浸透注入改良砂の繰返し弾塑性構成式とその液状化解析への適用

京都大学 フェロー会員 岡 二三生 京都大学 正会員 小高 猛司 東亜建設工業㈱ 正会員 大野 康年 日本道路公団 正会員 田久 勉 京都大学 学生会員 〇山崎 順弘

<u>1. はじめに</u>

本報では,著者らが行って来た室内試験結果¹⁾に基づき,特殊シリカを浸透注入した改良砂の構成式を提案し,それを動的有効応力解析に適用した結果を示す。

2. 改良砂へ拡張された砂の繰返し弾塑性構成式

改良砂の粘着力を考慮し、岡らによる砂の弾塑性構 成式²⁾を拡張した。

$$f_b = \overline{\eta}_{(0)}^* + M_m^* \ln\{(\sigma_m' + b)/(\sigma_{mb}' + b)\} = 0$$
 (1)

$$g = \overline{\eta}_{\chi}^* + \tilde{M}^* \ln\{(\sigma'_m + b) / \sigma'_{ma}\} = 0$$
⁽²⁾

$$f = \overline{\eta}_{\chi}^* - k = 0 \tag{3}$$

ここに、 $\overline{\eta}_{(0)}^{*} = \{(\eta_{ij}^{*} - \eta_{ij(0)}^{*})(\eta_{ij}^{*} - \eta_{ij(0)}^{*})\}^{1/2}$ である。 η_{ij}^{*} は応力 比テンソル $\eta_{ij}^{*} = s_{ij}/(\sigma'_m + b)$ で、 $\eta_{ij(0)}^{*}$ は圧密終了時の η_{ij}^{*} 、 σ_{mb} 'は塑性体積ひずみに応じて変化し、初期値は圧密 終了時の平均有効応力 σ_{m0} 'に等しい。 s_{ij} は偏差応力テ ンソル、 σ_m 'は平均有効応力で、 M_m^{*} は変相応力比であ る。また、 $\overline{\eta}_{z}^{*} = \{(\eta_{ij}^{*} - \chi_{ij}^{*})(\eta_{ij}^{*} - \chi_{ij}^{*})\}^{1/2}$ で、 χ_{ij}^{*} は非線形硬 化パラメータである。 σ_{ma} 'は材料パラメータ、kは硬化 パラメータである。bは定数であり、図1に示すよう に、過圧密境界面と平均有効応力軸の引張り側の交点 の値である。また、 \tilde{M}^{*} は塑性ひずみの増分の方向を 規定するが、通常の未改良砂では変相応力比に達する と構造崩壊が起こると仮定し以後は M_m^{*} としている。 しかし、改良砂では未改良砂ほど急激な構造崩壊は起 こらないものと仮定し、次式のように変相後にロジス ティック関数を用いて徐々に M_m^{*} へと変化させる。

 $\widetilde{M}^{*} = \widetilde{M}^{*}_{(n)} = -\eta^{*} / \ln((\sigma'_{m} + b) / (\sigma'_{mc} + b)) : (\eta^{*} < M^{*}_{m}), \quad (4)$

= $M_{m}^{*}/\{1+(M_{m}^{*}/\tilde{M}_{(n)}^{*}-1)\exp(-\alpha_{1}\cdot\gamma_{ap}^{p*})\}:(\eta^{*} \ge M_{m}^{*})$ (5) ここで、 σ_{mc} 'は過圧密境界面と平均有効応力軸との交 点の値である。 γ_{ap}^{p*} は変相後からの塑性せん断ひずみの 累積値であり, $\tilde{M}_{(n)}^{*}$ は式(4)で求められるものとし, α_{1} は進行速度を調節するパラメータである。

また非線形硬化パラメータχ* は次式に従う。

$$d\chi_{ii}^{*} = B^{*}(M_{f}^{*}de_{ii}^{p} - \chi_{ii}^{*}d\gamma^{p})$$
(6)

ここで、 M_f^* は破壊応力比、 $d\gamma^p$ は塑性偏差ひずみの第 2 不偏量である。式(6)における硬化パラメータ B^* を、

図1:過圧密境界面,塑性ポテンシャル面 図2:b値の減少の概念図

応力反転時からの塑性せん断ひずみ $\gamma_{(m)}^{p^*}$ と B^* の低減を 調整するパラメータ C_f を用いて次式で低減する。

$$^{*} = B_{1}^{*} + (B_{\max}^{*} - B_{1}^{*}) \exp(-C_{f} \gamma_{(n)}^{p^{*}})$$
(7)

$$B_{\max}^{*} = B_{0}^{*} / (1 + \gamma_{(n)}^{p^{*}} / \gamma_{r}^{p^{*}})$$
(8)

ここで, B_1^* は B^* の下限値である。 B_{max}^* は B^* の最大値 で,変相後に過去の $\gamma_{(n)}^{p^*}$ の最大値 $\gamma_{max}^{p^*}$ を用いて式(8)を用 いて低減する。 $\gamma_{r}^{p^*}$ は塑性規準ひずみである。

また,式(9),(10)に示す一般化された流動則を用い て塑性ひずみ増分を定める。

$$d\varepsilon_{ij}^{p} = H_{ijkl}(\partial g / \partial \sigma'_{kl})$$
⁽⁹⁾

$$H_{ijkl} = \alpha \delta_{ij} \delta_{kl} + \beta (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$$
(10)

ここで, H_{ijkl} は4階の等方テンソルで,スカラー変数 α , β を用いて表現される。ストレス-ダイレイタンシー関係は以下のようになる。

 $dv^{p}/d\gamma^{p} = D^{*}\{\tilde{M}^{*} - \eta_{st}^{*}(\eta_{st}^{*} - \chi_{st}^{*})/\overline{\eta_{s}}^{*}\}$ (11) D^{*} はダイレイタンシー係数 $D^{*} = (3\alpha/2\beta)+1$ である。正 規圧密領域においては、 D^{*} は一定値であるが、過圧密 領域においては \tilde{M}^{*} を用いて次式で表される。

$$D^{*} = D_{0}^{*} (\widetilde{M}^{*} / M_{m}^{*})^{n}$$
(12)

改良砂の挙動を表現するために、繰返し回数の増加 に伴い変相線が下がってくるものとして、式(2)におけ る bの値を アップを用いて次式で低減する。

$$b = b_0 \exp(-\alpha_2 \cdot \gamma_{ap}^{p^*}) \tag{13}$$

ここで、*b*₀は*b*の初期値である。しかし、破壊線の位置は繰返し回数の増加によって変化せず、図2に示すように正のダイレイタンシーが発生する領域が拡がるものとし、ある応力状態に対する仮の破壊応力比*M*^{**}

キーワード シリカ,浸透注入,構成式,改良砂,液状化解析 連絡先 〒606-8501 京都市左京区吉田本町 京都大学大学院工学研究科社会基盤工学専攻 TEL075-753-5085

を次式で定める。

$$M_{f}^{**} = M_{f}^{*} \cdot (\sigma_{m}^{'} + b_{0}) / (\sigma_{m}^{'} + b)$$
(14)

3. 動的有効応力解析への適用

前節で提案した改良砂の構成式を,液状化解析コード LIQCA-2D01³⁾ へ導入し動的有効応力解析を行った。 排水は上面のみからとし,平面ひずみを仮定して解析 を行った。解析は図3に示す1次元地盤モデルとし, F, Asを改良すべき液状化層とする。Ac, Ds, Dc はそ れぞれ沖積粘土,洪積砂層,洪積粘土である。1987年 に宮城県沖の大船渡で観測された地震波を用い,東京

湾での大地震を想定し、振幅を2倍したものを入力地 震波とした。 表1に既往の室内試験から得られた未改良砂と改良 砂のパラメータを、表2に地盤のパラメータを示す。

F, A_sに表1のパラメータを用い,改良前後の地盤の

挙動をシミュレートする事とした。図 5, 図 6 に過剰 間隙水圧比,応答加速度の時刻歴を未改良砂・改良砂 各々について示す。未改良地盤の液状化層で発生して いる液状化が改良地盤では見られず,特殊シリカ液浸 透注入による地盤の改良効果が確認できる。

<u>4. まとめ</u>

特殊シリカ液を浸透注入した改良砂地盤に適用する ため、岡らによる砂の繰返し弾塑性構成式²⁾を拡張し て、動的有効応力解析を行った結果、改良砂の液状化 防止効果が確認できた。今後は多次元解析で改良地盤 の地震時変形性能を照査する予定である。

参考文献

1) 岡研究室 HP: http://nakisuna2.kuciv.kyoto-u.ac.jp/okalabo1/

2) Oka et al., *Geotechnique*, 49(5), 661-680, 1999.

 液状化解析手法 LIQCA 開発グループ: LIQCA2D01 (2001 年 公開版) 資料, 2002.

図3:1次元解析モデル

	Loose sand	Alluvial clay	Diluvial	Diluvial clay
	F and As	A_c	sand	D_c
			D_s	
е	Referring to - Table 1 -	1.60	1.10	Modeled as elastic material $G_0 = 133000$ (kPa) E = 355000 (kPa)
λ		0.260	0.025	
К		0.0026	0.0025	
G_0 / σ_m'		312	836	
M_{f}^{*}		1.09	1.23	
M_m^*		1.09	1.02	
B_0^*		3000	3500	
B_1^*		300	100	
C_{f}		2000	0	
OČR [*]		1.0	1.3	
D_0^*	(Permeability)	0.0	1.0	v=0.333
n	Improved	-	5.0	_
$\gamma_r^{p^*}$	5.3×10 ⁻⁵	8	0.010	-
$\gamma_r^{e^*}$	unimproved	∞	0.100	
k (m/s)	5.3×10 ⁻⁶	4.9×10^{-9}	8.7×10^{-6}	4.9×10^{-9}

凶0.心谷加速