パキスタン・カシミール地震被害調査と復旧支援

土木学会・日本建築学会 パキスタン・カシミール地震調査・支援団

> 濱田政則 HAMADA Masanori 早稲田大学 教授

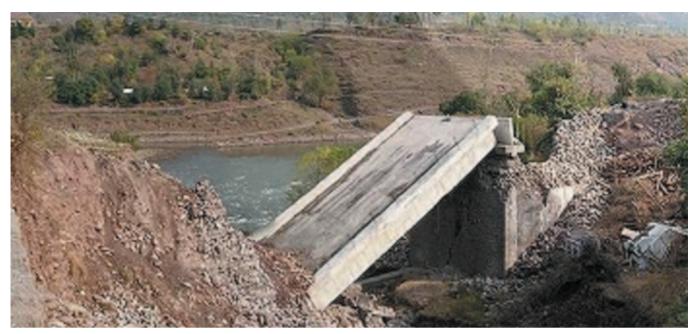
西川孝夫 首都大学東京 教授

はじめに

2005年10月8日、パキスタン・カシミール地 方を震源とするマグニチュード 7.6 の地震が発生 した。震源域はイスラマバード北方約 100km の 山岳地帯で、長年にわたってインドとの紛争を 繰り返してきた地域にきわめて甚大な被害を発 生させた。11月2日時点でのパキスタン政府の 発表では、死者は7万3,000人以上、被災者250 万人とされているが、山岳地域で孤立した山村 が多く、被害の実態がいまだに把握されておら ず、一説には死者10万人以上に達したとも言わ れている。

今回発生した地震は、インドプレートとユーラ シアンプレートの境界に発生したもので、このプ レート境界では歴史的に繰り返しマグニチュード 7~8クラスの地震が発生している。

土木学会は第1次調査団(団長:小長井一男、 東京大学・教授) を 10 月 24 日から 31 日にかけ て現地に派遣し、橋梁などの社会基盤施設およ び建物・家屋等の被害状況を調査するとともに、 高速道路機構(NHA: National Highway Authority) および首都開発機構 (CDA: Capital Development Authority) などの現地機関と、被


災した橋梁、斜面および建物の応急復旧方法な どについての意見交換を行った。この結果、① 橋梁、斜面、盛土の復旧と再建方法、および② 被災建物の診断方法と復旧方法、さらに③地域 の復興方法、について日本からの技術支援が強 く求められた。

このため、土木学会は日本建築学会と協力し て、復旧と復興のための技術支援を主目的とした 第2次調査支援団を現地に派遣することとした。 土木学会は活動目標を定めた JSCE 2005 におい て、土木技術者の「社会への直接的貢献」の必 要性を唱って、活動を展開してきている。また、 自然災害による被災地への技術支援を目的とした NPO「国境なき技師団 | の設立が土木学会員と 日本建築学会員の有志により準備されている。本 調査・支援団による活動は、土木学会が提唱す る「社会への直接的貢献」の1つの具体的な実 践と考えられるものである。

2005年3月28日に発生した2度目のスマトラ 沖地震に際してもスマトラ島の西岸のニアス島の 復旧に関し、土木学会は技術支援を行ってきた。 今回の派遣は土木学会として自然災害復旧支援 に関して2度目の派遣となる。

バラコット橋の桁の移動

1-2 橋台の崩壊による単純桁の落下

被害の状況

(1) 橋 梁

被害を受けた橋梁の多くは建設年代が古く、耐 震的配慮がなされていない。写真-1に示すバラコッ ト橋はコンクリート橋で、上部構造が橋軸直角方 向および橋軸方向にそれぞれ約 1.1m、0.3m 移動 した。4本の主桁のうち外側の桁が支承から外れ た。支承は鋼板製で、移動制限装置は設置されて いなかった。

写真-2 はジェーレムバレーに架かるコンクリート 単純桁の橋梁であるが、石積みの橋台が崩壊して 桁が落下した。橋梁の支間を短くするため両岸よ り橋台を河川に突き出し、単純桁を架橋したもの である。

橋台は河床堆積の礫で築かれており、地震力に 対する抵抗はほとんどなく崩壊したと考えられる。 このような型式の橋梁の崩壊が多数見られた。

(2) 斜面の崩壊

カシミール地方は急傾斜を有する山地であり、 谷底と山の落差は 2,000m を超えている。 2005 年 カシミール地震によってジェレーム、ニーレムお よびコンハー谷の両側の斜面に大規模な斜面崩壊 が多数発生した。震源地域における斜面崩壊は土

写真-3 ムザハラバードに見られた斜面崩壊

質斜面の崩壊、風化岩盤の表層すべり破壊と岩盤 斜面の崩壊に大別される。土質斜面の場合、深い 円形すべりと浅い平面すべり崩壊が発生した。特 にバラコットおよびムザハラバードで家屋や建物 の崩壊要因となったのは丸い礫を含む土質斜面の 崩壊であった。この地方に過去に存在した氷河に よって谷底に堆積したこの地層は、急流河川によ って削り取られ、70度を超える急傾斜で高さ20m 以上の斜面が形成されている。今回の地震の揺れ によってこれらの斜面が崩壊した(写真-3)。一方、 風化した頁岩や断層運動によって破砕された石灰 岩で形成されている岩盤斜面では地震断層に沿っ

写真-4 カルハヒ地域で発生した岩盤斜面の崩壊

て深い表層すべり破壊が発生した。岩盤斜面の場 合、平面すべり破壊、くさび破壊、たわみ性や破 壊ブロックトップリング破壊が発生した。特に平 面すべり破壊とブロックトップリングによる崩壊 物が道路に被害をもたらし、交通が寸断された。 地震断層の西南端の地域で面積が2×1.5kmであ る大きな斜面崩壊が発生した(写真-4)。

(3) 建物の被害

建築学会から派遣された4人の団員は、イスラ マバード市内および震源地に近いバラコットとサ ムファラバードの建物の被災状況の調査を行った。

バラコットにおける家屋の倒壊状況

バラコットでは写真-5に示すようにほとんどの建物 が倒壊し、人口 4 万 5,000 人の住民の約 1/3 が死 亡したとされている。斜面の崩壊や斜面の移動お よび河岸段丘による地震動の増幅などが建物被害 の主要原因と考えられる。

ムザファラバードは人口約14万人の都市である が、7~8割ほどの建物が被害を受けたとされて いる。町の中心部の倒壊率は2~3割程度とみら れたが、傾いた建物の1階で商店を用いている住 民もみられ、応急危険度判定の早期導入の必要性 を感じた。

復旧・復興支援

第1次調査団および第2次調査・支援団によ る橋梁、建物の被害状況の調査結果を踏まえて、 前述の NHA および CDA において幹部職員およ び担当技術者を対象とし、被災構造物の復旧方 法などに関するセミナーを開催した。

(1) NHA におけるセミナー

橋梁の応急復旧と再建および道路斜面の保護工 などに関するセミナーに約100名の関係者が参加 した。前述したバラコット橋の応急復旧法として 図-1に示す方法を提示した。下部工の継ぎ足し、 支承の据え換え、上部工損傷部の補修を提言し、 将来的には新規橋梁の架設の必要性を説明した。

被災した小規模橋梁に関して、①石積橋台の RC 構造へ変更、②流量の小さい河川では桁橋か らカルバートボックスに変更、③突出橋台を改修 してスパン長の大きな橋梁とする、ことなどを提 言した。

さらに、橋梁が損傷し、交通が不便となった地 域については地域復興計画に基づき河川の両岸地 域を結ぶ横断橋を建設し、地域の復興を図ること などを提言した。

道路斜面に関しては、①小規模崩壊について は、崩壊土取り除き、再盛土、必要に応じ、蛇 籠、擁壁の設置、②中大規模崩壊に関しては、 崩壊土の一部を取り除き、表面水進入の防止対 策を提案した。また③中長期的には土質調査の実

施と安全計算、それに基づくトンネルや高架への 変更を含む必要対策工の計画的実施を提案した。

図-1 バラコット橋の復旧方法の提案

(2) CDA におけるセミナー

100 名を超す技術者、実務者を対象に、建物の 被害状況と被害原因に関する調査団の見解を示 すとともに、今後必要な調査とその方法について 説明を行った。さらに日本における応急危険度判 定、被災度区分判定、耐震診断規準、補強法な どについて各種の文献を寄贈するとともにその概 要についての説明を行った。さらに日本の建物建 設における検査制度、法制度などについて現状を 説明した。また本調査団の建築グループが現在ま とめた「Quick Report of Damage Investigation on Buildings and Houses due to October 8,2005 Pakistan Earthquake」を提出した。出席者から は数多くの質問が出され、活発な質疑が行われた が、時間的な制約もあり、パキスタン側の技術者 の質問に100%答えたという状況ではない。今後 ともこのようなセミナーを継続する必要性を強く 感じた。

今後の取組み

土木学会および日本建築学会に対して、引続き 復旧・復興のための技術支援の要請は強く、今後 ともこのような活動を継続していく必要がある。 被災地域の復旧・復興計画の策定がこれから本格 化することになるが、この段階で技術的な貢献を することが重要であり、2回目、3回目のセミナー を時間をおかずに開催する予定である。このため、 外務省、JICA、国土交通省などの支援が不可欠と 考えられる。誌面を借りて関係機関の協力をお願 いする次第である。

また、日本建築学会と土木学会が共同で災害調 査と支援活動を行ったのは、1995年の兵庫県南部 地震において共同研究で報告書を作成した以来の ことである。構造物の被害原因の究明には、地震 動や地盤条件の詳細な分析が不可欠であるが、こ れらは土木構造物、建築構造物共通であり、今後 とも災害調査に関連して日本建築学会との連携を 深める必要がある。

■ 第 1 次調本団の構成

■ 另一次侧直凹∨/構成	
<団長>	
小長井一男	東京大学生産技術研究所 教授
<団員>	
池田隆明	飛島建設 (株) 防災 R&D センター
小国健二	東京大学地震研究所 助教授
児玉裕之	飛島建設(株)土木本部
鮫島博巳	飛島建設(株)
	パキスタン事務所所長
Aziz Akbar	Univ. of Engineering and Technology,
	Lahore

■ 筆 2 次調査団の構成

<団長>	
濱田政則	早稲田大学 教授
<団員>	
小長井一男	((前掲))
アイダン・ノメール	東海大学 教授
小林 健	(財) 高速道路技術センター参与
近藤 升	(独)国際協力機構
	(JICA:パキスタン)専門官
高津茂樹	(社)土木学会
	技術推進機構技術推進部
児玉裕之	((前掲))
土屋芳弘	飛島建設(株)建築本部(建築学会)
鮫島博巳	((前掲))
宮島昌克	金沢大学 教授
西川孝夫	首都大学東京 教授(建築学会)
中埜良昭	東京大学生産技術研究所 教授
	(建築学会)
真田靖士	東京大学地震研究所 助手
	(建築学会)

土木および建築の被害調査と技術支援の速報は http://www.jsce.or.jp/を参照されたい。