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INTRODUCTION

In the January 17, 1995, Hyogoken-Nanbu Earthquake of magnitude 7.2, widespread liquefaction occurred
in the seaside area of Kobe city causing severe damages to many modern engineering structures. The
liquefaction was particularly extensive in the reclaimed lands of Port Island and Rokko Island. Motions
induced by the main shock of this earthquake have been recorded at several sites that exhibited severe
liquefaction of reclaimed soil. Among these records, particularly interesting are those obtained at the
observation site of Port Island since they include accelerograms at four different depths of the soil profile
ranging between the ground surface and 83 meters depth. These records, provided by the Committee of
Earthquake Observation and Research in the Kansai Area, were used to evaluate the accuracy of an effective
stress analysis with a recently developed elastic-plastic constitutive model for sandy soils, termed Stress-
Density Model (S-D Model). In this paper the computed acceleration time histories are compared with those
recorded at the ground surface and at depth of 16 meters, and the most salient features of the computed
response are presented.
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EFFECTIVE STRESS ANALYSIS

The Stress-Density Model (Cubrinovski, 1993) is used as a
constitutive model within the finite element code DIANAJ-2
to conduct effective stress analysis of the Port Island soil
profile. Drained analysis is performed on a 1-D soil-column
model with height of 28 meters including the surface layer
of Masado and the original sea-bed clay layer. The recorded
N-S component of the motion at 32 meters depth is used as
base input motion in the analysis.

Dilatancy parameters of the S-D Model were determined
in order to simulate the liquefaction resistance of Masado
shown in Fig. 2. The filled symbols in this figure show the
simulated liquefaction strength by the S-D Model. Due to
the lack of complete laboratory test data for Masado, the
stress-strain and the state index parameters .of the S-D
Model were approximated by those of Toyoura sand with
relative density of Dy = 50 %. The clay was modeled in the
analysis as linear material with a shear modulus degraded to
40% of the initial modulus.

RESULTS AND DISCUSSION

Figure 3 shows the comparison between the computed and
the recorded acceleration time histories at the ground
surface and at 16 meters depth. Apparently, excellent
agreement between the computed and the recorded ac-
celeration time histories at the ground surface can be seen.
Remarkable similarity in the accelerations is also found for
the motion at 16 meters depth except that the analysis failed
to produce the largest observed peak at about 6 seconds.

Computed excess pore water pressures at 2.5, 5 and 10
meters depth are shown in Fig. 4. The build-up of the
excess pore water pressure was faster in the lower part of
the Masado layer than that in the top 3-4 meters of the
layer. The excess pore water pressure reached 90 to 100 %
of the initial effective overburden pressure up to depth of
15 meters, thus indicating that almost the whole Masado
layer contributed to the observed liquefaction. In order to
shorten the computational time but still compute the final
settlement of the soil, large permeability (k = 0.5 cm/s) for
Masado is used. As a result, the dissipation time of the
excess pore water pressure shown in Fig. 4 is very short.

Finally, Fig. 5 shows the computed settlement and
horizontal displacement at the ground surface. The
settlement at the surface reached about 12.5 cm which is
close to the observed 15-20 cm settlement in the vicinity of
the observation site.

In order to further clarify the liquefaction of the Port
Island additional laboratory tests on Masado which will
enable consistent definition of the S-D Model parameters
are needed. The present analysis, however, affirms the
ability of the effective stress analysis with the S-ID Model to
very accurately simulate the most prominent features of the
observed ground response during liquefaction.

References: 1) Cubrinovski, M. 1993. A constitutive model for
sandy soils based on a stress-dependent density parameter.
D.Eng. Thesis, Univ. of Tokyo; 2) Igarashi, S. 1993.
Dislocation energy of liquefaction. JSCE J. Geot. Eng.
No.481/111-25; 3) Nagase, H., S.Rei, K. Kimura and S. Tsujino
199S. Liquefaction strength of overconsolidated undisturbed
sandy soil samples. (sub. to 30th ISSM&FE).
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Fig. 3 Recorded and computed accelerations
(N-S) at the ground surface and at 16m depth
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Fig. 4 Computed excess pore water pressures
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Fig. 5 Computed settlement and horizontal

displacement at the ground surface



