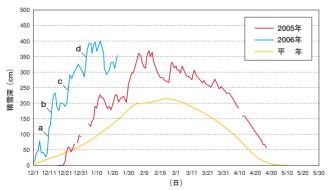
日本海側を襲った豪雪の特徴と対応

青山清道 新潟大学積雪地域災害研究センター教授

まえがき


2005 (平成 17) 年 12 月の月平均気温がこれまで の最低値以下となったところが全国で20余り、 12月の最大積雪深がこれまでの記録値を超えたと ころが全国で20余りとなった。これは大雪を降 らせる強い寒気が、例年より1ヶ月も早く日本列 島に何回か襲来したためで、12月中旬から降り積 もった雪は随所で大雪となった。なかでも日本海 側の中山間地での降積雪量は際立って多く、豪雪 の様相を呈した。

中山間地は過疎、高齢化が進んでおり、高齢者 が家屋などの除雪をするために多数事故死された り、地域の生活道路が雪崩の危険のために通行止 めとなるなど、今回の大雪は地域住民に不安と混 乱を与えた。

雪害はそのときどきの気象条件や、その地域の 社会活動形態や社会的な耐雪性によって、種々の 形態をとるり。ここでは今回の雪害の特徴とその 対応策を考える。

今回の大雪の特徴

上空約 5,000m の気温が−36 ℃以下になるよう

新潟県津南の日最深積雪(提供:新潟地方気象台)

孤立した新潟県津南町結東集落(2006年1月9日) (提供:新潟県土木部)

な強い寒気が、日本列島に襲来すると大雪になる と言われている。

今回の大雪(2005年12月から2006年1月の大 雪)の特徴の第一は、例年より1ヶ月も早く12月 から1月中旬にかけて、強い寒気が何回か日本列 島を覆った。このために北海道から中国地方に至 る広い範囲で大雪になった。さらに例年は雪の少 ない東海から瀬戸内、四国、九州に至るまで、そ

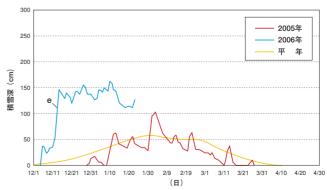


図-2 福井県大野の日最深積雪(提供:新潟地方気象台)

れぞれの地方としては例の少ない大雪になった。 特徴の第二は、日本海側の山間地や中山間地の 積雪が短期間で急増し、いくつかの観測点で観測

開始以来最大の積雪深を記録した。

今回の大雪の代表例として、2地点の日最深積 雪の推移を図-1、図-2に示す。図-1は新潟県津南町 の最深積雪の推移であり、図のa、b、c、dの部 分で、日最深積雪の線図の傾きが急となってい る。ここのところでは短日時の間に大量の降雪が あったことがわかる。線図の傾きが急で長けれ ば、大量の降雪が長時間続いたことになり、現地 は豪雪となり災害が発生する。

図-2 は福井県大野市の日最深積雪の推移であり、 図のeの部分の線図の傾きが急となって、短日時 の間に大量の降雪があったことがわかる。

今回の雪害の実態と特徴

今回の大雪による災害の特徴の第一は、家屋や 建物の除雪に関連して事故死された方が多いこと である。総務省消防庁の調査によると、1月23日 現在の全国の雪による事故死者数は表-1のとおり である。表-1によると家屋や建物の除雪に関連し た死者数は、全死者数 109 人のうち 92 %、100 人 に及んでいる。65 才以上の高齢者で死亡された方 は過半数の66%になっている。

また、消防庁の調査では、死者は18道県に及 び、秋田県 18人、新潟県 18人、福井県 14人、 山形県9人(以下省略)となっている。

写真-2 一般国道 405 号自衛隊による雪庇処理 (2006 年 1 月 11 日、新潟県津南町地内)(提供:新潟県土木部)

豪雪の中の困難な通学状況(2005年12月、新潟県南魚 沼市内)(提供:新潟県土木部)

表-1 2005 年 12 月以降の雪による死者数

死亡状況	65歳未満	65歳以上	合計
雪崩による死者	0	0	0
屋根の雪下ろしなど、 除雪作業中の死者	26	53	79
落雷などによる死者	6	9	15
倒壊した家屋の下敷きによる死者	1	5	6
その他	4	5	9
合計	37	72	109

(2006年1月23日17時30分現在、総務省消防庁の資料による)

大雪で家屋が倒壊するのを防止するために屋根 の除雪をする。落下した雪が家屋を損壊しないよ うに、部屋の採光を阻害しないように、家屋の周 辺の除雪も欠かせない。これらの除雪作業で屋根 から転落したり、屋根からの落下雪に埋もれた り、流雪溝などに転落して死亡している。

第二は中山間地の生活道路が雪崩の危険のため に通行止めされ、地域住民の生活が混乱した。

具体的には新潟県津南町から長野県栄村を結ぶ 国道 405 号が、道路斜面の危険な積雪除去のため に5日間通行止めになり、その後も時間制限の交 通開放となった。この措置により食料品や灯油の 調達困難、高齢者の健康不安など、混乱は日常生 活全般に及んだ。

雪害の防止策の改善

(1) 高齢者の危険回避

除雪作業の労働負荷を知るのに、人力除雪のエ ネルギー代謝率2がある。表-2に人力除雪と日常

表-2 人力除雪と日常の動作のエネルギー代謝率

動作内容	エネルギー代謝率	
人力除雪	4~8	
階段昇り	5~6	
通勤 (徒歩)	3	
駆け足(9km/h)	8	
自転車で走る(舗装路)	3	

栗山・野原 (1986) による

エネルギー代謝率=

動作時のエネルギー消費量(kcal/h) - 安静時のエネルギー消費量(kcal/h) 安静時のエネルギー消費量(kcal/h)

表-3 年齢と運動機能

運 動 機 能	20才	60才
反応時間	100	60
握力	100	40
上腕二頭筋筋力	100	20

(20 才を基準 (100)とした 60 才の能力) 葛谷 (1989) による

の動作のエネルギー代謝率を示した。表-2による と人力除雪は階段上りや駆け足と同レベルの労働 で、高齢者が寒いなかで除雪作業を続けることは 非常に過酷であるといえる。

一方、ヒトは加齢によって身体機能が低下する
3) ことがわかっている。表-3に20才と60才の身体 機能を比較したものを示す。表-3によると60才 の各機能は20才時の60~20%に低下している。

以上、2つの調査結果から、高齢者の事故死の 原因が、身体機能が低下しているにもかかわらず 危険で重労働の除雪をするためであり、早急に高 齢者が除雪などの危険作業から解放される措置4) が必要である。

(2) 個人と地域の防災力の充実

降積雪地では、あるレベルまでの降積雪量に対し

写真-4 生活道路の積雪、落下しそうな雪庇 (新潟県南魚沼市内)(提供:国土交通 省北陸地方整備局長岡国道事務所)

て支障なく社会活 動ができる防災力 を有していたり。そ れが長年続いた少 雪のために、耐雪 ノウハウの継承が なくなり、防災力 が低下したとみら れる。

道路の除雪で発生した雪堤、4m をオーバー(新潟県津 南町地内)(提供:国土交通省北陸地方整備局長岡国道

写真-6 一般国道 403 号のトラス橋上の冠雪(連続的な降雪と低 温の影響により異常な冠雪) 長野県飯山市中央橋(提供: 長野県土木部)

今回の被災の事例をみると、防災に関する雪の 基礎的知識があれば避けられたものがある。たと えば 1m³の重さが 300 ~ 500kg の屋根の雪が落下 するときの危険性や気温が上昇すれば屋根の雪庇 は崩れて落下することなどを、小中学生や地域住 民に教える。こういったことを通して、防災の自 助能力や地域の共助能力を向上させる。

(3) ライフロードを守る

災害時には通信、電気、水道、ガスなどのライフ ラインを最優先で守る施策が実施されている。前 述の国道 405 号は地域の集落を結ぶ唯一の幹線道 路であり、生活道路でもある。いわばライフロー ドである。この道路が今回の大雪で雪崩危険のた めに5日間通行止めされた。住民の生命維持にも かかわるライフロードには、スノーシェッドのよ うな高レベルの雪崩対策が必要である。

(4) 雪の防災シュミレーション

東京都などでは大地震発生時の災害を予測し、 防災のシュミレーションを行って、住民により良 い防災対策を指導している。

最近では気象庁から精度の高い気象情報が提供 されている。一方、行政機関では所管地域内で、 降積雪の量や質によって発生する雪害の実態を長 年の実績として把握しているはずである。入手し た気象情報から所管地域で発生する雪害のシュミ レーションを行い、予測される雪害を住民に伝達 して、早期に防災の準備をするように促す。

また、シュミレーションの結果から、自衛隊など の公的支援(公助)が必要と判断されれば、時期を 失することなく出動要請をすることが大切である。

(5) 積雪と地震の複合災害

2004 (平成 16) 年 10 月に発生した新潟県中越地 震の被災地には中山間地が多く含まれ、今回の大 雪にも見舞われた。地震の被災地の斜面には地肌 のままのものが多く、雪崩が発生しやすいなど、 地震の後遺症は積雪期にも及んでいる。早期の完

写真-7 雪の重さで倒壊した家屋、長野県飯山市内(提供:長野県 飯山市)

表層雪崩による落石防護柵の倒壊(一般国道 471 号 写直-8 富山市八尾町栗須地内)(提供:富山県土木部)

全復旧が望まれる。。

さらに降積雪時に地震が発生すると、屋根雪の 荷重で損傷建築物が増加したり、斜面の積雪が崩 落して雪崩となったり、寒さで厳しい避難生活を 強いられるなど、甚大な複合災害のとなる可能性 がある。複合災害の対応策を本格的に検討する必 要があると考えられる。

謝辞 本稿を作成するにあたり、気象データを新 潟地方気象台から、雪に関する人身事故のデータ を消防庁から、写真・資料を国土交通省北陸地方 整備局、新潟県土木部、長野県土木部、富山県土 木部、新潟県津南町、長野県飯山市から提供して いただきました。

また、新潟大学医歯学総合病院 原敦子氏、同 小林洋子氏からヒトの身体機能に関する資料を提 供していただきました。大原技研(株)の栗山弘氏 から資料の提供とアドバイスをいただきました。 以上を記して謝意を表します。

参考文献

- 1) 青山清道:豪雪災害、土木学会誌別冊 新しい時代の防災、Vol.74-6、
- 2) 栗山弘・野原以左武:人力除雪における労働負荷の研究、(財)日本積雪 連合、1986
- 3) 葛谷文男:ヒトの老化の概念、老年学辞典、pp74-75、ミネルヴァ書房、 1989
- 4) 藤巻英俊・青山清道・栗山弘:積雪期における高齢者の事故とその防止 について、第 19 回北陸雪氷技術シンポジウム論文集、pp11-14、北陸雪 氷技術研究会、2005
- 5) 栗山弘:雪国の都市計画のすすめ方、雪氷、Vol.48-1、pp30-36、日本 雪氷学会, 1986
- 6) 恒文社新潟支社編:雪国を襲った大地震、恒文社刊行、2005
- 7) 青山清道・木村智博・後藤恵之輔:積雪期地震を想定した医療環境整備、 土木学会誌、Vol.88-12、pp67-71、2003

[p.2 「カバーストーリー**①** | で関連記事を記載]