとなっており、1次から高次モードに順次、応答倍率が低下している。一方、関電技研における各層の固有周波数は1次より2.2、5.5、9.7Hzとなっており、1次モードの応答倍率が高次モードに比べ大きな値となっていく。

まず、解析より得られた最大加速度および最大ひずみの分布を図-4に示す。関電技研では、地表面大加速度の解析値が5.12m/s²であり、観測値（5.07m/s²）と同程度の値となっている。この応答解析結果を踏まえ、周波数領域での応力-ひずみ関係および動的変形特性の評価に用いる時間領域での応力-ひずみ履歴を抽出する。千葉実験所では、最大せん断ひずみ（0.3%）が生じているGL-4～5mおよびその30%程度のひずみが生じているGL-2～3mにおける応力-ひずみ履歴を、関電技研では最大ひずみ（1.3%）の生じているGL-5.45～6.55mおよび千葉実験所における最大ひずみと同程度のひずみ（0.43%）が生じているGL-2.6～3.475mにおける応力-ひずみ履歴を抽出の対象とし、それら応力-ひずみ履歴を図-5に示す。

次に、各層の応力とひずみのフーリエスペクトルを図-6に示す。これらは、Parzen Windowによりフィルター処理（バンド幅=0.2Hz）を行い行ったものである。

千葉実験所における応力とひずみのスペクトル振幅はいずれも周波数1～6.5Hz、特に地盤の1次固有周
波数に対応する2〜3Hzにて最も卓越し、地盤の1および2次固有周波数の間にも比較的大きな振幅が認められる。それより低・高周波数側の振幅は、それら周波数帯の振幅に比べてかなり小さなものとなっている。電気試験における応力とひずみのスペクトル振幅は、いずれも図-2に示した入力地震動の最も卓越する周波数帯である0.6〜0.8Hz、さらに地盤材料の非線形性を伴う1次モードの低周波数帯の影響と推定される1.5〜1.8Hzにて卓越している。それより低・高周波数側の振幅は、それら周波数帯の振幅に比べてかなり小さな値となっている。両地点における周波数に応じた応力振幅の変化は、時間領域と同様にひずみの振幅の変化に対応していることが分かる。

3. 周波数領域での地盤材料の動的変形特性の評価手法とその特性

(1) 周波数領域での応力-ひずみ関係

時間領域でのせん断応力τ(t)とせん断ひずみγ(t)の履歴は直交する応力軸とひずみ軸上で構成される空間に表される。その直交座標系上の任意時刻における履歴の座標を原点からの履歴ベクトルf_s(t)と定義すると、その履歴ベクトルは式(1)の様に複素空間で表すことができる。ここで、非定常不規則な履歴ベクトルを、継続時間Tを基本周期とする定常不規則過程と仮定すると、ベクトルスペクトルの手法2)を用いフーリエ変換すれば、円振動数ωの履歴ベクトルの軌跡は、せん断応力(以後、応力と呼ぶ)とせん断ひずみ(以後、ひずみと呼ぶ)軸上で図-7に示す形状となる。さらに、その手法3)で示された円振動数ωの履歴ベクトルの形状である楕円を規定する長軸と短軸のスペクトル振幅の評価手法を用いることにより、円振動数ωの応力、ひずみ空間上の楕円軌跡の長軸、短軸のスペクトル振幅はそれぞれ式(2)の様に表される。ここで、P_r(ω), P_i(ω)は応力、ひずみのパワースペクトル、K_ω(ω)はコススペクトルを表す。

\[f_s(t) = \gamma(t) + \tau(t) \]

\[\alpha(\omega) = P_r(\omega) + P_i(\omega) + \sqrt{(P_r(\omega) - P_i(\omega))^2 + 4K_{\omega}(\omega)^2} \]

\[\beta(\omega) = P_r(\omega) + P_i(\omega) - \sqrt{(P_r(\omega) - P_i(\omega))^2 + 4K_{\omega}(\omega)^2} \]

ここでは、図-7に示した円振動数毎の応力-ひずみ関係を、周波数領域での応力-ひずみ関係と定義する。その円振動数ωに対する応力-ひずみ履歴は、調和応力波とそれが地盤要素に作用した際に位相遅れを伴って生じる調和ひずみ波との関係を見たことができる。すると、応力とひずみの関係は線形粘弾性理論23)に基づき複素剛性によって関係づけられる。その複素剛性の定義から円振動数ωに対応するせん断剛性および営養定数は、図-7に示した様に、応力-ひずみ軌跡を規定する長軸、短軸のスペクトル振幅と長軸と短軸とのなす角θ(ω)より、式(3)のように表すことができる。ここで得られた円振動数ωに対するせん断剛性および営養定数とひずみの関係を周波数毎に列挙すると、時間領域での動的変形特性と同様にひずみ依存特性を得ることができる。ここでは、それを周波数領域での動的変形特性のひずみ依存特性と呼ぶ。

\[G(\omega) = \frac{|\alpha(\omega) - b(\omega)| \sin(2\theta(\omega))}{2(\alpha(\omega))^2 \sin^2(\theta(\omega)) + \alpha(\omega)b(\omega) \sin(2\theta(\omega)) (a(\omega)^2 - b(\omega)^2)} \]

前述の二地点のひずみ振幅の大きさの応力とひずみの時刻歴より得られた応力-ひずみ関係のうち、
比較的振幅レベルの大きな周波数を含む幾つかの周波数（千葉実験所：7，関電技研：5）での関係を図 -8 に示す。その際，応力とひずみのスペクトルは Parzen Window処理（バンド幅=0.2Hz）より求めた。

千葉実験所では周波数が1.64から6.1Hz，関電技研では周波数0.66から2.25Hzの間，履歴を表す楕円の長軸方向はほぼ同じである。しかし，千葉実験所におけるひずみ振幅の小さい8.1Hz，関電技研における3.76Hzおよび5.86Hz，特に3.76Hzでは履歴を表す楕円の長軸方向の傾き，言い換えれば剛性が前述の周波数の傾きより大きな値となっている。このことは，周波数領域においても，剛性は概ねそのひずみ振幅に依存していることを示している。さらに，楕円の長軸と短軸の比も，ひずみ振幅の小さい周波数では比較的大きな周波数に比べ小さく，減衰特性もひずみ振幅に依存していることを示している。

一方，千葉実験所における周波数1.0Hzでは，ひずみ振幅が小さいにも関わらず傾きが他の周波数に比べ小さい。また，関電技研におけるひずみ振幅が小さい周波数5.86Hzでは，長軸の傾きはひずみレベルの大きな周波数に比べて小さいものの，長軸と短軸の比は他の周波数に比べてかなり大きな値となっている。一般に，強震時におけるひずみ振幅には残留ひずみを伴うことになるが，フーリエ変換により求めた応力-ひずみ関係は時間領域における応力，ひずみ軸の原点に固定された履歴ベクトルのフーリエ変換より求めており，残留ひずみの発生に伴う原点の移動を考慮していない。残留ひずみの発生，言い換えればひずみ時刻歴の基準線（0線）のステップ関数状の変化，低周波数帯域のひずみ振幅に表れる。応力-ひずみ振幅の小さい低周波数帯，例えば，千葉実験所における周波数0.5-1.0Hz以下では，応力振幅の低下しているにも関わらずひずみ振幅は低く，また増加している。この様な応力振幅の小さい低周波数帯にみられるひずみ振幅の増加傾向は，残留ひずみが影響しているものと考えられる。そのことは，ひずみ振幅が過大評価となり，剛性の過小評価をもたらすことになる。また，関電技研における
図10 せん断剛性および減衰定数の周波数特性

るひずみレベルが10⁻⁴程度以下の周波数5.86Hz以上
の成分に対しては、ひずみレベルが大きなものか
わずか長期と短期の比率が大きい、つまり減衰定数
が大きく、周波数領域の動的変形特性のうち減衰特
性については抽出可能な解析法を用いないもの
と考えられる。このことから、周波数領域における
動的変形特性の推定では、低・高周波数帯域の低ひ
ずみ振幅の評価には注意が必要であることが分か
る。

次に、式(2)による応力−ひずみ関係評価の妥当性
を把握するため、千葉実験所では1.00、2.81および
8.11Hz近傍、関電技研では1.51、3.76および5.86Hz
近傍を対象として、応力、ひずみ時刻歴をバンドパ
スフィルター（バンド幅；対象周波数f₀±0.01f₀）
処理することにより得られた応力、ひずみ時刻歴に
による応力−ひずみ関係（以後、フィルター処理履歴
曲線と呼ぶ）との比較を図9に示す。千葉実験所の
周波数2.81および8.11Hz、関電技研の1.51から
5.86Hzでは、フーリエ変換による応力−ひずみ関係
の長期の傾きはフィルター処理履歴曲線と同程度、
応力・ひずみ振幅の差異はフィルター処理による値
と同程度または1.3倍程度とほぼ一致している。しか
し、千葉実験所における1.00Hzでは、前述の理由に
より提案手法による応力−ひずみ関係とフィルター
処理履歴曲線とは、長期方向の傾きが若干異なり、
各振幅も2倍程度の差異となっている。
このように、フーリエ変換で求めた応力−ひずみ
関係の特性は、フィルター処理履歴曲線とはほぼ一
致する結果を与えていることから、周波数領域にお
ける応力−ひずみ関係を評価する手法として妥当で
あると考えられる。

(2)動的変形特性の周波数特性
a)せん断剛性および減衰定数の周波数特性
両地点における2つの検討対象層で得られた応力
ひずみ時刻歴に基づき、式(3)より算出したせん断剛
性および減衰定数の周波数特性を図10に示す。図
には、せん断ひずみの周波数特性も合わせて示す。
ここで、検討周波数帯域は、帯域で示したことを踏
まえ千葉実験所で1.5から10Hz、関電技研で0.5から
6.0Hzとした。
千葉実験所では、概ねせん断剛性や減衰定数がひ
ずみ振幅の大きさに依存しているが、両者の関係は
線形的な関係と必ずしも線形的でない関係に分けら
れる傾向が認められる。後者の周波数帯域である
3.0から6.0Hzの間では、ひずみ振幅のピークが周波
数2.81Hzにおけるひずみ振幅より小さいにも拘わら
す、ひずみ振幅ピーク時のせん断剛性がひずみ振幅の最も大きな周波数2.81Hzと同程度の値となっている。減衰定数も同周波数帯にて、周波数2.81Hzにおける値より大きな値となっている。関電技研においては、千葉実験所ほどせん断剛性とひずみ振幅の大きさに明確な関係を認められないものの、周波数3.0Hzより低周波数域において1.0Hzおよび3.0Hz近傍を除けば、ひずみ振幅ピーク時(0.66Hz, 1.51Hz)近傍にてせん断剛性はほぼ最小値を与えている。また、千葉実験所と同様に、比較的ひずみ振幅の大きさ2.25Hz近傍においても、ひずみ振幅ピークと同程度のせん断剛性を与え、千葉実験所と同様にひずみとせん断剛性に線形でない関係が認められる。さらに、3.0Hzより高周波数域のひずみ振幅の小さな周波数帯のうち、5.0Hzから6.0Hzでは剛性が低下している。一方、減衰定数はひずみ振幅によらず減衰定数が10.0以上と極端に大きな値を与える周波数域がみられる。その間周波数近傍を除いても、減衰定数は0.1から0.5程度と時間領域の減衰特性に比べかなり小さな値を与えている。

b) 動的変形特性の周波数特性に及ぼすせん断ひずみの非定常スペクトルの影響

両地点におけるせん断剛性とひずみ振幅の周波数特性の関係に線形的ではない周波数帯に着目し、せん断ひずみの非定常応答、言い換えれば地盤の非線形化と関連を、異地点のひずみ振幅の大きな層で得られたひずみの時刻歴の非定常性を対象とし、把握する。図-11, 12に、神山の手法4)を用いて算出したせん断ひずみの非定常スペクトルを示す。図中の実線と波線は、スペクトル強度の最大値を100とした10の数値、偶数番に対するスペクトル強度の等高線を示し、その値は外周より内側に向けて増加している。さらに、地盤材料の非線形化の有無がひずみの非定常性におよぼす影響を把握するために、地盤の応答がほぼ線形応答となるように入力波の振幅を調整（原記録の0.2倍）することにより得られたひずみの非定常スペクトルも図に合わせて示す。

まず、千葉実験所の時間領域でのひずみ振幅レベル
地盤の周波数応答関数 \(U(\omega, \, V_1, \ldots, \, V_n) \) を対象のせん断波速度 \(V \) で微分することにより得られた非線形化影響関数 \(DU_j(\omega) \) により評価することにする。

\[
DU_j(\omega) = \frac{\partial U(\omega, V_1, \ldots, V_n)}{\partial V_j} \left[1 + \left(\frac{1}{\alpha^2} \right)(1.1) \right]
\]

(4)

ここで、式(5)中の \(\alpha \) は式(6)に示す様に層マトリックス \([S] \) の積である。また、\(k_i \) はi層の波数（= \(\omega / V_i \)）、\(G_i \) はi層のせん断弾性、\(h_i \) はi層の厚さ、\(\omega \) は円振動数を表す。

非線形化影響関数は、ある層のせん断波速度の変化をその層の非線形化と見なし、それぞれの地盤と基盤間の基盤周波数応答関数の変化率を示していき、それの値の大きな周波数帯は、その周波数帯における振動モードおよび入力地震動がその層の非線形化に影響を与えていることを示している。両地点における検討対象層のうちひずみレベルの大きい層に関する非線形化影響関数を図-13に示す。これより、各地点における検討対象層の非線形化は、千葉実験所で周波数6.0近傍、関電技研では2.2および5.5Hz近傍に影響を及ぼすことが分かれる。これら非線形化の影響周波数は変任意常スペクトルに見られる非線形化の開始周波数と良く対応しており、前述の変任意常スペクトルに認められるスペクトル特性の解釈の妥当性を示している。

(3) 時間領域と波数領域における動的変形特性のひずみ依存性の比較

周波数および時間領域における動的変形特性を表すせん断剛性と減衰定数のひずみ依存性の比較を行う。ここで、周波数領域の動的変形特性のひずみ依存性は、図-10に示した周波数毎のひずみ振幅 \(Y_i(\omega) \) とせん断剛性および減衰定数の関係を示す。両領域における動的変形特性のひずみ依存性の関係を図-14、15に示す。ただし、関電技研における減衰定数の周波数特性は、図-10に示した周波数特性と無関係の値を示さず、検討の対象とはしない。比較に先立ち、両地点における時間領域の動的変形特性のうち基準ひずみに着目すると、千葉実験所では層厚3.0×10^3、関電技研では6〜7×10^3であり、同じ応答ひずみでも関電技研の方が非線形化し易いことに留意する必要がある。
まず、全体的傾向として、両領域におけるせん断剛性が同程度の値を与えるひずみ振幅の大きさが異なるものの、周波数領域におけるひずみ振幅とせん断剛性の関係にはひずみ振幅の増大とともに低下する傾向が認められる。また、減衰定数についても、両領域における値が同程度となる際にひずみが異なるもので、それはひずみ振幅の増大とともに増加する傾向が認められる。つまり、周波数領域における動的変形特性の周波数依存性は、時間領域における特性と相対的傾向が認められる。

次に、両領域における最大ひずみ時のせん断剛性に着目すると、千葉実験所の第2層（GL-4.5m）において、周波数領域の最大ひずみ（2.5×10^{-3}）に対するせん断剛性はほぼ初期剛性の5割程度であり、時間領域における最大ひずみ（3×10^{-3}）時のせん断剛性低下率と同程度である。また、関東技研の第2層（GL-5.45-6.55m）においても、周波数領域の最大ひずみ（5×10^{-4}）時のせん断剛性は初期剛性の1割程度であり、時間領域における最大ひずみ（1.3×10^{-3}）におけるせん断剛性低下率と同程度となっている。この傾向は両地点における検討対象の第1層においても同様である。この様に両領域における最大ひずみ時のせん断剛性の低下率はほぼ同程度であることが分かる。減衰特性についても、両領域における最大せん断ひずみ時の減衰定数の値が同程度の値となっており、せん断剛性と同様の傾向がみられる。

177
4. 周波数領域での地盤材料の動的変形特性のモデル化

(1) 地盤材料の動的変形特性のモデル化

両領域における応力-ひずみ関係の比較により、周波数領域における地盤材料の動的変形特性は以下のように表現することが明らかとなった。
①時間領域における動的変形特性のひずみ依存性と相似性が高い。
②地盤材料の塑性性状に伴う影響を周波数帯域は最大ひずみに依存している。

これら2つの特徴をふまえ、周波数領域での地盤材料の動的変形特性であるせん断剛性および減衰定数のひずみ依存性のモデル化を行う。この際、両領域における動的変形特性を人間の力学的なパラメターやを導入せずに厳密に関連づけることは困難である。よって、前述の2つの特徴を物理的関係則とした、第一近似のモデル化を行う。そのことは、得られたモードが時間領域の座標変換としての周波数領域における非線形応力-ひずみ関係のモデルであることを損なうものではない。

a) せん断剛性のひずみ依存性的モデル化

(2) で示したせん断剛性のひずみ依存性の相似性に着目したモデル化を行う。地震応答として得られる時間領域の応力、ひずみ時刻歴は、一般に種々の周波数成分の重ね合わせとして得られることから、応答が単一の周波数で構成される場合を除き、周波数毎の応力、ひずみ成分の振幅は時間領域での最大振幅などの振幅レベルよりも大きな値となる。そのような周波数毎の応力-ひずみ関係が時間領域での応力-ひずみ関係を規定するモデルに関連するとの推測は、前章で示した周波数毎のせん断剛性とひずみ振幅の関係が時間領域におけるその関係をひずみ軸方向に平行移動した関係に類似、つまり相似な関係にあるということにより支持される結果となっている。このことは、両領域における応力-ひずみ関係が図-16に示したように相似な関係にあるという仮定の妥当性を示している。すなわち、R-Oモデルのような時間領域における応力-ひずみ関係は入力可能な情報に基づいて推定したモデルであるが、既知情報である。とする。すなわち、両領域における応力、ひずみの相関係数が明らかとなれば、周波数領域のせん断剛性のひずみ依存特性から、時間領域における相似比に基づき変換された時間領域のひずみよりせん断剛性を評価することが可能となる。つまり、周波数領域におけるせん断剛性のひずみ依存性は、式(7)に示すように周波数領域におけるひずみの周波数成分の相関を時間領域のひずみ比に関する式を導入することにより時間領域におけるせん断剛性のひずみ依存性として評価可能となる。

\[r(\omega) = C_f' \cdot r_f(\omega) \quad (7) \]

ここで、\(C_f' \)は周波数領域から時間領域へのひずみの変換係数を表しており、以後、相当ひずみ変換係数と呼ぶ。

まず、その相似性を検討する。そのため、影響が顕著に現れている千葉実験所の解析結果を用いる、相当ひずみ変換係数を評価するため、時間領域と周波数領域の最大ひずみの比（以後、そのひずみ比率算出法をModel1と呼ぶ：図中の波線と実線）を図-17に示す。さらに、周波数領域でのひずみに対する線形せん断剛性と非線形性を有する時間領域でのひずみと周波数領域のひずみ比の比率（以後、このひずみ比率算出法をModel2と呼ぶ：図中の黒丸、白丸）と周波数領域におけるひずみの関係を図中に合わせて示す。Model1における最大ひずみ比を求める際、周波数領域での最大ひずみ振幅の値はスペクトル解析におけるフィルター処理に依存する。そのような処理の影響を回避するために、時間領域における最大ひずみは、フィルター処理されたひずみのパワースペクトル解析における応力-ひずみ関係をモデル化する。
クトよりKiuregianを用いる手法を用いて推定した最大ひずみの期待値を用いた。図より剣則剛性が等価となるひずみの比率は5程度から70程度の範囲で大きさに応じて大規模に変動している。ただし、そのひずみの比率の差異は前述の図の大きさ異なっている。平均値は4〜15、標準偏差は両者とも対数で0.3程度、実数で2.0程度とばらつきは小さいことが分かる。各層の最大ひずみの比率の値は、最大ひずみ時における剣則剛性が等価となるひずみの比率の2倍程度の値となっている。

次に、前述の2つの方法に基づくひずみ変換係数と、周波数領域のひずみを推定した時間相当ひずみを解析で用いたR-Oモデルへ代入することにより求めたせん断剛性の周波数特性を図-18に示す。図中には図10に示した時間領域の応力ひずみ関係を求めたせん断剛性（以後、目標せん断剛性と呼ぶ）の周波数特性も合わせて示す。ここで、Model1におけるひずみの比率に基づく相当ひずみ変換係数は、周波数領域の最大ひずみ近傍の剣則剛性が等価となる際の比率である5.0を用いた。Model1に基づく相当ひずみ変換係数は国-17中の方で用いた、Model1およびModel2とも、せん断ひずみ振幅の最大で4.0Hz近傍で最大剛性が低下しているものの、他の周波数は3.0Hzより大きな剛性値を示しており、典型的な傾向は類似している。3.0Hz近傍では、剣則剛性が等価となる際のひずみ比率を用いたModel2の推定剛性が目標せん断剛性と同程度の値となり、目標せん断剛性の最小限剛性の対応という観点では、相当変換係数としてModel1より優れている。しかし、Model2におけるひずみ比率の考え方、周波数領域でのひずみと応力、つまりせん断剛性が既知であることが前提となる。それ、それを推定する過程では解析的に周波数領域でのひずみ比率を設定することができないことから、経験値として設定すると、従来の等価線形化法に用いる有効ひずみの換算係数の評価と同様に物理的根拠の欠如という問題点が生じる。これの解析の課題も踏まえ、相当ひずみ変換係数数はModel1により周波数領域における最大せん断ひずみ比に基づいて設定する。ただし、この方法では最大せん断剛性を小さめに評価することを、結果の評価に際して念頭におく必要がある。

次に、②で示した地盤材料の非線形化に伴う最大
ひずみの影響周波数帯における補正の概念

図-21 最大ひずみレベルの影響周波数帯の補正の概念

ひずみの影響周波数帯におけるモデル化を行う。まずは、図-19に示すも示し実験所で得られた周波数帯域におけるひずみとせん断剛性の関係（も示し実験所ダイ）でみると、図に示し実験で示す周波数2kHzから6kHzの間ひずみは、破線で示した図領域に相似性が見られる周波数帯において同一の関性を与えるひずみより小さい。図-14に示した電磁攻撃における周波数域におけるひずみとせん断剛性の関係（電磁攻撃タイプ）は、最大ひずみからあるひずみレベルまで同程度のせん断剛性を示し、より顕著な最大ひずみの依存性が認められる。それにより周波数帯のひずみとせん断剛性の関係のイメージを図-20に示した通りであり、その領域における時間周波数ひずみを示す周波数域のひずみとせん断剛性の関係をひずみ軸に平行移動する領域における相似性を有するとしたモデルでは評価出来ないことである。しかし、その周波数帯係数の依存のせん断剛性は、最大ひずみに対する値とは同程度の値となっている。このことから、その周波数帯の値が最大ひずみを示すと等しくなりように補正することにより、その周波数帯のひずみを示す周波数帯領域との相似性を有することを示すことができる。その補正は、ひずみの周波数帯タイでみれば、図-21に示すとおり、補正の対象となる影響周波数帯域の値を示すひずみを示すものに相当する。その影響周波数帯の低周波数域ωmは最大ひずみを与える周波数であり、概ね地盤材料の非線形形の影響を考慮した地盤の1次固有周波数に対応している。一方、高周波数域ωMは、3章2節b項で示したひずみの非定常スベクトル特性に見られる様に非線形形に伴う卓越成分の低周波数域への変化を開始する周波数と非線形形影響数値により対象域の非線形形に影響を及ぼす周波数との対応を考慮した周波数として物理的に有意な設定が可能である。よって、高周波数帯域式(4)により得られる各層の非線形形影響数値の最も大きい周波数帯域帯評価し、も示し実験所の場合、

ひずみレベルの大きい検討対象層では図-13より60Hzと設定することができる。

これらの結果から、最大ひずみの影響周波数帯域における時間相当ひずみγωN(ω)（以後、非線形形時間相当ひずみと呼ぶ）は、先に得られた時間相当ひずみγω(ω)に補正係数Cω(ω)（以後非定常補正係数と呼ぶ）を乗じることにより求めめる。その補正係数は、式(8)に示す様に高周波数帯域における時間相当ひずみが低周波数帯域同様値を持ち、より低い周波数帯域より圧縮数をともに線形的に変化する関数表現としている。さらに、その補正係数により得られたせん断剛性は最大ひずみ時のせん断剛性を越えないという条件を設ける。また、高周波数帯域は非線形形の生じる前の状態つまり初期地質モデルに基づいて設定するものとする。

\[\gamma_{\omega N}(\omega) = C_{\omega}(\omega) \gamma_{\omega}(\omega) \leq \gamma_{\omega N}(\omega_{LN}) \]
\[C_{\omega}(\omega) = 1 + \frac{\gamma_{\omega N}(\omega_{HN}) - \omega_{LN}}{\gamma_{\omega}(\omega_{LN}) - \omega_{LN}} \]
\[\gamma_{\omega}(\omega) = 1 + \frac{\omega_{LN}}{\omega_{LN} \geq \omega, \omega \geq \omega_{HN}} \]

以上の様に周波数域におけるせん断剛性のひずみ依存性は、周波数域における2つの特徴を考慮した補正により得られる式(9)の非線形形時間相当ひずみγω(ω)を用い、時間周波数域の応力ひずみ関係に基づくせん断剛性のひずみ依存性より評価することが可能となる。

\[\gamma_{\omega N}(\omega) = C_{\omega N}(\omega) C_{\gamma} \gamma_{\omega}(\omega) \]

ここで用いる補正係数の評価には、従来の周波数域の非線形形解析法に含まれる有効ひずみを設定する際の物理的な根拠の欠如という課題を回避できるという特徴も有している。

b)減衰定数のひずみ依存性のモデル化

減衰特性は、図-10におけるも示し実験所の結果よりひずみの周波数特性との関連性が認められ、前項のせん断剛性の評価に用いた周波数域のひずみの補正による時間領域に相当するひずみに基づく評価の可能性を暗示している。しかし、電磁攻撃の結果では必ずしも明確な対応は認められない。この原因として、せん断剛性の周波数依存性が波動伝播時の分散性をもたらすことによる空間的な減衰をもたらすこととは考えられるが、充分に明らかとなっていない。ここでは、周波数帯域での応力ひずみ関係を時間領域に相当するひずみに基づき表現するという観点で、前項で提案した時間領域に相当する
ひずみにより周波数ごとの応力-ひずみ関係を規定する減衰定数をせん断剛性と同様に評価することとする。さらに、波動伝播時の散乱に起因すると考えられている周波数依存減衰を考慮するため、Daintyら、Rovelliらにより提案され、著者の一人が初期の構造に基づく地質の減衰特性やせん断剛性の同定に用いた式(10)に示す地質材料の変形減衰係数の相を考慮する減衰モデルを用いる。ここで、周波数依存減衰は木下、佐藤らによって小地震の記録に基づくに基づいて実施される減衰数保持の減衰数保持としてのモデルを用いれば、式(11)となる。この表現は、低ひずみレベルの応答に対しては第2項の周波数依存減衰特性、高ひずみレベルに応答に対しては第1項および第2項の減衰特性を考慮するというモデルであり、末富、中村により地質材料の非線形成化により周波数依存性が小さくなる。言い換えれば地質材料の変形減衰の影響が大きくなることを考慮できるモデルとなっている。このモデルは、地震応答解析や減衰特性の推定に適用されている。

\[h(\omega) = h(\gamma_{\text{in}}(\omega)) + h_{\text{so}} \]
\[h_{\text{so}} = h_s \cdot f^{-\alpha} \] (10) (11)

地盤構造、初期地盤定数、時間領域での応力-ひずみ関係、人力地震動の設定

図22 提案する解析手法の流れ

限を各層について求める。ただし、地盤の応答に非線形性が顕著でない場合、つまり時間相当ひずみの最大値が所定のせん断剛性低下率を与えるひずみ \(\gamma^* \) より小さい場合には、式(12)の様に時間相当ひずみに基づいて動的変形特性の評価を行う。

\[\gamma_r(\omega) = C_{\text{yf}} \cdot \gamma_f(\omega) \quad \gamma_r(\omega)_{\max} \leq \gamma^* \] (12)

最後に、周波数領域でのひずみの補正により求められた時間相当ひずみに対するせん断剛性、減衰特性を求める。それに対する各層の応答ひずみを求める。この過程を繰り返し、各層の時間領域における最大ひずみが収束した段階で計算の終了となり、加速度、速度、変位または応答の所定の応答程度を算出す。

こうして、周波数領域での非線形変形に関する周波数帯を考慮した提案モデルは図3の2節で示したとおり、提案の非線形成化特徴に対する環境に応じて最大ひずみ近辺の非定常応答の表現となっている。このことから、提案手法は最大ひずみ値の最大応答値近辺の応答の評価の対象となっています。また、提案手法は、定常不規則過程での地震応答の推定に"
図-23 提案手法と他の手法による最大値分布の比較(各地点の最大応答時の各値は最大加速度と同じ)

図-24 時間領域の解析と提案手法と他の手法における地表面加速度時刻波の比較

模擬としての非線形応力一ひずみ関係の第一近似モデルの逆変換として時間領域の非線形応答を求めた手法であり、従来の等価線形解析法とは異なり、周波数領域の非線形解析手法であると言える。

(2) 適用性の検討
検討地盤である千葉実験所および関電技研を対象とし、時間領域での解析で得られた解析結果（以後、目標値と呼ぶ）と提案手法および従来の周波数領域の解析手法として等価線形化法に基づく解析手法（SHAKE）、さらに移流方による提案手法（ここではM-FDELと呼ぶ）の3つの解析法より得られた結果の比較を行う。その際、入力地震
図-25 提案手法と他の手法による最大ひずみ発生層における応力-ひずみ関係の比較

動は図-1に示した両地点における時間領域の解析で用いた地震記録、地盤構造は表-1に示したモデル、さらに地盤物性のうち動的変形特性はいずれの解析においても表-1に示したパラメーターにより設定されるR-Oモデルを用いた。SHAKEおよびM-FDELによる解析は、それらと同等の機能を保有する解析コード「DYNEQ」21)による解析である。また、本提案手法による最大せん断ひずみの収束判定は、SHAKEと同様に時間領域での最大ひずみによるせん断剛性および減衰定数の収束による判定とした。

M-FDELでは、杉戸らは地震応答解析による収束の判定を3つの周波数帯における周波数毎のひずみの差より評価しているが、ここでは本提案手法やSHAKEと同様の収束判定法を用いた。そこで、その収束の判定値は0.05とした。さらに、M-FDELでは、最小減衰定数をその手法の提案時に示された0.02と設定した。提案手法の減衰特性のうち散乱減衰に相当する周波数依存減衰のパラメーターは、中村ら22)が示したパラメーターを10Hzにおける減衰定数が0.01となる様にhsを4.7%と修正し、β = -0.57を用いる。M-FDEL, SHAKEでは有効ひずみの換算係数として0.65を用いた。

まず、解析により得られた加速度、相対変位、応力およびひずみの最大値の深度分布の比較を図-23に示す。千葉実験所における最大ひずみ分布は、いずれの手法も目標値と同程度の値となっている。最大加速度は、いずれも目標値より大きい値となっているが、表層部分では提案手法がSHAKEと同程度であり、目標値と最も近い値となっている。最大応力は、提案手法が目標値をほぼ同程度の値を与えるが、他の2つの手法は目標値より小さな値となっている。また、最大変位変位についてみると、提案手法がSHAKE同様に目標値とよく対応し、M-FDELは過大評価となっている。関電技研における最大加速度は、提案手法が目標値とよく対応し、他の手法は目標値より小さい値となっている。最大変位分布は提案手法はSHAKEと同程度であるが、目標値より小さい値となっている。一方、M-FDELは目標値とよく対応しているもの、最大加速度分布の過大評価の影響によると考えられる。表層部分のGL-8mに対する地表との相対変位という観点では提案手法が目標値とほぼ同程度の値となっている。また、最大応力、ひずみ分布については提案手法が目標値とよく対応し、M-FDELは最大応力を過大、最大ひずみを過小評価する結果となっている。

地表面における応答加速度時刻歴について、時間領域での解析結果と提案手法を含む2つの解析結果との比較を図-24に示す。ただし、関電技研については、3つの解析結果との比較に観測記録を用いた。まず、千葉実験所について最大値発生時刻近傍につい
図-26 提案手法および他の手法によるせん断剛性、減衰定数の比較
図-27 提案手法および他の手法による周波数応答関数の比較

さて、提案手法およびSHAKEでは目標値との位相がよく対応しているが、M-FDELではその位相と時間領域解析波形の位相がずれている。また、時刻9秒以後の振幅の小さい時間帯では、M-FDELが最も両者の位相の対応がよく、提案手法、SHAKEの順に位相の対応が悪くなっていることが認められる。関電技研における最大値発生時刻近傍では、提案手法が観測値と位相および値ともほぼ一致しており、SHAKEも最大値は観測値より大きな値となっているものの位相は観測値と同程度となっている。M-FDELは位相、値とも観測値と乖離していることがわかる。最大値以前、以降の位相において提案手法は観測値とよく対応している。

最大ひずみ発生後における応力ひずみ関係の比較を図-25に示す。図の中、時間領域での応力ひずみ関係用いたR-Oモデルの骨格曲線も合わせて示した。両地点とも、時間領域での骨格曲線との対応という観点で提案手法が最も優れており、他の手法、特にM-FDELは有効ひずみの換算係数の影響により最大ひずみ時のせん断応力を過大に評価していることが分かる。ただし、関電技研におけるひずみレベルの小さい部分ではM-FDELはR-Oモデルの骨格曲線とよく対応している。

提案手法および他の2つの手法について、周波数領域での解析におけるせん断剛性および減衰特性の周波数特性を図-26、それらに基づく周波数応答関数の比較を図-27に示す。ここで、図-27には、千葉実験所における時間領域の解析で用いた入力波と地表面応答、関電技研における入力位置および地表における地震観測記録値のフーリエスペクトラル比も目標とする周波数応答関数として合わせて示した。そのスペクトル解析に際して、バンド幅0.05HzのParzen Window処理を行った。千葉実験所のスペクトル比は解析による地表面応答と入力地震動(観測記録の最大振幅を3倍に調整)との比である。両地点とも、最小せん断剛性の差異は1割程度であるが、周波数特性は大きく異なっている。特に、提案手法における非線形化に伴う最大ひずみの影響周波数帯域における3手法の差異は、最大加速度を含む応答関数の差異に明確に表れている。いずれの条件においても、ここで、SHAKEと提案手法における非線形化影響周波数帯域におけるせん断剛性および減衰定数の類似性は、SHAKEが結果として地盤材料の非線形化に伴う非定常性の影響を考慮しているということを示している。ただし、提案手法による非線形化影響周波数帯域の補正により、図-25の関電技研の応力-ひずみ履歴は最大ひずみ近傍において設定したR-Oモデルの骨格曲線と対応しているものの、比較的小
非線形化影響周波数より高周波数側の6から7Hz以上にて著しく増幅率を過小評価しているもの。それより低周波数域の増幅率は減衰特性の差異に起因し提案手法より若干目標とする周波数応答関数に近い評価となっている。特に、応答ひずみレベルの大きな関電技研を対象とし、提案手法および他の2つの手法を用い地表面で観測された加速度時刻歴に基づく逆解析を実施し、得られた基盤複合波の加速度時刻歴と観測記録の比較を図-28に示す。提案手法は波形形状および最大振幅幅とも観測値とよい対応が見られる。一方、SHAKEは全体的な傾向は観測記録と対応しているものの、高周波数成分の混入が著しい。これは、図-26，27に示した減衰定数の周波数特性および周波数応答関数からも分かるように、SHAKEは高周波域での一定の減衰特性を有していることから、高周波数成分の増幅を過小評価、言い換えれば減衰を過大評価している。このため、逆解析解析の結果、基盤波に高周波数成分が過大に含まれるというSHAKEを用いた逆解析解析における致命的欠点が現れる結果となっている。また、M-FDELは最大値近傍の位相が観測波と全く対応せず、基盤波の最大振幅レベルを過小評価する結果となっている。以上に示したように、提案手法と他の周波数域での2つの解析法を対象とし、基盤入力波に対する順解析に基づく各種応答の比較、さらに逆解析解析による推定基盤波と観測波の比較を実施した。いずれも、提案手法は他の2つの解析手法に比べ目標値と良い対応を示し、非線形応答の高い推定精度を有していることが明らかとなった。また、SHAKEは図-25に示した様に発生応力が設定したR-Oモデルの骨格曲線による最大ひずみ時の応力より大きく評価しているものの、図-23に示した最大応答値、さらに図-24、特に千葉実験所の地表面応答加速度時刻歴などの応答計において、提案手法との差異が必ずしも小さいとはいえないと、このことは、地盤の非線形地震応答を評価する上で重要な応力-ひずみ履歴やその評価にかかわる諸特性の課題を明確にした結果としての差異の程度であり、決してSHAKEの有用性を示したものではない。ただし、SHAKEの適用範囲に関するひずみレベル値とも関連するので、まず、本章で解析の対象とした2つの地盤に生じた最大ひずみに着目すると、千葉実験所で基準ひずみと同程度、関電技研では千葉実験所の3倍程度であるが基準ひずみの14倍程度であり、非線形化の程度が異なっている。その様な地盤材料の非線形化の程度では、R-Oモデルが基準ひずみ以降も応力が増加するモデルであることから、SHAKEに
より最大応答量に提案手法との差異が大きく表れないと考えられる。これは地盤材料の動的変形特性としてR-Oモデルを用いたこと自体が原因ではなく、SHAKEの課題である有効ひずみ係数に伴う設定した動的変形特性と解析上の動的変形特性の差異による応力評価の差異が応答に及ぼす影響は、ひずみそのものの絶対値ではなく、非線形化の程度に依存していることを示している。いずれにしても、最大応答などの応答諸量を対象とする地盤材料の動的変形特性に応じて適切に評価するためには、応力-ひずみ履歴を適切に評価することが重要であり、提案手法は、非線形化の程度がより大きな場合に最も応答ひずみ比の応力-ひずみ履歴を適切に評価する可能性を有するという観点で有用であることは明らかである。

6. あとがき

本論では、まず時間領域での地震応答解析より得られた応力-ひずみ履歴の周波数領域への座標変換により得られた周波数領域における応力-ひずみ履歴の特性を表す動的変形特性のひずみ依存特性のモデル化を行った。このモデルは、次に示す2の時間領域との関係を規定する特徴に基づき、周波数領域でのひずみより換算された時間領域に関するひずみに基づく時間領域での応力-ひずみ関係を基本とし、
①時間および周波数領域における動的変形特性のひずみ依存性の相似性
②地盤材料の塑性化に伴う影響周波数帯域の最大ひずみ依存性

このモデルを用い、地盤材料の非線形化を考慮した周波数領域での地震応答解析法を提案した。この提案手法は、非線形化応答過程を定常不規則過程とし、時間領域での非線形応力-ひずみ履歴の写像変換として周波数領域における応力-ひずみ履歴を表現するせん断剛性と減衰定数のひずみ依存性の近似モデルを用い、周波数領域での非線形応力-ひずみ履歴の逆変換として時間領域での非線形応答を評価する手法である。従来の等価線形法に基づく周波数領域での解析は線形応答解析と位置づけられるが、ここで提案した手法は定常不規則過程下での周波数領域での非線形解析と呼ぶことができる。従来の周波数領域での解析法の課題である有効ひずみの換算係数に係わる課題、周波数領域での非減衰評価等は、自動的に回避している。提案手法と従来の周波数領域での2つの解析法と時間領域での解析結果を基盤波入力に対する応答解析について応答量を、発生するひずみによるせん断剛性の低下率が最大で5割程度となる千葉実験所、2割程度となる関電技研の2つの地盤モデルについて比較した結果、以下のことが明らかとなった。
i) 提案手法は従来の手法と比べ、時間領域での非線形解析が推定精度が最も高い。
 ii) 次の結果より、時間領域における非線形応力-ひずみ関係と等価性を有する周波数領域での動的変形特性の評価モデルは有効である。
 iii) ひずみレベル依存的な開電技研における地表面地震動に基づく逆増幅解析の結果より、提案手法は基盤波の推定精度が他の手法と比べ優れている。

以上より、提案手法は、ひずみレベルの大きさが非線形化的に影響を及ぼす時間領域の解析をよりと一致して、従来の周波数領域での解析法の適用範囲であるひずみのオーダー10^{-1}より大きな数値オーダーまで適用を有している。

参考文献
4) 吉田望：地震応答解析における地盤特性をどう評価するか、地震動増幅における基礎設計の考え方と建築基礎の設計施工に関する研究資料4、日本建築学会、基礎構造設計委員会、pp.29-45, 1998.
5) 吉田望、小林悟、三浦純也：大ひずみ領域を考慮した等価

186
6) 風間基樹，柳沢光司，稲富隆昭，菅野高修，稲垣健史：アレー観測記録から推定した神戸ポートアイランドの地盤の応力一流直関係，土木学会論文集，No.547/III-36，pp.171-182，1996。
7) 吉田望，稲垣健史：[YUSAYUSA2 理論と解釈]，1991.
8) 鹿林，山崎文雄，片山恒雄：千葉実験所における地震動観測－その 5－自由地盤の伝達特性について，第 20 回地震工学研究発表会，pp.93-97，1989。
9) 吉田望，中村晋，末富雅雄：1995 年兵庫県南部地震における地盤の非線形挙動とその予測，第 23 回地震動学シンポジウム，pp.39-52，1995。
10) 中村晋：サブトラスによる地震動の增幅特性評価とその適用，土木学会論文集，No.519B-32，pp.161-173，1995。
11) 神山真：強震地震動の非定常スペクトルの算出法に関する考察，土木学会論文報告集，第 245 号，pp.55-62，1976.12）
14) Dainity，A. M.：A Scattering Model to Explain Seismic Q Observation in Lithosphere between 1 and 30 Hz，G. R. L.，Vol.8，No.11，pp.1126-1128，1981.
16) 中村晋：地震観測記録に基づく表層地盤のせん断減衰特性と変動特性について，「地盤および土構造物の動的問題における表層地盤の変形特性－試験法－調査法および結果の適用－」に関する国内シンポジウム発表論文集，(社)土質学会，pp.295-300，1994。
17) 木下繁夫：表層地盤の減衰特性に関する研究，土木学会論文報告集，第 330 号，pp.15-20，1983。
18) 佐藤直男，川瀬博：観測記録から同定した地震動の統計特性と地盤の非線形性を考慮した強震動予測，日本建築学会構造系論文集，第 463 号，pp.27-37，1994。
19) 末富雅雄，中村晋：強震動における表層地盤の Q 値について，第 8 回日本地震工学シンポジウム，pp.589-594，1990。
21) 小林広二，久家英夫，植竹富一，真下賢，小林啓啓：伝達関数の多点同時逆解析による地盤減衰の推定－その 3－，日本建築学会大会講演摘要集中集，pp.253-254，1999。
22) 吉田望，末富雅雄：DYNEQ－地盤線形化法に基づく水平成層地盤の地震応答解析プログラム，佐藤工業(株)技術研究所，pp.61-70，1996。
23) 例えば石原研士：土質動力学の基礎，鹿島出版社，pp.7-11，1978。

（2002.2.25 受付）

PROPOSAL OF NONLINEAR EARTHQUAKE RESPONSE ANALYSIS IN FREQUENCY DOMAIN CONSIDERING APPARENT FREQUENCY DEPENDENCY OF SOIL PROPERTY

Susumu NAKAMURA and Nozomu YOSHIDA

Proposed is a nonlinear earthquake response analysis in frequency domain. Stress-strain relations in frequency domain are defined by the vector spectrum method, i.e., Fourier transforms of stress and strain in a complex plane, and relationships between stress-strain behavior in frequency domain and actual stress-strain curve are investigated. Frequency range where response of subsoil is affected strongly by the nonlinear behavior is evaluated by comparing the unsteady spectrum with a nonlinear effective function that is defined as the first derivative of an amplification factor with respect to a shear wave velocity. A method to evaluate effective strains in frequency domain from the maximum shear strain in time domain is proposed by combining above two findings. The proposed method is compared with conventional equivalent linear methods at two sites where strong motion vertical array records were obtained. The obtained method always shows better agreement with other methods.