都市ガス岩盤貯蔵の耐震性検討

| 東京ガス株式会社 | 正会員 堤  | 洋一、日本ガス協会 正会員 澤 一男 |
|----------|--------|--------------------|
| 大阪ガス株式会社 | 正会員 香川 | 尚史                 |
| 清水建設株式会社 | 正会員 延藤 | 遵、フェロー会員 石塚 与志雄    |
| 大成建設株式会社 | フェロー会員 | 亀村 勝美、正会員 桑田 尚史    |

## 1. はじめに

(社)日本ガス協会では、経済産業省より委託を受け、平成12年度より都市ガスの岩盤貯蔵技術調査事業 を行っている。岩盤貯槽(図1,2)は堅固な岩盤中に 構築することを想定しており、地上に設置されるガス 貯蔵施設に比べ、耐震性に優れていることが予想され る。本報告の目的は、CH級岩盤を対象に、運用中にレ ベル2地震動が発生した場合の貯蔵空洞及び周辺岩盤 に与える地震動の影響を検討し、今後の設計への知見

を得ることである。具体的な検討方法としては、まず動的線形解析に より同貯蔵施設の基本的な応答特性を把握する。次に震度法、応答震 度法等の数種の静的線形解析を行い、動的線形解析結果と比較するこ とにより、適切な静的解析手法を選定する。最後に、選定した静的解 析手法を用いた非線形解析を実施し、貯蔵空洞に与えるレベル2地震 動の影響を評価する。





図2 貯槽構造概念図

2. 動的線形 FEM 解析

想定した岩盤物性を表 1 にまとめて示す。入力地震 動としては、神戸大学波 (1995年兵庫県南部地震) を選定し、レベル2地震動 を対象とした目標応答加速 度に合致するように調整し た。同波を、工学的基盤面 (GL-20m)に入力し、 「SHAKE」により解析上 の基盤面(GL-214.9m)に おける入力波を算定し、解 析モデルの下端(図3)に 入力した。解析結果のうち、 水平方向の最大応答加速度 分布図を図4に示す。同図 より貯蔵空洞近傍において



キーワード: 高圧気体貯蔵、震度法、FEM 動的解析、FEM 非線形解析 連絡先: 〒105-8527 東京都港区海岸 1-5-20 TEL.03-5400-7583 Fax.03-3578-8365 も地震動の有意な増幅がないことがわかる。

3. 静的解析手法の選定

震度法(岩盤内 0.3G) 及び3種類の応答震度法 の計4種類の静的3次元 線形解析(図5)を実施 し、動的線形解析結果と 比較した。想定状態は、 運用中の最大内圧 (P=12MPa)作用時であ る。また、静的解析手法 を選定する尺度としては、 鋼製気密材(図 2)の設 計条件となる裏込めコン 表2 裏込めコンクリート表面での最大・最小主ひずみ

| 設計手法及び設計震度 |                               | 裏込めコンクリート |     |
|------------|-------------------------------|-----------|-----|
|            |                               | ひずみ(µ)    |     |
|            |                               | 最大値       | 最小値 |
|            | 動的解析                          | 583       | 99  |
| 静的解析       | 震度法:岩盤内一様 0.3G                | 627 45    |     |
|            | (高圧ガス設備等耐震設計指針より)             | 037       | 40  |
|            | 応答震度法:SHAKE における最大応答加速度包絡分布   | 655       | 28  |
|            | 応答震度法 : SHAKE における空洞上端での加速度が最 | 601       | 61  |
|            | 大となる時刻での応答加速度分布               | 021       |     |
|            | 応答震度法:1次元解析結果における空洞上下端位置      | 629       | 54  |
|            | の相対変位が最大となる時刻での応答加速度分布        | 答加速度分布    |     |

クリート表面ひずみを選定した。裏込めコンクリート表面ひずみ について動的線形解析結果と静的線形解析結果を比較して表2に 示す。同表より、いずれの静的解析手法においても動的解析結果 の結果に比べて、最大値はより大きく、最小値はより小さくなっ ており、地震の影響を安全側に評価していることがわかる。さら に、各静的解析結果間の差は小さいことがわかる。上記より、設 計の簡便さを考慮して、震度法(岩盤内一様に水平震度 0.3)を 採用することとした。

4. 静的非線形 FEM 解析

最大内圧(P=12MPa)作用時において水平震度 0.3、鉛直震度 0.15 を作用させた場合の、裏込めコンクリート表面ひずみ分布を 図 6 に示す。同図より、地震の影響により半球部に

おいて子午線方向のひずみが増大し ていることがわかる。しかしながら、 その絶対値は 0.21%であり、常時に おける最大値 0.19%(子午線直角方 向)からの増分は 10%程度と小さい。 5. まとめ

動的線形解析を実施した結果、レ ベル2地震に対して岩盤貯蔵空洞周

辺での水平方向の応答加速度について有意な増幅は 見られなかった。上記と、動的線形解析結果と静的 線形解析結果の比較より、震度法により適度に安全 な設計が可能であることが示された。次に岩盤の非 線形を考慮した静的 FEM 解析を実施した結果、裏 込めコンクリートひずみの増大は見られたが、その



図5 静的解析用解析モデル



最大値の増分は常時に比べ10%程度であり、本貯蔵施設の地震に対する安全性の高さが確認された。