EPS盛土一擁壁系の地震時挙動の観測と解析

山崎文雄1・大保直人2・黒田和一3・片山恒雄4

1正会員 工博 東京大学助教授 生産技術研究所（〒106 東京都港区六本木7-22-1）
2正会員 工博 鹿島建設(株)技術研究所（〒182 東京都調布市飛田町2-19-1）
3正会員 工修 東京大学教授 生産技術研究所（〒106 東京都港区六本木7-22-1）
4正会員 Ph.D. 東京大学教授 生産技術研究所（〒106 東京都港区六本木7-22-1）

EPSを裏込めに用いたコンクリート擁壁と近接する重力式コンクリート擁壁において、地震観測が行われている。本文では、この地震観測システムを紹介するとともに、得られた記録について整理し解析を行った。記録から、EPS部は低振動数で盛土部とほぼ同様の震動性状を示し、アンカーには影響がほとんど作用していないことが明らかになった。また、擁壁－EPS－盛土から成る系をFEMでモデル化し、地震応答解析を行った。これらの観測および解析結果に基づいて、EPS擁壁の滑動および転倒に対する安定性を検討した。その結果、現行の擁壁の安定計算法をEPS擁壁に適用すると、安全率が極端に小さくなるという矛盾が指摘された。

Key Words : Expanded Polystyrol, earthquake observation, RC retaining wall, FEM, dynamic stability

1. はじめに

近年、発泡スチロール(Expanded Polystyrol:以下EPSと呼ぶ)を用いた盛土や擁壁などの土木構造物が施工される機会が、わが国でも多くなってきている1)。これはEPSが土に比べ非常に軽量であるとともに、強度、耐久性、加工性に優れ、自立性があり施工が容易であることなどの理由からである。EPS自体の特性2)3)や、それを用いた構造物の静的挙動4)5)および走行荷重を想定した繰り返し荷重下の挙動6)7)などに関しては、すでにかなりの数の研究が行われている。また、これらの研究成果や施工実績に基づいて、設計・施工マニュアル8)も作られている。

地震の多いわが国では、構造物の設計に際し地震時の安全性照査が必要となっている。とくにEPSを用いた構造物は、トップヘビーになりやすいため充分な検討が必要である。EPSを用いた構造物の地震時挙動に関する研究としては、模型実験9)10)11)や数値解析12)13)14)15)16)17)によるものが幾つか行われている。これらの研究成果を取り入れた耐震設計法18)19)も提案されている。しかし、このEPS工法が導入されてから歴史が短いため、実際の構造物が強震履歴を受けた例は極めて少なく10)。また、実際の構造物における地震観測はこれまで見てきたなかった。

このような背景から、EPS構造物の地震時挙動を把握するため、横須賀市水道局の逸見浄水場に設置されたEPSを裏込め材とする擁壁に、地震計が設置され観測が行われている17)18)19)。本文では、この観測システムを得られた震動記録を紹介するとともに、記録に基づいて擁壁－EPS－盛土から成る系の震動特性を検討する。また、有限要素法による地震応答解析を行って観測結果を比較する。さらに、観測で得られた加速度およびアンカー張力などに基づいて、擁壁の地震時安定性について検討する。

2. EPS盛土擁壁の概要

横須賀市水道局の逸見浄水場構内に、EPSを一部裏込め材に用いたコンクリート擁壁(以下EPS擁壁と呼ぶ)と通常の逆T形コンクリート擁壁(以下通常擁壁と呼ぶ)が、1989年12月に構築された(写真1)1)。これら両擁壁を含む当該区域の構造平面を図1に示す。配水池の北側および西側は、小支流の谷となっている。擁壁裏込め材としてEPSを使用した理由は、この部分の地盤支持力が不足しており、通常の土砂盛土にすると、その重量により地盤沈下や擁壁不安定を生じる恐れがあったからである。

EPS擁壁(断面AA)と通常擁壁(断面CC)は、それらの接続面において固定されていない構造となっている。これら2つを擁壁断面を図2および図3に示
図-1 EPS擁壁と通常擁壁の平面と地震計配置

図-2 EPS擁壁の断面と地震計配置

す。通常擁壁は重力式コンクリート擁壁で、その壁厚やフーチングは、通常の設計法に従っているため、EPS擁壁のものと比べると格段に大きい。

EPS擁壁においては、厚さ40cmのEPSブロックが、それぞれ7段、5段、3段とコンクリート床板に挟まれて下から積み重ねられており、EPSブロック同士
表-1 地震観測地点の地盤調査結果

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Point 1</th>
<th>Point 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vp (m/s)</td>
<td>Vs (m/s)</td>
</tr>
<tr>
<td>-1.0</td>
<td>240</td>
<td>130</td>
</tr>
<tr>
<td>-2.0</td>
<td>330</td>
<td>170</td>
</tr>
<tr>
<td>-3.0</td>
<td>490</td>
<td>250</td>
</tr>
<tr>
<td>-4.0</td>
<td>490</td>
<td>250</td>
</tr>
<tr>
<td>-5.0</td>
<td>860</td>
<td>460</td>
</tr>
<tr>
<td>-6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-7.0</td>
<td>880</td>
<td>480</td>
</tr>
<tr>
<td>-8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-13.0</td>
<td>1480</td>
<td>690</td>
</tr>
<tr>
<td>-17.0</td>
<td>1840</td>
<td>750</td>
</tr>
<tr>
<td>-20.0</td>
<td>1840</td>
<td>870</td>
</tr>
</tbody>
</table>

Note: The ground surface of Point 2 is 8m lower than that of Point 1.

は下に縦結金具で結ばれている。コンクリート床板は、EPSブロックを上から押えるためのものであり、コンクリート壁面には固定されているが、EPSブロックや盛土とは直接には固定されていない。しかし縦結の安定のため、下から1段目のコンクリート床板は、アンカーの役を果たすポリマーグリッドにより盛土と連結されている。ポリマーグリッドは、土構造物の強化を目的として開発された高強度プラスチック網であるテンサーからできており、土砂とよくなじみ現場施工が簡便である特徴をもつ。またEPSブロックは、縦結とも盛土とも固定されておらず、盛土との間には裏込め材として砂が用いられている。

地盤物性値を把握するため、図-1に示す地点1において、標準貫入試験およびEPS検査が実施されており、その結果を表-1に示す。また盛土施工前に、地点2で行われた標準貫入試験によるN値も同表に示す。土質分類は、両地点とも粘性土であり、N値が50以上となる硬い層は土壇である。これにより、EPS縦結の谷側斜面は、深さ6m位までは比較的柔らかく、それ以外は非常に硬いこと、また盛土は比較的柔らかいが、その下の原地盤は非常に硬いことがわ

る。EPS下部の地盤については、土質調査は行われていながり、両地点のN値を比較することにより、地層構成はほぼ同斜面に平行となっているとも思われがちない。なお通常縦結部についても土質調査は行われていない。

3．地震観測の概要

この地震観測の目的は、縦結とEPS盛土および地盤を一体とした系の地震時挙動を解明することである。そこで、1) 当該地点における地震動の特性、2) EPS縦結部の縦結・EPS・盛土の相互の地震時挙動、3) EPSの有無による縦結近傍地盤の地震時挙動の違い、4) ボリマーグリッド張力や縦結面土圧などの縦結系への地震時作用力、5) N値を実測より明らかにすることである。

観測計器は、図-2、3に示すように、EPS縦結部の断面AAと通常縦結部の断面CCに設置されている。AA断面では、地盤、盛土、EPS内の7ヶ所に計15成分の加速度が、フィードバック型検出器を用いて測られている。また、塑性域ゲージを用いてポリマーグリッドの4ヶ所のひずみが、さらに2重ダイアフラム型土圧計を用いて縦結面土圧が観測されている。CC断面では、同型の加速計を用いて、縦結部近傍の盛土内の1ヶ所3成分の加速度が観測されている。これより計24成分の時刻歴波形は、浄水場管理にある収録装置に記録される。トリガーレベルは2.0Galに設定されていたが、小規模地震のデータも活用するために、その後0.7Galに変更され、地中の加速度計AA-1の水平2成分ずつがこれ以上の地震動を捉えると、収録装置が作動する仕組みになっている。

4．地震観測記録

観測を開始して以来記録された地震は、1990年に16個、1991年に20個、1992年に24個、1993年には1月までに3個である。これらの地震の震源位置を図-4に示す。これらの地震記録の中で、最も大きな加速度が得られたのは、1992年2月2日の東京湾地震（地震震度9023、マグニチュードM=5.9、震源深さH=92km、震央距離Δ=14km）で、硬い地盤内にある測点AA-1のNS成分（AA-1N）の最大加速度は49.9Galである。また2番目に大きなものは、観測開始の直後頃に得られた、1990年2月20日の伊豆大島近海地震（地震震度9001、M=6.5、H=6km、Δ=73km）で、AA-1Nの最大加速度は9.3Galである。また以下に、比較的小さな地震記録の例として、1991年11月19日の千葉県
図-4 観測地点と観測された地震の震央分布

図-5 観測された加速度、ポリマー・グリッド強力・覆壁

図-6 測点AA-3に対する測点AA-4.5.6の最大加速度比
(NS成分, 63地震)

中部地震(地震番号9119, M=4.9, H=81km, Δ=50km)を紹介しており、そのAA-1Nの最大加速度は6.0Galである。

観測の例として東京湾地震(9203)について、地中の

観測AA-1, 盛土部の測点AA-4および覆壁近傍の測点

AA-6で観測された覆壁直近の加速度波形、また

2段目のコンクリート床版に結合したポリマー・

グリッドの測点AG-4Dで観測されたひずみ量を単位奥

行き当りの張力に換算した波形、さらに覆壁近傍の

測点AS-1Dで観測された鉛直土圧波形を図-5に示
す。ポリマー・グリッド張力と土圧の波形で特徴的な
のは、主要動が到来した付近の時刻で基線がずれ、
永久ひずみに側圧変動が生じていることである。し
かしこの現象は、ひずみや土圧の観測(20). (21)におい
て、やや大きな地震の際よく見られるもので、ゼロ
バランスの取り方や接触面の微妙な状況により生ず
るものと思われる。

覆壁近傍と盛土における加速度波形の形状は非常
によく似ており、最大加速度の生じる時刻もほぼ一
致し、同じようなモードで振動しているものと思わ
れる。そこでEPS覆壁部に関して、同じ高さにある測
点AA-4(盛土部)、測点AA-5(EPS部)、測点AA-6(覆壁
近傍)の覆壁直近の波形(NS成分)の最大加速度を比較し
てみよう。観測された3地震について、測点AA-3の
NS成分の最大加速度に対する、測点AA-4、AA-5、
AA-6のNS成分の最大加速度比を図-6に示す。この
図から、盛土部はこの区間においてほとんど揺れが
増幅していないことが分かる。また、地震動の大き
さにかかわらず、盛土部に比べてEPS部や覆壁近傍の
方が最大加速度がやや大きくなっており、EPS部と覆
壁近傍の最大加速度はほぼ近似している。最大加速
度比がとくに他に比べ大いなものがあり、この理由
を調べるため、硬い地盤内の測点AA-1におけるフー
リエスペクトルの卓越周期と測点AA-3(覆壁上部近
傍)に対する測点AA-6の最大加速度比を63地震につい
て図-7に示している。増幅率が1.5倍以上を示す記録
は、入力地震動の卓越周期が約5Hzと、後述する盛土
及びEPS覆壁の卓越振動数に比較的近い地震か、また
は8Hz以上と、高振動数が卓越する地震であることが
分かる。
図-7 AA-1Nのフーリエスペクトル卓越周期と最大加速度比の関係

図-8 EPS欄壁と通常欄壁の近傍地盤における最大加速度の増幅傾向の比較（63地震の平均）

次に、EPS欄壁と通常欄壁における地震動の増幅特性を比較してみよう。EPS欄壁については、測点AA-1に対する測点AA-3（欄壁下部近傍）およびAA-6の最大加速度の増幅率を63地震について平均して図-8に示す。同様に通常欄壁については、測点AA-1に対する地表近の測点CA-1の比として同様に示す。二種の欄壁とも、欄壁平行方向よりも欄壁直角方向での増幅率の方が大きくなっている。またいずれの方向にいても、EPS欄壁の方が増幅率が大きくなっていても、これだけなら、一般論として、EPS欄壁の方が通常欄壁よりも振れやすいとは言い切れない。もともと当地点では、EPS欄壁を採用した地盤の方が軽いので、盛土部の測点AA-4においても、通常欄壁の近傍地盤より振動が大きくなっている。

EPS欄壁における欄壁近傍、EPS部および盛土部の振動特性をより詳しく見てみよう。上で紹介した地震番号9203（大）、9001（中）、9119(小)の3地震について、地盤内の測点AA-1に対するEPS欄壁近傍の測点AA-6の、欄壁直交（NS）方向のフーリエ振幅比を図-9に示す。これらのスペクトル比に、通共して5-6Hz付近に明瞭なピークが見られ、地震による違いは大きくなっている。図-10は、最大記録の東日本大震（9203）についての、測点AA-4（盛土部）に対するAA-5（EPS部）およびAA-6（欄壁近傍）のフーリエ振幅比を示している。これより9Hz以下の振動数帯域においては、これらの比はほとんどの欄壁近傍、EPS部、盛土はほぼ同一の振動振幅となっている。一方、9Hz以上の振動数帯域では、欄壁近傍やEPS部は、盛土に対して卓越した振動成分を含んでおり、特に10Hz、12Hz、16Hz付近で振幅比のピークが見られる。

図-10は、図-9と同様のプロットを通常欄壁について行ったものである。3地震に対するスペクトル比においては、決定的なもの、7Hz付近と9Hzから11Hzにかけて共通してピークが見られる。前のピーク
図-11 3地震で観測されたAA-1Eに対するCA-6Eのフーリエ振幅比

図-12 ポリマー・グリッド強力と最大加速度の関係

図-13 上下成分の最大加速度とEPS壁面面の最大土圧

は、振幅比は小さいものの、振動数はEPS壁面のものとほぼ対応しており、これはAA-1地点と地表近くの点との間のせん断振動系の1次固有振動数と考えてよいであろう。通常壁面の方が多い地盤が硬いので、この振動数はEPS壁面のものよりやや大きくになっている。後者のピークはEPS壁面には見られなかったもので、CA-1測点が壁面のコーナー部に近い影響とも考えられ、記録からだけでは判別しにくい。

EPS壁面のコンクリート床面に結合されたポリマー・グリッドで、そのひずみが計測されている。図-12は、観測された最大ひずみを単位吸水量の張力に換算した作用力（測点AG-3DとAG-4Dの平均値）と測点AA-5Nでの応答加速度の関係を示したものである。応答加速度の増加とともに張力は、ほぼ直線的に増加することがわかる。現況の設計では、EPSより上部の地震時荷重は、コンクリート床面を介して、結合する引っ張り補強材（例えばアンカー、ポリマー）グリッドなど）にすべての荷重を受け持たせる構造形式となっている。しかし同図に示されるように、観測された張力は設計で想定したものよりはるかに小さく、上載荷物の慣性力の1/10程度であることがわかる。これは、盛土とEPS壁面が同一のモードで動くし、両者の間に生じる相対変位が小さいためと考えられる。このように、背面の地山とEPS構造物が同一のような振動モードを示す場合は、設計で考えたような力の分配にはなっていない。したがって、引っ張り補強材の役割は、転倒・滑動が生じるような極限状態において、壁面の安定性を保証するものと解釈すべきである。

つぎに、EPS壁面のフーリエ位点で計測している地震時土圧について見てみよう。数から地震について、2カ所の測点AS-1とAS-2での土圧記録を比べてみると、両測点間の距離が短いため、波形もそのフーリエスペクトルもよく似た形をしている。加速度記録と比較すると、各地震とも、上下成分の加速度フーリエスペクトルと土圧フーリエスペクトルの卓越する振動数が、ほぼ一致していることが分かった。これらの土圧計は、水平面上の地震時振れ土圧を測定していることから、水平動による壁面のロッキングの影響を無視するうえで、慣性力の影響の両方を含んでいると考えられるが、ここでは上下動の影響の方が大きいものと思われる。観測された63地震について、壁面の近傍の測点AA-2での上下成分の最大加速度に対する、測点AS-1、AS-2での最大土圧を図-13に示す。両測点の最大土圧は、測点AA-2の上下成分の最大加速度との比例関係にあり、その振幅は、壁面下の近い測点AS-1の方が、EPS部の下の測点AS-2より大きくなっている。
5. 地震応答解析

擁壁・EPS・盛土を含む地盤・構造物の地震応答を有限要素法(FEM)により解析し、実測記録との比較を行った。解析には、振動数領域での複素応答解析プログラムFLUSH\(^{22}\)を用いた。EPS擁壁直角方向の断面を2次元平面ひずみ問題と仮定して図-14に示すモデル化を行った。地盤、盛土、EPS部およびコンクリート擁壁は連続体要素とし、コンクリート床板とポリマー格子ははり要素とした。モデルの底面は層間AA-1の深度において固定境界とし、モデルの左右端にはエネルギー伝達境界を設けた。

EPSの物性値は、田村らのEPS供試体に対する力学試験\(^{18}\)で得られた、ヤング率\(=1.08 \times 10^5 \text{t/m}^2\)，ポアソン比\(=0.075\)，単位体積重量\(=0.02t/m^3\)を用いる。また減衰定数については、EPS単体では1～2%程度と小さいが\(^{23}\)，集合体ではEPSブロック間の摩擦やすれによ
図-17 地震記録によるフーリエ振幅比とFEM解析による伝達関数の比較（通常擁壁部、CA-6E/AA-1E）

図-18 解析による加速度、ポリマーグリッド張力、擁壁底面土圧の時刻歴波形（東京湾地震: 9203）

図-19 観測と解析によるポリマーグリッド張力のフーリエスペクトルの比較（東京湾地震: 9203）

解析結果では、7Hz付近に単一の高いピークが存在するのに対し、実測の方は、図-11でも指摘したように7Hz付近と9-11Hz付近にピークが見られる。7Hz付近のピークはよく対応しているが、その高さはかなり異なっている。また実測の9-11Hz付近のピークは、解析では見られない。実際の通常擁壁部（図-3）の構造を考えると、擁壁直角方向の動きはEPS擁壁部によってかなり拘束されると考えられ、しかも測点CA-1がこの拘束点近くに設置されている。この効果により、擁壁直角方向の変動性状は、かなり異なってくるであろう。通常擁壁部ではこのような3次元性が卓越するため、2次元解析では限界があるものと考えられる。

以上の解析で得られた伝達関数を用いて、測点AA-1の1992年東京湾地震（9203）のNS成分記録を入力とする時刻歴応答解析を行った。図-15に示した加速度、ポリマーグリッド張力、および土圧波形を対比する形で、応答解析結果を図-18に示す。両者の比較すると、いずれの波形もよく近似しており、変動程度も近い。しかし当然ながら、線形解析であるので、実測で得られたようなポリマーグリッド張力や土圧の軸軽量はしきるような現象は見られない。

ポリマーグリッドの測点AG-4Dでの観測波形と応答解析波形のフーリエスペクトルを図-19に比較して示す。また、擁壁フーチング底面の測点AS-1Dにおける同様なフーリエスペクトルの比較は図-20に示す。両図ともに、スペクトルの形状および振幅は、解析結果と観測値でよく一致している。

EPSを取り扱った材料として用いた効果を見るために、解析モデル（図-14）のEPSの部分を土の定数に置き換えたモデルを構築し、このモデルについても、東京湾地震（9203）に対する応答解析を実施した。この2種
図20 観測と解析による傾斜側面底圧フーリスペクトルの比較（東京湾地震：9203）

図21 解析による傾斜側面底圧の比較（東京湾地震：9203）

の解析により求まった。傾斜側面に作用する底圧（EPSまたは地盤要素の水平応力）を図21に比較して示す。底圧分布は、両モデルともに傾斜上部に大きな底圧が作用する状態となっている。しかし、EPSの単位体積重量は土に比べて約約100分の1程度で緩いため、EPSを用いたモデルの傾斜側面に作用する地震時底圧は、被覆土の影響の大きい上部を除くと小さな値である。一方、土を裏込めに用いると、傾斜に作用する側圧は、EPSを用いたものに比べて3倍以上の大きな値となり、EPSを想定して設計した傾斜の断面寸法では不足である。これは、前まで架空の計算ではあるが、EPSを被覆裏込め材として用いると、このように土の裏込めに比べて、傾斜側面に作用する土圧が必要なことから、当該地点のように、地盤支持力に問題のあるような所では、EPSを使用する優位性は大きいといえよう。

図22 重力式擁壁の安定計算モデルと作用力

V_{t} : vertical force (inside of virtual plane)
W_{t} : vertical force (total)
H_{t} : horizontal force (=W_{t} \cdot K_{h})
K_{h} : lateral seismic coefficient
\mu : coefficient of friction
h : vertical distance from point A
x : horizontal distance from point A
(Suffix i)
o : overburden
s : RC slab
e : EPS blocks
r : RC retaining wall
b : backfill soil

6. 擁壁と安定計算と考察

EPS工法の設計マニュアルによれば、壁体をもつEPS構造物の安定照査は、滑動、転倒、支持力についての安定性を確認することとされている。検討方法としては、以下に示すような手法が示されている。そこで2つの手法を本文でのEPS擁壁に適用し、結果の比較検討を行った。

安定計算方法は、第1の手法として、一般的な重力式擁壁の安定計算手法と同様に、図22に示すような擁壁に作用する常時側圧P_{t}と地震時慣性力H_{t}(EPS、コンクリート床版、舗装、路盤などの上載物、擁壁軽体)に対して、擁壁背面端部を仮想背面とした擁壁の自重および背面フーリングの重量Vを抵抗力と考え、滑動、転倒に対する安定計算を行うもので、当手法は、現状のEPS構造物で用いられている一般的
表-2 1992年東京湾地震におけるEPS護壁の安定計算結果

<table>
<thead>
<tr>
<th>Stability analysis method</th>
<th>Sliding</th>
<th>Overturing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>horizontal force (0)</td>
<td>resisting force (0)</td>
</tr>
<tr>
<td>Method 1 (ignoring anchor)</td>
<td>3.54</td>
<td>8.18</td>
</tr>
<tr>
<td>Method 1 (considering anchor)</td>
<td>1.78</td>
<td>8.18</td>
</tr>
<tr>
<td>Method 2 (ignoring anchor)</td>
<td>3.92</td>
<td>12.99</td>
</tr>
</tbody>
</table>

安定計算方法である。

第2の手法では、模型振動実験の結果から安定性的評価方法として提案されているもの12)であり、地震時のEPS構造物は、一体的に構造体として挙動するという知見に基づき、図23に示すようなEPS構造物各部の地震時慣性力から計算される水平作用力Hとそれを含む砂の慣性力Pjに対して、構造物全体の自重Wjが抵抗するものとして、滑動および転倒の安定計算を行うものである。

滑動に対する安全率は、2つの方法ともに次式により求める。

\[F_s = \frac{\mu \times \Sigma V_j \text{ (or } \Sigma W_j \text{)}}{\Sigma H_j + \Sigma P_j} \] \((1) \)

また転倒に対する安全率は、次式による。

\[F_s = \frac{\Sigma M_r}{\Sigma M_o} = \frac{\Sigma V_j x \text{ (or } \Sigma W_j x)}{\Sigma H_j h + \Sigma P h} \] \((2) \)

ここに、\(M_r \)は、A点回りの抵抗モーメント、\(M_o \)はA点回りの転倒モーメントである。

表-2は、1992年東京湾地震における加速度記録の最大値を重力加速度で除して震度に換算し、上述した2つの手法によりEPS護壁の安定検討を行った結果を示したものである。計算に際して、ポリマークリッドによるアンカー効果は、観測結果では作用する張力が小さいことから、安定計算上抵抗力として考慮していない。ただし、第1の手法については、コンクリート床版・舗装面の地震時慣性力が、アンカーにより受け持たれるものとして計算した結果についても示す。作用震度は、EPS護壁天端で\(K_s=0.133 \)，覆壁下端で\(K_s=0.092 \)であった。

表より、アンカーを考慮しない第1の手法では、転倒に対する安全率は、1.0を大きく下回る結果となり、実際の現象とは異なる。これはこの手法が、抵抗重量として護壁の仮想背面より内側しか考慮していないため、地震時慣性力をアンカーによって受け持たせる以外に安定を保つことができないと示している。しかし、観測結果によると、アンカーに生ずる張力がほとんどなくても、EPS護壁は安定を保っている。一方、第2の手法は、滑動、転倒ともに安全率が3.0以上を確保されており、実際の現象に近い結果を示しているものと考えられる。現時点の評価としては、第1の手法による、過度に安全側の設計となり、耐震補強工として大規模なアンカー工が必要になる。一方、第2の手法は、実際の現象に比較的近い結果を示し、耐震補強工としてのアンカー工の規模は小さくなり経済的な設計となる。

この例が示すように、通常の重力式護壁の計算法をEPS護壁に準用すると、非常に不経済な設計になりがちである。EPS構造物の耐震設計は、またもやっとばかりであり、今後、さらに幅広範な解析や実験、観測を行って、合理的な計算法を確立する必要性が強く指摘される。なお本論では、比較的小さな震動レベルでの観測結果に基づいてEPS護壁の安定性を議論したが、EPS構造物が破壊に至るようなレベルでの震動実験およびその数値解析については、他23)で論じている。

7. まとめ

EPSを盛土裏込め材として用いたコンクリート護壁、およびこれに近接する通常の重力式コンクリート護壁において、地震時挙動を把握するため地震観測が行われている。本文では、この地震観測システムを紹介するとともに、1990年以降の観測で得られた記録について整理し解釈を行った。

その結果、いずれの護壁においても、護壁直交方向の断面の方角が護壁平行方向より最大加速度が大き
いことが明らかになった。また地盤がやや軟質なこ
ともあって、EPS擁壁近傍地盤の方が、通常擁壁近傍
地盤より地震動の増幅は大きかった。EPS擁壁におい
ては、盛土、EPS部、擁壁近傍の同じ高さにある3点
での測動は、9Hzまではほぼ同じフーリー振幅を有
し、それ以上の振動数では、EPS部と擁壁近傍の方が
フーリー振幅が大きかった。設計上アンカーの役割
を担っている、ポリマーグリッドに作用する張力を
観測しなから求めたところ、それより上の部分に
作用する慣性力の1/10以下にしか発生していないこと
が分かった。これは、盛土・EPS・擁壁がほぼ一体と
なって震動しているためと考えられる。

また、これらの擁壁と盛土部、原地盤を含む系を2
次元有限要素モデル化し、振動数領域での応答
解析を行った。解析の結果から、EPS擁壁直脚方向の
断面の応答特性は、モデルを適切に設定することに
より、実測値をよく再現することが示された。しか
し、通常擁壁直脚方向の断面は、観測点が3次元効果
が大きなコンパートンであることから、解析結果と
実測値はかなり異なっていた。EPS擁壁のモデルにお
いては、ポリマーグリッドのひずみや擁壁底面土圧
についても、解析結果は実測値よりも近似していた。
またEPS部分を土で置換したモデルを用いて解析
を行うと、側面土圧が5倍以上に大きくなることが
分かり、EPSを使用する有効性が示された。

これらの観測および解析結果に基づいて、EPS擁壁
の滑動および転倒に対する安定性を検討した。その
結果、現行の擁壁の安定計算法をそのままEPS擁壁に
適用すると、安全性は極端に小さくなるという矛盾
があることが明らかになった。このような地震観測
結果とその他の実験および解析結果をもとに、EPS
擁壁の耐震設計法を確立することが今後の重要な課題といえよう。

最後に、貴重な地震観測記録を提供していただいた
横須賀市水道局の各位に謝意を表する。

参考文献
1) 発泡スチロール土工法開発機構編：EPS工法，理工図
書，1993。
2) 岡村順行、青山寛明、竹内純司、武智修：軽量盛土工と
しての発泡スチロールの利用技術に関する実験と考察，
土と基礎，Vol. 37, No. 2, 1989。
3) 梶田英治、山内豊彦：軽量盛土工としての発泡スチロール
の力学的特性，土と基礎，Vol. 37, No. 2, 1989。
4) 樋沢清司、及川洋、塩田利治、平野功：超軟弱地盤上での
の裏込め材としてのEPSブロックの挙動，土と基礎，Vol.
37, No. 2, 1989。
5) 三木五三郎、佐川嘉男、高木賢、塚本英樹：発泡スチ
ロールを用いた実物大道路盛土の挙動，土と基礎，Vol.
37, No. 2, 1989。
SEISMIC BEHAVIOR OF AN RC RETAINING WALL WITH EPS BACKFILL BASED ON EARTHQUAKE OBSERVATION AND RESPONSE ANALYSIS

Fumio YAMAZAKI, Naoto OHBO, Shuichi KURODA and Tsuneo KATAYAMA

Earthquake observation is conducted at the site of a reinforced-concrete retaining wall with expanded polystyrol (EPS) backfill. The EPS was adopted since the bearing capacity of the site is not large enough for an ordinary soil embankment. The records show that the EPS backfill vibrates almost in the same mode with the ground and that the tensile force of anchor is negligibly small. A finite element analysis is also conducted and the results of the analysis agree well with the observation. Stability analysis of the retaining wall reveals that if the current stability analysis method for the ordinary gravity-type retaining walls is applied to the EPS retaining walls, the safety factors for sliding and overturning become unreasonably small.