ESTIMATION OF HORIZONTAL VIBRATION FREQUENCY OF LIQUEFIED SAND DEPOSIT

Institute of Industrial Science, The University of Tokyo Member Mladen V. KOSTADINOV
The University of Tokyo Member Ikuo TOWHATA
Institute of Industrial Science, The University of Tokyo Member Ken SUDO

Introduction
Seismic records from liquefied-soil sites reveal that the frequency of the horizontal ground acceleration suddenly drops down below 1.0 Hz after initiation of the phenomenon, while no change is observed in the vertical acceleration. This alteration is the main feature of the ground motion at liquefied sites and is utilized in several methods for liquefaction judgment from seismic records (e.g. Kostadinov and Yamazaki, 2001). Present paper discusses an attempt to estimate the vibration frequency of a liquefied sand deposit using one-dimensional ground response analysis.

Vibration frequency of a sand deposit at onset of liquefaction
Horizontal seismic motion of a sand deposit is approximated up to the initiation of liquefaction through the linear wave-propagation approach, together with two key assumptions: (1) at the onset of liquefaction the sand deposit is in a state of resonance with the seismic excitation and vibrates in its fundamental (first) mode; and (2) liquefaction occurs when the maximum shear strain in the soil exceeds a critical value, γ_{liq}. This approach was effectively applied by Towhata et al. (1996) for estimation of the minimum spectrum intensity, associated with the soil liquefaction.

Consider a single uniform layer of homogenous, isotropic, linear elastic cohesionless soil, subjected to a one-dimensional upward harmonic shear wave (Fig. 1). The lateral motion of the soil particles $u(z,t)$ can be expressed as

$$u(z,t) = D_{\text{max}} \cos \left(\frac{\omega z}{v_s} \right) \exp(\omega t)$$ \hspace{1cm} (1)

where D_{max} is the maximum displacement amplitude of the soil particles, ω is the circular frequency of the excitation at the layer base, v_s is the shear-wave velocity and z stands for the depth.

Using the first assumption, the frequency of vibration of the soil layer at resonance f_{liq} is expressed through the natural frequency of the layer fundamental mode and further transformed as

$$f_{\text{liq}} = \frac{v_s}{4H} \sqrt{\frac{A_{\text{max}}}{8\pi\gamma_{\text{liq}} H}}$$ \hspace{1cm} (2)

where H is the depth of the layer and A_{max} is the maximum surface acceleration. Considering $A_{\text{max}} = 1.0 \text{ m/s}^2$, $H = 2 ~ 15 \text{ m}$, $\gamma_{\text{liq}} = 0.01875$ in Eq. (2), the vibration frequency of the sand layer f_{liq} is estimated to be 0.4 ~ 1.0 Hz, where the lower value corresponds to the larger depth.

Above result can be enhanced by considering an unliquefiable dry soil layer above the liquefiable one. If the surface layer is assumed to be much stiffer than the underlying layer, it can appear as a rigid mass above the latter. Let denote with $r_m = \rho_s h/\rho \rho_s H^s$ the ratio of the surface-layer mass to the liquefiable-layer mass, where h and ρ_s are the depth and the mass density of the surface layer, while H^s and ρ_s are the depth and mass density of the subsurface liquefiable layer. Combining the new resonance condition with the expression for r_m and solving approximately the resultant transcendental equation, the vibration frequency of the sand deposit, when a surface layer is considered, f_{liq}^*, is

$$f_{\text{liq}}^* = k_f f_{\text{liq}}$$ \hspace{1cm} (3)

where $k_f = k_f(r_m)$ is a frequency reduction coefficient.

Variation of k_f with respect to the mass layer ratio is shown in Fig. 2. In the case r_m is equal to unity, vibrating frequency of the sand deposit will drop as low as 0.55(0.4 ~ 1.0) = 0.2 ~ 0.7 Hz. In practice, the layer mass ratio is less than unity.

Key Words: liquefaction, frequency, strong motion records
Contact Address: 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Tel. 03-5452-6098 Ext. 58064, Fax 03-5452-6386
Comparison with earthquake case histories

Equation (2) is examined against ground motion records, obtained at sites, where liquefaction has occurred. These are Kawagishi-cho, 1964 Niigata earthquake, and Port Island, 1995 Hyogo-ken Nanbu earthquake, both dramatic examples of liquefaction-induced damages.

Figure 3(a) depicts the EW-component of the Kawagishi-cho record. The peak ground acceleration (PGA) occurs just before the elongation of the shaking period that supports the assumption for resonance. Acceleration time history is processed with the short-time Fourier transform (STFT) and then squared. From the resultant spectrogram is computed the mean instantaneous frequency, MIF, which shows the evolution of the ground shaking period with the time. Clearly is seen the frequency drop that has started around the seventh second. The value of MIF that corresponds to occurrence of PGA is 1.2 Hz.

The depth of the liquefiable layer H is determined from the soil profile of the site as a sum of consequent sand sub-layers, starting from the surface. By substituting it together with A_{max} in Eq. (2), f_{liq} is estimated as 0.4 Hz. The spike-like acceleration peak and a shallower liquefaction depth could explain this difference.

Figure 3(b) depicts the NS-component of the Port Island record. Here, PGA takes place when the long-period motion has already started and therefore MIF at the peak acceleration is low - 0.8 Hz. The corresponding value of f_{liq} is 0.6 Hz.

Results for all components of the discussed records are given in Table 1.

Discussion

Estimated vibration frequency of a liquefied sand deposit using Eq. (2) provides a reasonable approximation of the observed one from the seismic records. In general, Eq. (2) gives a lower value, since the real depth of the liquefied deposit is not clear. Assumption for the resonance is not always proved and therefore the peak ground acceleration is often caused by a spike-like motion.

Despite this, the threshold of the horizontal shaking frequency that implies soil liquefaction can be assessed satisfactory using Eq. (2), the minimum PGA associated with the phenomenon and reasonable values of the liquefied-soil depth. Obtained ranges for f_{liq} are in agreement with the limit values for the frequency ground motion parameters, employed in the liquefaction detection method.

References:

<table>
<thead>
<tr>
<th>Station</th>
<th>Component</th>
<th>A_{max} (cm/s2)</th>
<th>f_{liq} (Hz)</th>
<th>$\text{MIF}(t_{\text{PGA}})$ (Hz)</th>
<th>H (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kawagishi-cho</td>
<td>EW</td>
<td>170.9</td>
<td>0.4</td>
<td>1.2</td>
<td>20.00</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>128.9</td>
<td>0.4</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Port Island</td>
<td>EW</td>
<td>284.3</td>
<td>0.6</td>
<td>1.3</td>
<td>19.00</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>341.2</td>
<td>0.6</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

t_{PGA} – time instant at which peak ground acceleration takes place.