TRENDS IN DEVELOPMRNTOF REMOTELY OPERATED VEHICLE	Tamaki URA	1-4
RECENT DEVELOPMENT OF REGULATION RULES CONCERNING TO FLOATING OFFSHORE STRUCTURES	Yoshihumi TAKAISHI	5-10
A NUMERICAL ANALYSIS OF OSCILLATING FLOW AROUND CIRCULAR CYLINDER	Ken-Ichiro HAMANAKA,Youichi KATSUOKA,Yukio SATO	11-16
ENTRAINMENT PROPERTIES OF ROUND BUBBLE PLUMES IN HOMOGENEOUS ENVIRONMENTS	Hirokazu IKEDA,Takashi ASAEDA	17-22
EXPERIMENTAL STUDY ON HYDRAULIC CHARACTERISTIC OF A	Hideaki NISHIDA,Susumu	
SUBMERGED PERFORATED HEMISPHERIC STRUCTURE FOR A FISH AGGREGATION DEVICE UNDER REGULAR WAVES AND IN FLOWS	MIZUNO,Akihide TADA, Fukuhiro NISHIHARA	23–28
SURVEYS OF WHIRLPOOLS AND CURRENT USING THERMAL INFRARED SYSTEM IN THE ENTRANCE OF THE OMURA BAY, NAGASAKI PREFECTURE	Keinosuke GOTOH,Yoshihumi YUTOH,Hideki HIRAHARA,Junich MATUO,Syuji ITASAKA,Tatuya NAKANUMA	29-34
COMPUTATION OF WAVE HEIGHTS IN A MARINA BY LONG WAVE APPOROXIMATION	Tetsuya HIRAISHI,Tomotsuka TAKAYAMA,Masahiro TAGAWA	35-40
DEVELOPMENT AND PRACTICAL USE OF OCEAN WAVE FORECASTING SYSTEM BY SPECTRUM METHOD FOR CONSTRUCTION MANAGEMENT OF	Masanori KOBAYASHI,Tetsuro SASAKI	41-46
A WAVE HINDCASTING SYSTEM FOR THE COAST OF JAPAN	Chiaki GOTO,Yutaka KAMEYAMA,Hidenori SHIBAKI	47-52
FUNDAMENTAL STUDY ON VELOCITY FIELD OF FINITE AMPLITUDE PARTIAL CLAPOTIS	Koichiro IWATA,Takashi TOMITA	53-58
NONLINEAR WAVE TRANSFORMATION AND AIR PRESSURE VARIATION OF AIR-CHAMBER STRUCTURE	Koichiro IWATA,Do-sam Kim	59-64
FLUID FORCE ACTION ON ARTIFICIAL REEF SEGMENT IN OSCILATING FLOW	Chokei ITOTSU,Masabumi SETOMakoto NAKAMURA	65-68
CHARACTERISTICS OF WAVE FORCES ON ARMOR UNITS A SUBMERGED BREAKWATER	Takayuki NAKAMURA,Akito OOTSHUKA,Takashi ONOZUKA,Takahito MORI	69-74
ON AN EFFECT OF SPECIFIC-GRAVITY CHANGE FOR STABILITY IN ARMOR UNIT	Masahiro ITO,Yuichi IWAGAKI,Kenji NEMOTO,Masato YAMAMOTO,Minoru HANAZAWA	75-80
STABILITY OF CAISSON STRUCTURE SUBJECTED WAVE FORCES	Shun-ichi KOBAYASHI,Hideo SEKIGUCHI,Toru SHIBATA	81-86
DYNAMIC RESPONSE OF A SUB,ERGED LINE STRUCTURE MOORED BY CABLES UNDER THER ACTION OF WAVES	Tomisaku MIZUSAWA,Shigeyuki KINBARA	87-92
RESPONSE CHARACTERISTICS OF TENTION LEG PLATFORM WITH MECHANICAL DAMPING SYSTEM IN WAVES – APPROXIMATE RESPONSE ANALYSIS METHOD AND TANK TEST RESULTS –	Masatoshi KATAYAMA,Kenichi UNOKI	93-98
APPROXIMATE RESPONSE ANALYSIS OF GUYED TOWER PLATFORM IN WAVES	Masatoshi KATAYAMA,Ken-ichi UNOKI Toshimitsu KOMATSU,Nobuhiko	99-104
STUDY ON THE GAIN OF WAVE ENERGY BY OVERTOPPING ACTIVATED BY A TWO-DIMENSIONAL STRUCTURE		105-110
A FREASIBILITY STUDY OF COMPRESSED AIR ENERGY IN SEA WATER THE RESULTS OF THE MODEL EXPERIMENT ON THE INFLUENCE OF	Shigehiro OZAKI,Manabu HIROSE	111-116
ENVIRONMENT BY MIGHTY WHALE WAVE ENERGY CONVERTER	Takeaki MIYAZAKI,Naomi KATOU	117-122
STUDY ON THE PROPERTIES OF COMPRESSIVE STRENGTH OF SEA ICE AND FRESH WATETR ICE	Takahiro TAKEUCHI,Hirohumi TABUCHI,Akira IMAIZUMI,Kunio ENOKI,Satoshi OKAMOTO,Hiroshi SAEKI	123-127
TOTAL ICE FORCE ON MULTI-LEGGED STRUCTURE	Takahiro TAKEUCHI,Satoshi OKAMOTO,Toshiyuki ONO,Hiroshi SAEKI	129-134
FLUID FORCE ACTING ON FLOATING ICE AND THEIR DRIFTING VELOCITY	Toshiya UEDA,Hiroshi SAEKI,Toshihiko YAMAMOTO,Yoshio MURAKI,Kunio	135-140
FACTORS INFLUENCING THE COEFFECIENT OF FRICTION BETWEEN SEAICE AND VARIOUS MATERIALS	Naoki NAKAGAWA,Takashi TERASHIMA,Hiroshi SAEKI	141-145
ESTIMATION AND CONTROL METHOD FOR ABRASION OF OFFSHORE STRUCTURE DUE TO MOVEMENT OF ICE SHEETEstimation and Control Method for Abrasion of Offshore Structure Due to Movement of Ice Sheet	Yoshishige ITOH,Yuichiro ASAI,Hiroshi SAEKI,Norihiro ORITANI,Chimatarou ISHI	147-151
CONTROL OF THE ICE FLOES MOVEMENT BY USING ICE BOOM	Kunio ENOKI,Chimataro ISHII,Sei KUNIMATSU,Hiroshi SAEKI	153-158
DRIFT ICE CONTROL FOR PORT, LAGOON AND COAST IN HOKKAIDO	Takahiko SASAJIMA,Osamu YASUDA,Kunihiko ENOKI,Sei KUNIMATSU,Satoshi OKAMOTO,Hiroshi SAEKI	159-165
INTERACTION BETWEEN SEA ICE FLOES AND ARTIFICIAL REEF	Yuzo MIZUNO,Hiroichi ROPPONGI,Hiroshi SAEKI,Shinya AKIHARA,Shigeki SAKAI	165-169

A STUDY OF ASPHALT MATS FOR GRAVITY-TYPE MARIRIME STRUCTURE	Yuzou MIZUNO,Mitihiko TOKUINAGA,Yoshihiaki SUGIMOTO,Kazusi	171-176
ABRASION CHARACTERISTICS OF CONCRETE PILE DUE TO LITTORAL DRIFT	MURASE,Osamu YAMADA Toshihiko YAMASHITA,Hiroshi SAEKI,Takehiko SOMEYA,Yoshinori SENDA	177-182
STRESS CHANGES DUE TO DRYING SHRINKAGE AND CREEP OF CONCRETE PRESTRESSED COMPOSITE OF PBS METHOD	Yasuo KURIHARA,Toshiro ATOBE,Sumio G NOMACHI,Tetukazu KIDA	183-188
STUDY FOR IMPROVEMENT OF UNDER WATER CONCRETING AT MARINE FIELDS	Osamu YASUDA,Kazuhumi MURASE,Mitihiko TOKUNAGA,Yuuichi	189-194
VARIATION OF INNER PRESSURE IN CAISSON TYPE STRUCTURE DUE TO ICE GROWTH	Chimataro ISHII,Hideyasu SATOH,Norihiko ORITANI,Yasunori WATANABE,Hiroshi SAEKI,Toshihiko YAMASHITA	195-199
A STUDY ON SOIL CORROSION OF STEEL PIPE PILES IN COASTAL REGION	Kousuke YAMAMOTO,Kouji KUDOU,Kouichi NISHI	201-205
SOFTSIT-ON-BOTTOM TYPE OFFSHORE STRUCTURE AND THE APPLICATIONS. – PROPOSAL OF OCEAN CITY PROJECTS –	Misaki IZAWA,Makoto KOUDA	207-212
AN ADJUSTMENT PLAN FOR COASTAL WATER SPACE BETWEEN FISHERIES AND LEISURE USES.	Akira NAGANO,Nobuyuki HORIKOSHI,Tutom HINADA,Sigeki NAKAMURA	213-218
PRESENT SITUATION OF COASTAL ZONE AT MALE ISLAND IN MALDIVES AND ITS IMPLEMENTATION PLAN	Takaaki UDA	219-224
AN ANALYSIS OF PAST COASTAL DISASTERS IN JAPAN BY THE SLIDES COLLECTED BY PROF. O.TOYOSHIMA	Takaaki UDA,Tatsuyuki IGARASHI	225-230
FIELD OBSERVATION OF DOUBLE CYRINDRICAL CAISSON BREAKWATER	Hiroshi ENDOU,Tsutomu NAKANO,Takashi OWAKI, Kaoru KUROSAWA	231-236
AN EXPERIMENT ON CURVED DOUBLE SLIT CAISSON	Kunihiko SUGAWARA,Tadao KUROSAWA,Hidenori ENDOU,Sigeo TAKAHASHI,Tokuzo	237-242
DEVELOPMENT OF DOUBLE SEMICYLINDRICAL CAISSON USING HEADS OF BREAKWATER	Hiroaki NAKATA,Tatuzou SAITO,Masato OHNO	243-247
DEVELOPMENT OF BLOCK-EMBEDDED DOUBLE-BOX TYPE CAISSON	Takahiro BABA,Michio KIKUCHI,Kaoru OKUDA,Yusaku	249-252
SEA WATER INTERCHANGE BY CRENELLATED CAISSON BREAKWATERS	Yuzo MIZUNO,Kenji YANO,Katsutoshi KIMURA	253-258
STUDY ON THE CHARACTERISITICS OF WAVE DISSIPATION AND WAVE FORCE OF A PERMEABLE BREAKWATER	Yoshinori NITTA,Shinjiro OOMOTO	259-264
WAVE REFLECTION FROM A SLIT-TYPE BREAKWATER HAVING DIAMOND- SHAPE CYLINDERS AS A FRONT WALL	Shohachi KAKUO,Yoshihiro NAKATA,Ryuichi FUJIWARA	265-270
ATTENUATION OF WAVES BY DOUBLY ARRANGED OSCILLATING BREAKWATER	Satoshi MORITA,Takayuki NAKAMURA	271-276
TWO-DIMENSIONAL WAVE TRANSMISSION THROUGH A LINEAR ARRAY OF FLOATING BREAKWATERS	Takayuki NAKAMURA,Syugo NOMURA,Norifumi IZUMIKAWA,Satosi MORITA	277-282
EXPERIMENTAL STUDY OF WAVE TRANSFORMATIONS BY FLEXIBLE-TYPE SUBMERGED FLOATING BREAKWATER	Kiyoshi WADA,Shunroku NAKAMURA,Yoshihisa MATUZONO	283-288
EXPERIMENTAL STUDY ON REDUCING EFFECT OF BREAKWATER ON WIND AND WIND-WAVES	Yoshio MURAKI,Masahiro OHIRA,Masao TAKEUCHI,Hiroshi SAEKI	289–294
WAVE CHARACTERISTICS OF TEXTILE SHEET STRUCTURE	Masaya KATO,Hideaki WATARAI,Michio NAKAKURA,Ken- Ichiro HAMANAKA	295-300
RESEARCH ON CHARACTERISTICS OF WAVE CONTROL BY THE WAVE ENERGY DISSIPATING STRUCTUREACCORDING TO THE INVESTIGATION OF TYPHOON NUMBER17 AND 19 DISASTER IN 1991 -	Kunio SUGIURA	301-306
ON A FORECASTING METHOD OF WIND-GENERATED WAVES BEHIND THE SLIT TYPE WIND FENCE	Yoshio MURAKI,Masahiro OHIRA, Masao TAKEUCHI,Hiroshi SAEKI	307-312
EFFECT OF WAVE ATTENUATION OF MODELED ARMOR BLOCKS AND WAVE FORCE ON THEM	Masanobu ONO,Ichiro DEGUCHI,Toru SAWARAGI	313-318
DEVELOPMENT OF WAVE DESIPERATIVE STAIRWAY SEAWALL BLOCK	Hiroshi ENDO,Isamu NAKAMURA,Atumi TAMIYA,Yoshikazu ISHIHARA	319-324
DAMAGES OF BREAKWATER DUE TO HUGE TYPHOONES AND REPAIRMENTS	Akira NAGANO,Nobuyuki HORIKOSHI,Kouji OOTUKA,Hitosi HOSINO	325-331
FINAL RESULTS OF R&D ON NEW-TYPE OFFSHORE BREAKWATER	Takaaki UDA,Atsushi OMATA Tomotsuka TAKAYAMA,Yasumasa	331-336
MODEL TEST ON THE VARIATION OF WAVE OVERTOPPING PER WAVE	SUZUKI,Naota IKEDA,Hisashi FUJII	337-342

DEVELOPMENT OF HIGH AMENITY/LOW CROWN HIGHT TYPE QUAYWALL WITH EFFECT OF DECREASING OVERTOPPING WAVES	Hiroaki NAKATA,Tatuzo SAITO,Masato OHNO,Yuji MATUMOTO	343-348
EXPERIMENTS OF THE ARTIFICIAL LAGOON WITH PEBBLE BEACH	Koji IMAIKE,Teturou SAKAI,Sigeo FUKUDA,Akio TEBI,Ryuichi FUJIWARA,Katsuhiko KURATA	349-354
QUAY WALL BY UNDERWATER STRUTTED STEEL STRUCTURE SYSTEM IN KUSHIRO PORT	Michihiko TOKUNAGA,Takashi SEKINO,Kunio TAKAHASHI,Osamu KIYOMIYA,Masaki SHIOMI,Koichi SATO,Hiromi SHIRAI	355-360
INFLUENCE OF GLOBAL GREENHOUSE EFFECT ON SEAWALL WAVE OVERTOPPING AT WATERFRONT	Yoshimichi YAMAMOTO,Kiyoshi HORIKAWA,Yoshiko NAGANUMA,Tsuyoshi	361-365
SELECTION OF PLACE AND SEASON FOR CONSTRUCTION OF ARITIFICIAL ALGAL SUBSTRATUM.	Toshinobu TERAWAKI,Yasuo KAWASAKI,Hiroshi ITO,Yasushi NAKASHIMA	367-372
PRESENT STATE OF THE KELP BED CREATION TECHNIQUES AND AN IDEA OF MAINTENANCE FREE KELP BED CREATION	Yasuo KAWASAKI,Toshinobu TERAWAKI,Masaki HONDA	373-378
STRUCTURAL DESIGN OF ARTIFICIAL FOUNDATION FOR KELP BED	H.HASEGAWA H.HIRAKUCHI,T.TERAWAKI,Y.KAW ASAKI	379–384
A VIEW DESIGN OF PORT FACILITIES BY COMPUTER GRAPHICS	Yasuharu TUJI,Hideyuki NAGASUE,Hideki SATOU,Masayuki FURUYA	385–390
A CASE STUDY ON SAFETY OPERATION OF AMENITY-ORIENTED SEAWALLS AND BREAKWATERS	Shigeo TAKAHASHI,Kimihiko ENDOH	391-396
EXPERIMENTAL STUDY ON THE TIDAL EXCHANGE IN A SEMI-ENCLOSED BAY AREA	Hirotake IMAMOTO,Kunio OHTOSHI,Keiji INOUE	397-402
CONSURUCT OF BREAKWATER WITH SUBMERGED MOUND ON YOKATA FISHING PORT IN TOYAMA CITY AND FIELD INVESTIGATION ON WATER A STUDY ON PURIFICATION OF SEAWATER BY MEANS OF ACCRETIVE	Akihiko MORIGUCHI,Masaaki YAMAMOTO,Teruo TANAKA Kazuaki AKAI,Sinzou UEDA,Ma JA-	403-408
PIANTS DEPTH PREDICTION OF OMURA BAY. NAGASAKI PREFECTURE, JAPAN USING LANDSAT-5/TM DATA	HAI,Sirou UMANO,Hisao FUNENO Byung-Dug.JUN,Keinosuke GOTOH,Sam WOUTHUYZEN	415-420
PROPAGATION OF WATER PRESSURE FLUCTUATIONS IN AQUIFERS	Hideo SEKIGUSHI,Turomu NAMIKAWA,Seiji OHTA	421-426
GEOTECHNICAL PARAMETERS USED FOR DESIGN OF COASTAL STRUCTURES ON COHESIVE SEABED	Kasuya YASUHARA,Kazutoshi HIRAO	427-432
EFFECTS OF WAVE-INDUCED BOTTOM SHEAR ON SEABED RESPONSE TO WAVES	T.SAKAI,K.URAMOTO,H.MASE	433-438
SHAKEDOWN ANALYSIS OF CLAY SEABED UNDER WAVE INDUCED LOADING	Ken-ichi SATO,Kazuya YASUHARA,Satoshi SAITO,Masayuki HYODO	439–444
ELASTO-PLASTIC BEHAVIOR OF SEABED AROUND BLOCK BY WATER WAVE PRESURE	Hisami KUWAHARA,Seiki OHMAKI	445-450
FREQUENCY RESPONSE OF SEABED AROUND ANCHOR DUE TO STEADY- STATE MOORING FORCE	Tomiya TAKATANI,Yoshihiko MAENO,Tomotsuka TAKAYAMA,Tetsuya HIRAISHI	451-456
REDUCTION OF SHOALING OF NAVIGATION CHANNEL USING COMPOSITE CHANNEL SLOPE	Ichiro DEGUCHI,Masanobu ONO,Ryo SAWARAGI,Ki-seong	457-462
DAMPING OF WATER WAVES PROPAGATING OVER A MUD BOTTOM	Chokei ITOSU,Yosihiro SIBATA,Masabumi SETO,Makoto NAKAMURA	463-468
FIELD INVESTIGATION OF BEACH NOURISHMENT AT EIGASHIMA AREA ON THE TOBAN COAST	Shin TSUBOKA,Takaaki UDA,Takao UESHIMA,Hiroshi MURAO,Kotaro KATOH,Masasumi KONISHI	469–474
DEVELOPMENTS IN SUBMERGED FLOATING TUNNELS	Jin YOSHIMURA,Kiichi TAKAHASHI,Takashi MIKAMI	475-480
ANALYTICAL STUDY ON SUBMERGED FLOATING TUNNELS UNDER WAVE FORCES	Shunji KANIE,Kenichi HORIKOSHI,Yoshio ODAKA,Takashi MIKAMI,Yoshio	481-486
THE STUDY OF SUBMERGED FLOATING TUNNEL CHARACTERISTIC UNDER THE WAVE CONDITIONS	Hiroshi KUNISU,Toshiyuki FUJII,Yuzo MIZUNO,Hiroshi SAEKI	487-492