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1. INTRODUCTION
Seismic performance of pile foundations has been a subject of considerable attention in recent years, particularly after the

severe damage experience of pile-supported bridges by the Hyogo-ken Nanbu Earthquake. This study investigates the effects of RC
pile nonlinear behavior in view of the bending moment-axial force relationship on those responses.
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assumed along the boundary soil FEM elements to attenuate the reflected wave generation there. The inelastic behavior of pile is
represented by one component model® with the consideration of sway motion at both ends of each element. The RC hysteresis
model (Fig. 2) is treated by the Q-hyst model®, which is modified so as to take into account of the relationship between bending
moment and axial force. At each step, the yielding moment is defined from bending moment-axial force interaction diagram. The
nonlinear soil behavior is characterized by the Hardin-Drnevich hyperbolic model® and the Mohr-Coulomb criterion. Two cases of
analyses are performed; one considers RC pile linear behavior and the other is the RC pile nonlinear behavior, and both of which
assume the soil nonlinear and footing linear behavior. The 1995 Hyogo-ken Nanbu Earthquake motion is used for the input to the
structure (Fig. 3). According to the pile response in Fig. 4, the differences between the linear and nonlinear cases are concentrated
near the footing and the transition zone of soil stiffness. The pile internal forces of nonlinear RC case become smaller than the
linear RC case, while some increase of relative displacement due to the nonlinear RC behavior is observed. The nonlinear RC
behavior is observed at the zone from the pile head to G.L. -4 m, and around G.L. -7 m (interface between upper and middle soil
layers). The bending moment-rotation relationships for these zones are shown in Fig. 5 and Fig. 6. The strong nonlinear behavior
appears in piles as shown in Fig. 7 such that the maximum moment coupled with axial force is practically twice of the yielding
moment. Differences between linear or nonlinear RC cases are not clearly observed in the soil behavior, which implies that the
effect of RC behavior on the soil is apparently small. Therefore, only the results of the nonlinear RC case are presented in the
following figures. Fig. 8 indicates that the maximum soil shear strains are concentrated at the zone where soil stiffness changes, but
it is not so in the soil confined by piles due to the pile-soil-pile behavior during excitations. As consequence of this behavior, the
outside piles present the bigger shear force than the inside piles at this zone (Fig. 4). Soil stress-strain curves at four locations are
presented in Fig. 9, from which we can note that the maximum restoring force increases with depth.
3. CONCLUSION

The nonlinear RC behavior gives rise to a clearly different internal pile forces at upper part and the transition zone of soil stiffness.
However, the soil behavior is practically insensitive to this RC behavior. The presence of axial force in piles affects the pile nonlinear behavior
and the heavy damage in the Hanshin Great disaster may possibly be due to tensional force and bending moment interaction.
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Fig. 4. Distributions of maximum relative displacements and internal forces of piles.
4E+6 4E+6 4E+6
pile head o GL.-3m. 9 G.L. -7m.
2E+6 2E+6 | 2E46 |
G z L G |
[ z £
& 0B+ = o0 | z oew0 |
S D 2
H 5 3 £ -
g H £
-2E+6 -2E+6 | -2E+6 |
rotatio I rotatior] i rotatio:
P A S P I M B —_ !
-0.006  -0.004  -0.002 Q 0.002 0004 0006 -0.006  -0.04  -0.002 0 0002 0.004 0.006 -0.004 -0.002 ] 0,002 0.004
Fig. 5. Bending moment — rotation hysteresis of outside pile.
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Fig. 6. Bending moment - rotation hysteresis of inside pile
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Fig. 7. Relationship between bending moment and axial force at pile head. Fig. 8. Maximum shear strain.
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Fig. 9. Soil stress-strain hysteresis at different locations for nonlinear RC case.
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