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The dynamic characteristics of a structural system are identified. The relevant neural network characteristics

of a learning algorithm are discussed in the context of system identification.

Because of the self-learning

nature of the neural network the dynamic characteristics identified are strongly affected by the level of noise

contained in the teaching signals. A method to identify the dynamic characteristics of a structural system proof

against contaminating noise in teaching signals has been developed with the aid of the Kalman filtering

technique. Numerical examples to identify dynamic response characteristics of linear and nonlinear structural

systems are worked out to demonstrate the stability and robustness of the proposed algorithm.
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1. INTRODUCTION
Identification of physical models or the
dynamic parameters of a structure has gained
much attention recently”. The methods developed
can be categorized in two groups: frequency

methods. The
frequency domain method has been in wide use

domain and time domain
for some time and has been proved efficient in
many cases. Application of
however, is limited to linear structural systems. To
avoid the limitation inherent in frequency domain
analysis methods using time domain data have
been developed”. The identification of
difficult

are used because of

large
systems remains when conventional
algorithms instability,
non-uniqueness, multi-colinearity, and excessive

calculation time required. To avoid these

problems, it is necessary to develop algorithms by

the use of parallel distributed processing units .
We have developed an algorithm to identify the

dynamic characteristics of a structural system by

these methods,

identification, neural network, extended Kalman filter, Back propagation, stability

using the potential of a neural network. The
processing elements are connected to each other
by adjustable weights. Change in these weights
changes the input/output behavior of the network.
In conventional neural network algorithms, the
connection weights of each link in the network are
identified by the back propagation algorithm®.
Some problems have been found for this
algorithm: the learning process is unstable when
the teaching signal is contaminated by
measurement noise, and because the connection
weights are adjusted by analogy with the steepest
descent method, the identified weights sometimes
fall into the local minimum solution. Taking these
factors into consideration, we developed a learning
algorithm proof against noise in teaching signals

by using the Kalman filter”.

2. NEURAL NETWORK

Artificial neural network models used for
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complex signal processing are based on our

present understanding of biological nervous
systems. These models are composed of many
nonlinear computational elements that operate in
parallel and that are arranged in patterns similar to
biological neural nets. The neural network model
used in this analysis is a multi-layer perceptron
neural network shown in Fig.1. This is the
simplest and most commonly used type of neural
networks. Multi-layer perceptrons are
feed-forward nets with one or more layers and
nodes between the input and output nodes. The
capabilities of the muiti-layer perceptrons stem
from the non-linearities used within nodes. If
nodes are linear elements, a single-layer net with
appropriately chosen weights can duplicate the

results obtained with any multi-layer net.

LAYER 1

(HIDDEN) LAYER 3

{OUTPUT)

LAYER 2
{HIDDEN)

Fig.1 Perceptron Neural Network Model
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Fig.2 Typical Processing Element (Node)

Input signals flowing in this neural network
through a node are shown in Fig.2. The input for
a processing element in the node is the summation
of weighted ouiput node signals from the last
layer which is passed through a non-linear
function. '

in which u, (i =1,2,---,n) are the inputs, W; is the
weights, b is a bias term and y(®) isa non-linear
process function. The choice of non-linearity
depends on the particular application for which
The
non-linearity used is the sigmoid function given

by

the network is used. most  typical

1
x)=———mM8M8M oa>0
v(x) 1+ exp(—ax) 2)
Using these equations repeatedly we can

express the output signals y, (k=1,---,m) from
the final layer (layer 3 in Fig.1) as functions of
the weights in each layer w), wi and w} . In

Fig.1 we assign a different processing function of
7(e), B(*) and a(e) for each layer. In the neural
network algorithm, these connection weights
between two layers are adjusted as the actual
input/output relationship based on the network
close to a desired

becomes input/output

relationship, i.e, a teaching pair of the
tnput/output relationship. This adjusting process is
called "learning”. The time history of the response
of a structure under earthquake excitation here is
used as the teaching signal. We compose a neural
network in which the input signals are the
structural response values plus input acceleration
to the structure at time step ¢, and output signals
are the structural response values at time step

(t+1).

3. BACK PROPAGATION
ALGORITHM

In the conventional back propagation
algorithm, the connection weights are adjusted by
minimizing the performance criterion E defined
by Eq.3; i.e., the mean square error between the
actual feed-forward

perceptron and the desired output. Because a

output, of a multi-layer
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perceptron and the desired output. Because a
component of the actual output vector from the
network is Y; , as shown in Fig.1, a component of
the desired output vector can be defined by Y.
The performance criterion E then is written

€ = Ve ™ Y 3)

in which €, is the k th component of the output
error. Now recall that Y, is the function of the

weights in each layer wl.'j , w; and w; . A typical

weight w; (which could belong to any layer) is

adjusted from its old value wfj”"’) to its new value
wi(j""w) as follows®:

JE
aw(old)

(new) = w(old) _

i ij €

w

(4)

As seen in Eq.(4) the weights are adjusted.in the
negative gradient direction. The value of € is
termed the 'learning rate’. The derivative of the
error criterion E with respect to the weight of each

layer is given by

SE 5,3‘ z, 5,3.zq

VE={=—p=| P
i 8z - bz,

5,'3 = eial(yi)
\% E—{ aE}— 6122‘11 612:";)
T ow? ' ‘ (5)
i 8, 5v,
8 =p(z) Y widy
k=1

ap) [0 o G

VE= o =| -
v 5;u, 5:,14"

q
8 =v'(%) L wide
k=1

in which ¥, Z, and V; are

q n
- _ 3 = _ 2 = _ I
yi - zwiszx Zi - zwixvs V,— - Zwixus
s=1 . o~

¥ =a(3)

4. LEARNING ALGORITHM USING
THE EXTENDED KALMAN FILTER

A learning algorithm based on the extended
Kalman filtering technique is derived. Because the
component of the output from the neural network
¥, is a nonlinear function of connection weights
W,"j’ w; and w; , the linearization of Y, with
respect to the most likely values of the weights W;
y?;; and W; becomes

O ={a}+[4 o} -]} (4
—[AZJ{‘%}'*'[A! ]{WI} - [Al ]{wl} (N

in which

{w3 ={{w]3j}r{w;j}r...{w3,j}T} (=12,9)
Y} G=12p)

{w! ={{W;j}r{;v;j}r."{w:’j}r}r (j=12,--,n)

(8)

and [AJ] , [A2] and [A,] respectively, are
subdivided into the row vector components A3’“ s
A¥ and A whichare -

a'(ik )Zq}
k#s

A;kz{a,(yk)zl a'(y)z,
and A¥ ={0,0,---,0} for

L AP = {F,Gvl F,va}
inwhich F =a'(5)%.,0(z) (9

Fv,

Alkl = {leul G,

. q P
inwhich G, =a’'(5) > Wi B/ (Z) Y, Wiy’ (%)
I=1

s=1

Gyu, }
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To apply the extended Kalman filtering technique,

the following vectors and matrix are defined.

w={pw Y ao
H =[[4] [4] [a]]

Using Eq.(10) we can rewrite Eq.(7) as
Yo =h+Hw —Hw, +v, (11)

in which H, is the observation matrix and v, the
noise vector with the covariance matrix R.

If the vector Y, is replaced by the observed
value, Eq.(11) yields to the observation equation
in the Kalman filtering algorithm. If the weight
vector W, isassumed to be unchanged with time,

the system transfer equation for weight vector w,

E Estimation error covariance matrix;
T T -l
= PI/I—I - RI:-IH [HtP H + Rr] HrPtll—l

P thi—1""1
an

1

Through A to E the weight vector is updated
stepwise when the observed structure response is
given sequentially.

5. APPLICATION TO A LINEAR
STRUCTURE

To demonstrate the application of the
algorithm, we modeled a two-story building
(Fig.3). The parameters for this mode! are given
in Table 1.

The accelerogram at El Centro (NS, 1940)

modified for maximum acceleration to 50 cm/sec’
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is given by was used to simulate the dynamic response of the
structure.
W = Iw, (12)
Note that the transition matrix is a unit matrix and X o, X
that the system noise vector is equal to O in this X 4 X
algorithm and the time step changes from ¢ to I l
(t+1), therefore the algorithm of the extended
Kalman filtering for the weight vector w, is
formulated as k,
A [Initial conditions for the weight vector, the //////////
error covariance matrix and R, ; X,
Vo =wo Py =Zo Re=n (3
Fig.3 Linear Structure Model
B Kalman gain;
Kr — E/:—lHrT[HrP:/r—lHrT + R,]_l (14) Table 1 Model Parameters
Predictor equation; v Mass;{ 2 F ‘0'1 2553
wrh—l = Wz-l]:—‘l R|x—1 = Pf——l]t—l (15) (kgfs7cm) 1F 0.12553
Stiffness 1F-2F 24.5
Filter equation; (kgf/cm) 1F-Base 24.5
W, =W, + K,[y, - h}(@m_])] (16) Damping h 0.863
(%) he 2.260
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Fig.4 2-Layered Neural Network

The time interval to integrate the equation of
motion is 0.01 sec. The neural network used in
this section has two layers (Fig.4). The input
values are the displacement and the velocity
response of the model structure plus ground
acceleration at time ¢. The output from the net is
the structural response at time (¢ +1). The weight
W,!j becomes a (5 X 4)matrix.

To make the noise-contaminated teaching
signal we generated pink noise with a frequency
range of 0 to 25Hz by modifying its maximum
amplitude to be equal to 5% of the maximum
response amplitude. This pink noise is added to
the simulated structural response. Identified time
histories for four components of the weight

matrix, w;,w,,,W,; and w,,, are shown in Fig.5.
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Fig.6 Time History of Weight (effect of initial values)

Solid lines are the identified re_su‘;ts and broken
lines the exact values of the weights. Results
obtained by the back propagation algorithm are
strongly affected by the noise, whereas the
Kalman filtering algorithm removes the noise
effect thereby providing stable learning results.
The effect of initial conditions on the learning
process of the weight w,, is shown in Fig.6. We
use a teaching signal non-contaminated with noise
and seven different initial values for the weight
matrix varying from O to 110% of its exact value.
the back

propagation algorithm are spread over a wide

The convergent values based on
range whereas the Kalman filtering algorithm
shows a very good convergence. Because the
duration of the teaching signal is 10 seconds a
temporally convergent value for the weight matrix
under a certain initial condition is obtained at the
end of 10 seconds of learning. Assuming this
value to be the initial value, we repeat the 10
second learning process until all the components
of the weight matrix show steady change within
the 10 second learning period. We define each 10
second learning process as global learning.
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The simulated second floor displacement using a
temporary convergent weight matrix is shown in
Fig.7. The thin line is the exact response, the thick
one is the simulated one. For simulation, the
neural network with a fixed weight matrix is used.
Starting from the given initial conditions of
structural response and the external excitation
time history, the structural response one time step
march is obtained through the network. On the
assumption this as the input to the network, we can
calculate the entire time history of structural
response. Because the weight matrix- converges to
the exact value at the end of the first global

learning when the Kalman filtering algorithm is

used, the simulated response coincides with the
exact response. The simulated response obtained
using the back propagation algorithm, however,
requires several global learnings (in this case 8
times) to achieve good agreement between the
simulated and exact responses because even
though after 8 global learnings the components of
the weight matrix converge to very different
values from the exact ones. This means that the
results obtained with the -back propagation
algorithm fall into the local minimum solution of
the weight matrix.

An eigen value of the weight matrix of this
network is an exponential of the corresponding
eigen value of the dynamic equation of the
structural system. Undamped natural frequencies
and the damping coefficients of the model
structure calculated from the identified weight
matrix are given in Table 2. We assign a very low
damping coefficient for the first mode to check
the efficiency of the proposed learning algorithm.
Exact values of the dynamic characteristics of the
structure model are given in the upper part of this
table. The dynamic characteristics identified by
the B.P. and K.F. algorithm are compared for the
cases of teaching signals with and without noise.
When the teaching signal is not contaminated with
noise, the identified results are better than those
obtained using the noise-contaminated signal.

Table 2 Identified Parameters

@(rads) h
Ist | 863 10.00863
2nd | 22.6 | 0.0226

B.P. Algorithm

Initial Without NoisLl With Noise
weight [Qads)] 3 [owads] b
Isy — | — |— | — {861
I — = |— | — [192
. 1st| 8.65 [0.0310 7 14]0.0839] 8.64 |0.0081} 8.04 |0.1300
S0% Imd 29,0 [0.8460 39.710.9250] 209 [0-0T66| 22.7 [0.0694
Ist| 8.4110.0076 794 0.092¢8] 8.64 [0.0097] 8.09 [0-1020
2nd| 303 [0.4630 74.0]0.3640 21.9 [0.0073] 23.7 fo.0469
Ist| 8.43|0.0145] 7.85]0.14808 8.64 [0.0093] 8.11 [0.1060
20d| 26.0 | 0.2640| 21.7 {00203 22.3 [0.0153] 24,1 0.0407
Isif 9,10 [0.0029 8.90]0.1360] 8.63 [0.0068] 8.13 [0.1140
2nd| 20.2 [0.2630f 21.7]0.5180] 22.9 [0.0296{ 24.7 [0.0275

Exact

K.F. Algorithm
Without Noise With Noise
O(rads)]  p rad/s)] b

0.0120] 7.98 [0.1530
0.0615] 21.0 ]0.1050

80%

90%

110%
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Because the B.P. algorithm does not guarantee
convergence of the weight matrix to the exact
value, the identified dynamic parameters are
strongly affected by the initial condition. The
results obtained using the K.F. algorithm are very
robust not only for initial condition but for
contaminated noise in the teaching signal.

6. APPLICATION TO A MODEL
BUILDING

To demonstrate the application of the algorithm
to real observed data, we identified the dynamic
parameters, natural frequency and damping
constants, of an eight-story model building shown
in Fig.8. The specification of this model is shown

in Table 3.

— N W RhRUINJX®
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I
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=3

Fig.8 Model Structure
Table 3 Model Parameters
Node No. Mass (kgf) SUffnes(igf/cm)
8 150.6 245.0
7 123.1 245.0
6 123.1 245.0
5 123.1 245.0
4 123.1 245.0
3 123.1 245.0
2 123.1 245.0
1 123.1 245.0

Data of dynamic responses of the model building
were obtained through experiments conducted for
seismic response control analyses using a active
mass driver system”. The model structure is a steel
frame model of a shear building. The experiments
were done on a 4m by 4m shaking table which
can simulate various excitations, including seismic
ones. The input seismic motion is the
accelerogram at El Centro (NS,1940) adjusted to a
peak acceleration of 50 cm/sec’ for experimental
analyses. The sampling time interval of model
structure response is 0.01 sec. The neural network
used in this section has two layers shown in Fig.4.
The input values are the displacement and velocity
of all

acceleration at time ¢ . The outputs from the net

responses floors, and the ground
are the structural responses at time (f+1). The W.~lj
isa (16x17) matrix.

Taking actual problems into consideration, we
assume following conditions to set initial values of
the weight matrix and the estimation error
covariance matrix: [1] Because it is easy to get
exact values of mass, the values given in Table 3
are used as initial values. [2] Since it is hard to
estimate the values of stiffness exactly, the initial
values of stiffness are assumed as & times of the
exact values given in Table 3 (If initial estimation
is exact, the « is equal to 1.0). [3] The damping
coefficients are not able to be estimated, the initial
values of modal damping constants are assumed to
be O.

Using the initial weight matrix calculated under
these assumptions, the estimation error covariance
matrix is assumed in proportion to a square of the
initial weight with a proportional coefficient p.
Carrying out the identification process only for
initial 300 steps (3.0sec) using four values of p

(0.001, 0.01, 0.1, and 1.0), the p value which
minimize the summation of the performance
criterion E (Eq. (3)) during 300 steps is selected
as the optimal value.

The identified dynamic parameters (natural
frequencies and dampings of eight modes) from
the observed time histories of the model structure

response for several initial conditions are shown in
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Table 4. The optimal value of p is also shown at
the bottom row. In this table, the case A is the
result obtained by the proposed algorithm, the
case B is a result obtained from a sinusoidal
excitation test, and the case C is the exact values
calculated using the values in Table 3 under the
assumption of stiffness proportional damping.
From Table 4, when the value of « is within
the range of 0.9 - 1.1 which means the error on
initial stiffness to be within 10% of the exact
values, the identified results are very close to the
exact values by setting the appropriate value of p.
As the discrepancy between the initial values and
the exact values becomes large, we have to set the
large value of p to get reliable identified values.
Even in case that the initial estimation error
20%, the of identified

parameters in lower modes is guaranteed.

exceeds accuracy

Table 4 Identified Parameters

Parameters A Neural Network Resgm C
Mode|{ 2080 | o090 | o095 | a=1.00 ] o105 | a=110 | =120 fCuve  [Calrufared

1 121 1.25 124 126 | 125 127 130 125 1.26

2 342 | 356 | 3.67 IBL| 383 | 394 | 391 | 38 § 376

3 553 | 582 | 599 615 | 628 | 645 | 677 | 626 | 6.05

() 4 745 | 192 | 8.M4 845 | 855 | 876 | 866 § 851 | 835
5 918 | 977 | 1003 | 1058 | 1054 ] 10.80 | 1060 | 1050 | 10.29

[ 1059 | 1129 { 1159 | 1189 1217 | 1248 | 1273 | 1220 | 1189

7 1565 1 1242 | 1275 | 13.08] 13381 1372 | 34 | ——| 1308

8 1228 | 1342 | 1346 | 1381 14.13 | 1448 | 1398 | —{ 1381

1 040 | 030 | 030 | 038 ) 032 ]| 037 | 029 | 035 | 038

2 020 F 030 | 030 | 036 ] 050 | 059 | 037 { 056 | 036

3 020 ) 030 | 030 | 033 | 042 ] 010 | 028 | 056 | 033

4 000 | 040 | 030 028 | 067 | 009 | 068 | 058 | 028

hi#) 5 020 | 060 | 040 | 023 | 032 ] 010 | 0SI | 034 }.023
6 040 | 080 | 030 | 007 | 006 | 020 | 030 | 052 | 047

17 060 | 070 | 100 | 004} 00 | 013 | 000 | — ] 0B

3 040 | 080 | 060 | 010 | 020 | 040 | 038 | — | 0.0
P 1.000 | 0.100 | 0.010 | 0.0014 0.010 | 0.100 ] 1.000 | .~ |j |

7. APPLICATION TO SIMULATE
NONLINEAR STRUCTURAL
RESPONSE
The Kalman

algorithm on the learning process of the neural

efficiency of the filtering

network is confirmed by its application to a linear
structural system. To illustrate the applicability of
structural

developed algorithm to non-linear

systems a two-story building similar to that shown

in Fig.3 is considered, but with versatile
restoration characteristics given by
Z=-al{Z" - BAz"|+ kx (18)

in which Z is the restoring force, n the odd
number, & and ﬁ constitutive parameters, and k
the stiffness. For each story we assign the values
of n=1,a¢=1.0, 8=0.0 and the stiffness given
in Fig.3. The teaching signal is the simulated
velocity and displacement of the model building
excited by the modified El Centro accelerogram..
The neural network used to identify the
nonlinear response pattern is shown in Fig.9. To
give the nonlinear mapping ability, a three layered
network is used in the analysis. The Processing

Function of the middle layer is

1 1
f(x)=2C —_1—5 +aC @3}

i+eT

in which the second term on the right hand side of
this equation is added to assign a non-sym-
metric nature to the processing function. Com-
bining the four different o values of 1.0, 5.0,
10.0, 20.0 and the five different C values of 1.0,
0.5 0.0, -0.5 -1.0, we set twenty processing nodes

in the middle layer. The value T is 10.0.

O =t
@—@ xlk+1]

XK= m '
¥4kl e ’ @" xlk+11
INPUT ~ LAYER | LAYER 2 LAYER 3
(HIDDEN) (HIDDEN) (OUTPUT)
Fig.9  3-Layered Neural Network
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Simulated displacement using the trained
weights after 150 times global leaning is shown in
the upper part of Fig.10. The external excitation
is the El Centro accelerogram with a modified
maximum amplitude of 50 cm/sec’. The thick
line, the simulated displacement, agrees well with
the thin line, i.e. the exact one. The identified
hysteresis shown in Fig.10 also expresses the

global tendency of hysteresis.
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Fig.10 Time History of Resp. and Hysteresis Loop

To check the mapping ability of using a neural
network fixed with trained weights, we simulated
the structural response for different amplitudes of
external excitation, 25 and 100 cm/sec’, and for
different Taft (EW, 1952) and Hachinohe (NS,
1968) accelerograms with modified maximum
amplitude of 50 cm/sec’.  Results are shown in
Fig.11. If the maximum external excitation
amplitudes are lower than those of the teaching
signals the network can output reliable structure

responses.
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Fig.11 Time History of Structure Responses

8. CONCLUSION

The Kalman filtering technique was applied to
identify  the arbitrary
perceptron neural networks. We investigated the
efficiency of the proposed algorithm by using it
to identify the dynamic structural characteristics
of linear and nonlinear structural systems and
compared the results with those obtained with the

weight matrices of

. classical back propagation algorithm.
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The proposed algorithm was very robust to

noise-contaminated teaching signals for
identifying the linear structural systems, whereas
the classical learning algorithm often showed
instability in the learning process. To check the
ability to apply this algorithm to real observed
data we applied the proposed algorithm to identify
the dynamic structural characteristics of a
eight-story linear model structure and compared
the obtained results with exact values. When the
initial stiffness is within +10% of exact values, we
can identify not only natural frequencies but also
damping constants with high accuracy. In the case
that the initial estimation error is beyond +10%,
we can still get good identified value for lower
modes by defining the large initial estimation
error covariance matrix.

We could not identify the network weights for
simulating the nonlinear structural system without

using the neuro-Kalman algorithm.
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