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The manifold method is a recently developed numerical procedure. Based on the original first-order
Manifold Method, the second-order one together with corresponding computational code is developed in
the present paper. Application examples include calculation of stress distribution of a circular ring, analysis
of contact stress of a cylinder compressed between rigid plates, large deformation problem of a cantilever
and failure of a slope with discontinuities. The results show that the second-order manifold method is
capable in analyzing structure deformation and contact problems with relatively high accuracy and has
priority in simulating large deformation problem and failure process.
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1.INTRODUCTION

The discontinuities exist in many engineering
structures and foundations. Some of them are settled
as need of structure, while others are originated from
manufacturing faults or process damages. The
occurrence of discontinuities complicates the
mechanical feature of structures, burdening the
numerical simulation for structure greatly. As we
know that the traditional methods in the numerical
analysis of discontinuous structures can be classified
into two types, one belongs to the category of
continuum mechanics, as Finite Element Method
(FEM) " and Boundary Element Method (BEM) 2.

Some models based on this category of method

neglect the existence of individual discontinuity.
They treat the structure with joints as continuous
media, considering approximately the influence of
discontinuities by equivalent model, such as damage
tensor, crack tensor or anisotropic element in which
the influence of crack distribution is included ¥~ .
Some other models treat the joints by special
element such as Goodman Element >. This kind of
method is used usually in the analysis of deformation
or stress of structure before failure. While the second
sort belongs to discontinuous analysis method, in
which including Discrete Element Method (DEM)®,
Discontinuous Deformation Analysis (DDA) ™ and
Rigid Bodies-Spring Model (RBSM) ®. In this
category of methods the structure is treated as

dispersed blocks combined by contact units. This
method is mainly used in the simulation of structure
failure and block movement after failure.

Among these two types, the former one is capable
to accurately analyze the deformation and stress
distribution inside structure, but has difficulty in
simulating discontinuous problem like structure with
multi-cracks and block system. The later one can be
used to simulate the movement of blocks as well as
the contact problem. But it handles one biock as one
computational element that the stress distribution
inside block can not be provided accurately.
However, for discontinuous structure with large
number of joints the above two traditional methods
can not give ideal result.

The Manifold Method (MM) proposed by Shi
(1991)” combined the advantages of FEM based on
the continuum mechanics and DDA based on the
discontinuous analytical method together. It has
wide applicability in the analysis of stress
distribution and block movement after failure. In
DDA a sort of effective way in scanning and treating
contacts is successfully developed, by which the
contact of discontinuities between blocks can be
well simulated. The existing limit is that one block
is dealt as one computational element. Hence there is
no further stress distribution inside block. Under this
consideration the MM sets additional mathematical
meshes inside blocks to define inner interpolation
function, and keeps the computational element in
DDA as its physical meshes. As a result the MM is

1(1s)



capable not only in accurately computing stress
distribution inside the structure as FEM but also
effectively simulating contact of discontinuous and
movement of blocks as DDA. Therefore it has wide
applicability in the analysis of general structure
deformation, large deformation, contact problem and
block movement. Its advantage is conspicuous in the
simulation of structure with a large number of
fractures.

The numerical model of the original MM possess
only the first-order accuracy, leading to
dissatisfaction in simulating problems that need high
accuracy in displacement and stress distribution.
Zhang et al."” briefly introduced the basic concept of
second MM by six node triangle element, in this
paper the details of it is proposed. Numerical
examples showed the wide applicability of the
second-order MM in different field of structure
analysis.

2. BASIC CONCEPT OF THE MANIFOLD
METHOD

(1) Concept of cover and two sets of meshes

A concept of cover is proposed and two sets of
meshes are used in manifold method, indicating
differences of MM to FEM. The covers are used to
define the local function of each calculation region.
One cover covers a fixed region. The shape and size
of the region can be freely arranged according to the
problem. Covers can be overlapped each other. All
covers overlay the whole physical domain.

Two sets of meshes are physical meshes and
mathematical meshes. The physical meshes describe
the physical domain, which include boundaries,
joints and interfaces of blocks. They constitute the
integration area. The mathematical meshes, on the
other hand, are enclosed lines more or less arbitrarily
selected for the definition of covers. The areas
enclosed by the mathematical meshes are called
mathematical cover, on which the space function is
built.

The physical and mathematical meshes intersect
each other. If one mathematical cover is divided by a
physical mesh into more than one area, each of these
areas needs a physical cover.

All of the enclosed areas generated by the
intersection of physical meshes with mathematical
meshes are defined as calculation elements.
Generally the element can be in any shape.
One element can be laid over by one or more
physical covers. All these physical covers on the
element determined its physical behavior. Element is
the basic integrate region.

Fig.1¥ can be used to illustrate the concept of
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Fig. 1 General covers and mesh system

cover and meshes introduced above. Thick lines are
physical meshes and thin lines are mathematical
meshes. Two circles and one rectangle delimit three
mathematical covers Vi, V, and V. The physical
meshes divide mathematical cover V,; into two
physical covers 1; 1,, divide V, into two physical
covers 2,2, » and divide V3 into two physical covers
3,, 3,. Physical meshes intersect with mathematical
meshes, forming eleven elements: @, @), ®...etc.
Physical feature of each element is determined by
the physical covers on that element, namely 1, 1,
1122, 1221, 21 and so on.

Although the mathematical meshes in FEM type
MM are the same with the calculation meshes in
FEM, the definition of node and element differs
from each other. In FEM the node must be placed
inside physical domain or at boundary, and the
region of element must coincide with interpolation
area for interpolation function. While in MM the
node can be located outside physical domain, and
element region can be detached with interpolation
ones. Only one requirement is that the interpolation
meshes must cover the entire physical domain. In
other words it means that in FEM type MM an
element can either be a regular triangle or a part of
triangle. In special case when the elements are all
identical with the interpolation triangle of
mathematical meshes, the calculation grids are
exactly the same with that in FEM. In this sense the
FEM can be deemed as a special situation of MM.
Another difference of FEM with MM is that the
element must be regular in FEM while in MM it can
be arbitrary, since Simplex Integration'” is utilized
in MM which has no requirement to the shape of
element.

(2) Local function and global function

A local function must be defined at every
physical cover in MM. Generally the local function
can be in any form, as constant, linear function,
high-order function, or analytical solution
corresponding to physical domain. Combination of



local function by weighting function generates the
global function. Suppose a local function at cover U;
isas:
u(x,y) (xy)eU,
Then global function is obtained by using weight
functionw,(x,y) as:

w ) =3 Wy W

in which :
w(x,y)20 (x,»elU,

w,(x,y)=0 (x»eU, , Y w=1
(x,)eU;

Manifold method with FEM mesh usually takes
local cover function as constant ¥ 'V . Deformation
function by constant local function and linear weight
function has the same form with that used in
three-node triangle element. Local function #; is
unknown variable as in FEM, while weight function
wi(x,y) is the shape function in FEM. Problems like
deformation, contact and block movement can be
simulated by using this form of local and weighting
functions.

3. SECOND-ORDER MANIFOLD
METHOD

The second-order MM can be built in either of the
following two ways: (1) linear cover function and
linear weight function'?; (2) constant cover function
and second-order weight function. The FEM is rich
in practices ' in building displacement function,
hence here we follow its course. The mathematical
meshes of six-node triangle are shown in Fig.2.
Second-order displacement function is built by
taking constant cover function and second-order
weight function. There are two kinds of
mathematical covers being used. One is hexagon
surrounding all the triangles with a common node,
the other is quadrangle surrounding the middle
nodes, as shown in Fig.3.

(1) Displacement function
The displacement functions take the form of
second-order as:

u(x,y)=a, + b1x+c1y+d,x2 +e,xy +eg2

v(x,y)=ai+bx+c y+d x> +exy+ gy’ @

where a,,b,,¢, ...,a,,b],c| ...are coefficients »

X y are coordinates inside or on the boundary of the

triangle. Suppose the nodal displacement of a basic
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Fig. 2 Six-node basic triangle
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Fig. 3 Two types of mathematical covers

triangulate is {D}= {ul V) Uy Vy UG Vg }T , the
coefficients in the displacement function (2) can be
derived from the nodal coordinates and known
displacements of six nodes in mathematical mesh.
Substitute the nodal coordinates and displacements

into the first formula of equation (2), it can be

obtained that:
U (al
1 2 2
U, NN X XN N b,
2 2

14 _ 1x, ¥y, x,° %9, ¥, I
0, : X : a, f
u 1 2 2 le

5 X6 Vo X6 X6V6 Vs 1
Lu6 Lgl

The coefficients in displacement function can
be expressed by the nodal coordinate and
displacement as:

a, U
<
1 2 2

b, XN X XN N U,
c 1 2 2 u
JOrL_ |1 %2 Y2 X5 X0, Yo | )% L
d, U,
e 2 2 u

! 1 xg Y6 X6 X6V Vs E
Lgl (%s

taking :



2 2
Ix, y %" 40 p

|1 X y2 X7 X2y, ¥y

futo fis fia fis frs
fZI fZZ f23 f24 fZS f26

fsl f62. f63 f64 f65 f66

I x, ye xsz XsYVe y62
(3)
weight function w;(x, y)is expressed as: (3)
(wl Wy W6)=
S to S fuu Sis Sis
(1 Xy xp %2 xy yz le In fza‘ S Jis fzs @)

Jo Jo Jo Jou fos Ses

where w, = w;(x,y) . It can be proved that the

coefficients in the two formulae of equation (2) take
the same values. Displacement of element yield:

{u(x, y>} = [rx. »)ls}

v(x,»)

l:wl Ow, 0 - w Oj|
= <v2
; (3)

0w 0w, - 0w

where » [T(x, y)]is the weight function, which is
coincident with the shape function in FEM. The
formed displacement function by the way above
satisfies the three convergence criteria, namely: O
Rigid displacement is included in displacement

function and rigid displacement does not cause strain.
®Constant strain is included in the displacement .

function. @ The continuity can be ensured in
element and between the adjacent elements within
the same path-connected region.

(2) Simultaneous equilibrium equation

Governing equation in MM for dynamic
problem takes the form as:

[mis}+ o)+ [k Has} = {ar) )
where [M ] is mass matrix, [C ] is damping matrix,

©), 6} are

{as } is displacement increment,

velocity and acceleration, respectively.
[K] = [Ke] + [Kcn]+ [Kc:]+ leJ

where [K,] is stiffness matrices, [K,], [k, ] are

contact matrixes between blocks and discontinuities.

[Kf] is fixed point matrix.

WFy=iF, p B3+ - R R i,

where [AF ] is the total load increment, {Fp} is
load increment, {F, } is volume force vector, {F f} is

equivalent load vector caused by known

displacement restriction. {Fo} is initial force

vector, {Fm }, {ch} are equivalent load vectors by
normal and shear contact. {F f,} is equivalent load
vector by fiction on contact.

All the matrices can be calculated as below:
(a) Stiffness matrix:

[k°]= [[BY [D1Bxay e

where [B] is the strain matrix and [D] is the
elastic matrix.

(b) Mass metrix:
T
[p<]= [[olr] [T laxay ()
where O is l;nit mass of material.

(c) Initial force matrix :

{F} = [[[BY {o0 Jaxay (9)
where {o‘o }e is the initial stress vector.
(d) Volume force matrix :

{F,}= {I[T]T{ﬁ}dxdy (10)

where f,, f, are the unit volume forces of element

in x and y direction.
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' (&) Point force matrix :
The load matrix caused by point force is:

{r,} - [z<xp,yp>P{§; }

an

where p ,p, are point forces acting at point
(x,,y,),i is the element at which the point force is

acting.

() Fixed point matrix:

[Krf]z p[Tr(XO’yO)]T[Tr(xO’yO)]

7] _{pu(xo,yo)}

DPV(X4,¥y)
wher\e xo and y, are the cobrdinates of the fixed

(12)

point, p is the stiffness of the spring addes at the
fixed point.

(g) Normal contact matrix:
Rl Sl

[KC”] I:Kcnﬂ]l:Kcnﬂ]
[Kmd P@RHF'K"U p@,QJT
[kl ofe o F [rers]-sfo o,
o [Ff"]=-p( e

where x; , y; are the coordinates of the contact

(13)

0

el

/

point, and x; , y», X3, y3 are the coordinates of the
contact line (See Fig.4) . p is stiffness of contact

spring. /,S,,{H,} and {Gi}can be calculated by the

formula as below:

=\/(7xz-x3)2+()’2
1 x »

S =11 x, ¥, {H,}
1 x5y

—y3)2 5

§[T,~(x.,yl)1’{y 27 }
X3 — X,

4

where [T, (x, y)] is the weight function and can
be referred to formula (3) to (5).

Y2

{Gf}%[T,-(xz,yz)]"{f } ', (xz,ys)]”{y'

(h) Shear contact matrix:

The shear contact matrix can be also be
calculated by formula (13), but So,{H,.} and

{G,.}should be calculated as below:

So =(x; = x, yl“)’o){xs_xz}
Y3 =V,
1 : X; — X

S R Sl
Y =X,

1 X; = X5
G, }=-1,(x %) { }
{ j} l[] ’ 0]7 Y2=Ys
where x, and y, are the coordinates of the contact

point P; on contact line P,P;.

(i) Friction force matrix

When the contact point P, slides on line P,P3, the
friction loads should be added to two contacted
elements:

{‘F:'ﬁ}z —jl:[]\/'i(xlayl)]r{x3

Y3

—xz}
—V2
{Frl= ——{—[N S0y {;2__;2}

where f is the friction force calculated by

(14)

' f=p-d-sgntan(g) , ¢ is the friction angle, d,
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is penetration depth showed in Fig. 3. sgn is the sign
of friction force, determined by the angle between
PP and P,P;. It is positive when the angle is smaller

than 90° and negative when the angle is more than

90° .



Fig. 5 Circular ring under inner pressure

Fig. 6 Different meshes in computation
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Fig. 7 Comparison of stress distribution

4.NUMERICAL EXAMPLES

(1) General stress and deformation problem
Fig.5 shows a circular ring of inner diameter a
and outer diameter 5 under inner pressure p.
Numerical simulations for half of the ring by taking
different size of elements (Fig.6) are made, and the
results are compared with these of analytical one and
the first order MM. The dots in the figure indicate
the points of measuring stress. The example is used
to check the convergence of the second-order MM.

The circumferencial stress o, of analytical solution
of the problem is'¥ :
B+

%o =P 2ty -1

Fig.7 compared the stress distribution of o5 along

radius. It is shown that the calculation result of the
second order MM approaches to the analytical solution
gradually as the number of element increases. The
result of the first order MM with mesh d) is also given
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in this figure It can be seen that the second order MM
has a much higher accuracy than the first order MM.

(2) Contact problem

An important application of the second order
MM is for the analysis of contact problem. Fig.8 is
an example of a cylinder deformation by contact
pressure of two rigid plates. The cylinder’s radius is
1m. The bottom plate is fixed. The top plate moves
downwards in uniform velocity under pressure. The
load velocity is lcm/s. The result of cylinder
deformation at different stage of loading is shown in
Fig.8(b). Table 1 lists the parameters used in the
computation.

Fig.9 gives the contact stress distribution at
different loading stages, compared with the solution
by Hertz ' when the displacement of the top plate
reaches 0.4m. The comparison shows good
agreement between MM solution with Hertz’s
analysis. Calculated stress curve is not as smooth as
analytical one, especially at low load stage. It is
caused partly from the simplification of circular
section with polygon which is not smooth at its
boundary, and partly as the stress on interface of two
elements is discontinuous, which is similar to FEM.
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Fig.8 Cylinder deformation by pressure of rigid plates
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Fig. 9 Contact stress distribution at different deformation stage
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Fig. 10 Comparison of large deflection analysis of cantilever under uniformly distributed load

Table 1 Computation parameters

Elastic Stiffness of contact
module Poisson ratio spring
(MPa) (t/m)
Plates 1000 0.25 200000
Cylinder 1 0.25 200000

(3) Large deformation problem

Equation (6) was solved by step-by-step
iteration method. At each computation step a
maximum displacement is restricted in order to
satisfy small displacement principle. After one step
of calculation the computed displacement is added to
nodal coordinate, generating new nodal coordinate
after deformation. By this way the large
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deformation is accumulated by small deformation of
each step, making MM applicable in simulating the
large deformation problem.

As a computation example of large deformation
problem the present paper simulated the deformation
of a cantilever under uniformly distributed load,
compared with analytical solution and FEM
numerical result. Fig.10 shows a cantilever of length
L=10m and width H=Im and the comparison of
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Fig. 11 Failure of slope block

deflection at the free end of the cantilever by MM,
analytical solution and FEM result'”. Uniformly
distributed load of P/2 is loaded on the top and
bottom surface of the cantilever. The elastic module
E is 120000t/m’ and Poisson’s ratio v is 0.2. Two
cases of different load pattern were simulated. (1)
Load retains its vertical direction, without change
with the beam’s deformation. (2) Load keeps its
direction perpendicular to the top and bottom surface
of the beam, i.e. deformation follower loading. It is
seen that an excellent agreement has been obtained
with analytical solution reported by Helden and the
numerical solution of large deformation FEM.

(4) Block movement problem

By using two sets of meshes and the contact
treatment described before, the MM facilitates
simulation of deformation and movement problem
of block system. A computation example of block
sliding failure along slope is given as shown in Fig.
11. Gravity is the only load. Computation parameters
are: unit gravity o =2.5T/m’ » elastic module

E=1000MPa , Poisson’s ratio v=02 »  Penalty
p=1000000t/m > maximum calculation time
step At=0.01s. The blocks are restricted by the left
wall initially. At time t=0.0s the restriction is
released suddenly, the slope starts sliding under
gravity. Slope sliding patterns at different time are
shown in Fig. 11 (b),(c),and (d). Reasonable results
are provided by MM.

5. CONCLUSIONS

The second order manifold method using
displacement function and energy principle similar

to FEM possesses the same accuracy with FEM. In
this paper, the second order displacement function is
built by constant cover function and second weight
function with six node triangle mathematical mesh,
this is the same way with the traditional FEM with
triangle mesh. The examples showed that this is a
efficient way to built high order manifold method.

The extended MM can not only solve the
problem of general structure deformation and stress
with relative high accuracy, but also simulate large
deformation and contact problem, and especially the
structure failure and crack propagation, which
require high accuracy in stress and displacement.
The extended second order manifold method has the
better adaptability in simulating the overall process
of structure from deformation to failure and to the
movement of failed blocks. Wider application is
expected further in the deformation and failure
analysis of structure and foundation.
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