2つの室内試験における液状化後の変形特性の比較

東京電機大学大学院学生会員桜井裕一東京電機大学正会員安田進日本道路公団試験研究所正会員稲垣太浩東京電機大学大学院学生会員出野智之

1. 目的

著者達は、繰返しねじりせん断試験装置を用いて、液状化後の変形係数についていくつかの実験を行ってきている¹⁾。ところが一般の液状化試験では、装置や操作が比較的容易であるために、繰返し三軸試験装置が最も広く用いられている。そこで本研究では、繰返し三軸試験装置を用いた場合に、液状化後の変形係数が繰返しねじりせん断試験結果にどれだけ近い値で求められるかについて、両方の試験装置を用いて比較検討した。

2. 実験方法および手順

試料には,徳島県の2地点において,GL-2.50m~GL-3.30mまでの粘土シルト層,GL-9.0m~GL-10.00mまでのシルト混じり砂層,GL-9.0m~GL-11.00mまでの砂質シルト層(いずれも沖積層)から採取した不攪乱試料と,盛土材,中国の黄土および豊浦砂(ただしDr=50%における再構成試料)を用いた。

不撹乱試料では供試体は,トリミング法によって整形した。また,盛土材試料においては, D_c =90%となるように突固めで供試体を作成した。繰返しねじりせん断試験においては外径 $10 \, \mathrm{cm}$,内径 $6 \, \mathrm{cm}$,高さ $10 \, \mathrm{cm}$ の中空円筒形に,繰返し三軸試験では,直径 $5 \, \mathrm{cm}$,高さ $10 \, \mathrm{cm}$ の中実円筒形の供試体を用いた。そして,間隙水圧係数 B 値を 0.95 以上になるように飽和させた後,所定の有効拘束圧(不攪乱試料では原位置の有効上載圧,再構成試料では $100 \, \mathrm{Kpa}$)で等方圧密した。その後,非排水状態で繰返しせん断力を加えた。繰返しねじりせん断

試験は一定の応力比で両ひずみが DA=7.5%出るまで,繰返し三軸試験では,軸ひずみ両振幅がDA=5%程度出るまで載荷を行った。そして,繰返し載荷終了後,非排水状態を保ったまま静的単調載荷を行った。

3. 実験結果

(1) 液状化強度比における比較

繰返し回数~応力比関係から繰返し回数が 20 回での応力比を求め,その応力比を液状化強度 比 R_L とした。全試料に対し,両試験の結果を比 較すると図-1 のようになった。この図をみると 多少のばらつきがあるが比較的一致している。

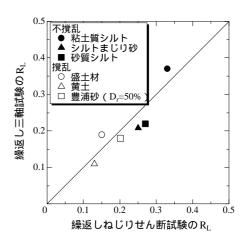
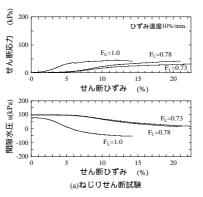



図-1 両試験での液状化強度比 R_Lの比較

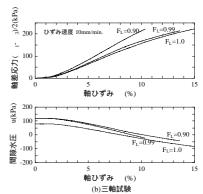


図-2 液状化後の応力,間隙水圧~ひずみの関係

(2) 液状化後の応力~ひずみ関係における比較

図-2 に砂質シルトに対する両試験での静的単調載荷時の応力,間隙水圧~ひずみの関係を例に示す。この図にみられるように両試験とも液状化後の静的単調載荷直後は,非常に小さな応力でひずみがかなり大きく発生しており,ひずみが増加すると伴に強度が回復する傾向を示した。また,間隙水圧は強度の回復に伴って減少していくことがわかった。

キーワード:液状化,繰返しねじりせん断試験,繰返し三軸試験

連絡先: 〒350-0394 埼玉県比企郡鳩山町石坂 TEL 0492-96-2911(2748) FAX 0492-96-6501

(3) 微小ひずみにおける精度の比較

両試験における液状化後の応力~ひずみ関係より抵抗変曲点までの割線勾配 G_1 および,微小抵抗領域 $_L$ を求めた。繰返し三軸試験ではその割線勾配からヤング率 E_1 を求め G_1 を求めた。一方,常時の G_N , $G_{0,1}$ は不攪乱試料では N 値より推定し,再構成試料では静的単調載荷のみでおこなった応力~ひずみ関係のひずみが 10^3 時の割線勾配から求めた。このようにして求めた F_L と $G_1/G_{0,1}$ と F_L の関係を図-3 のようにプロットした。そして, F_L =0.9 の時の G_1/G_N , $G_{0,1}$ を求め,両試験の結果を比較すると図 4 のようになった。この図をみると,繰返しねじりせん断試験の方が G_1/G_N , $G_{0,1}$ が大きく出ている。しかし,繰返し三軸試験が繰返しねじりせん断試験に近い値を示している点もある。

このことから,試料の物性によって両試験での低下率が違うのではないかと考え,横軸に繰返し三軸試験より求めた液状化強度比 R_L ,縦軸に F_L =0.9 の時の両試験でのせん断剛性低下率の比をとりプロットした。その図を図-5 に示す。この図より R_L が小さい時は,繰返し三軸試験によるせん断剛性低下率は繰返しねじりせん断試験のそれより小さい値を示しているが, R_L が大きくなるにつれて,繰返しねじりせん断試験の値に近づく傾向がみられた。また,縦軸に両試験機の微小抵抗領域 L の比をとると図-6 のようになった。この図においても, R_L が小さい試料は,繰返し三軸試験による微小抵抗領域 L は繰返しねじりせん断試験のそれより大きい値を示しているが, R_L が大きくなるにつれて,繰返しねじりせん断試験の値に近づく傾向がみられた。

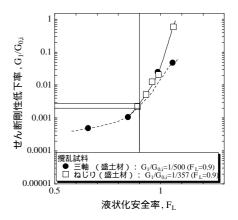


図-3 G₁/G_{0.1}とF_Lの関係

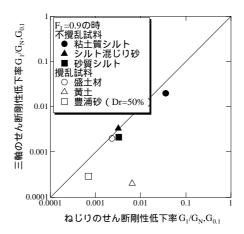


図-4 両試験での G₁/G_N.G₀₁ の関係

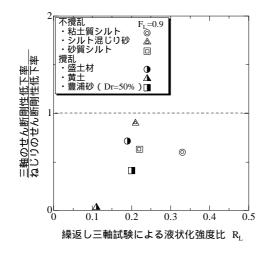


図-5 両試験の R_Lと G₁/G_N,G_{0.1} の比の関係

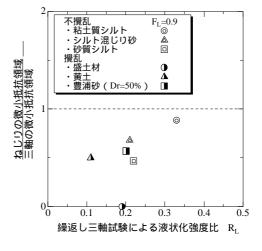


図-6 両試験の R₁ と両試験の 1 の比の関係

4. まとめ

いくつかの試料を用いて、繰返し三軸試験と繰返しねじりせん断試験で求めた、液状化によるせん断剛性低下率を比較した。その結果、液状化強度比 R_L が小さい場合では、両試験の値の差が大きくなるが、 R_L が大きくなるにつれて、繰返しねじりせん断試験の値に近づいて行くことがわかった。ただし、まだデータは少なく今後は、相対密度の違う攪乱試料や細粒分含有率の違う不攪乱試料を用いて試験を数多く行っていきたい。

【参考文献】

1) Yasuda, S. Terauuchi, T. Morimoto, H, Erken, A. and Yoshida, N.: Post liquefaction behavior of several sands, Proc. Of the 11th European Conference on Earthquake Engineering, 1998