海溝型巨大地震を考える

一広帯域強震動の予測ー シンポジウム論文集

> 2005 年 2 月 19 日 土木学会講堂

土木学会・日本建築学会

巨大地震災害対応共同研究連絡会 地震動部会

目 次

1.	はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	地震動部会活動経過報告 ・・・・・・・・・・・・・・・・・・・・・・・・・・・3
	岩田知孝
3.	広帯域強震動予測の現状と展望 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・4
	入倉孝次郎
4	上勝油地震の電源温程を予測またの検討
4.	
	2003 牛 筋件地長の長你) 層と破壊過程でアル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2002 年十勝沖地雲による石油タンクの被害と長国期地震動 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2003 牛 筋件地展による石油ケンケの放音と及向効地展動 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	加口度・圧向に下・臼哨樹・口口 員・廣川軒石・开工係月 1059 年と 9003 年の十勝油地震の雲度インバージョン解析 ・・・・・・・・ 27
	1952 平と 2005 平の 「 筋性地震の展及 「 ジ バ ジ ヨ ジ 麻朳」 エーエー ユー 袖田古久 ・ 武材雅之
	17日元9、 0417年之 2003 年十勝沖地震の長周期地震動評価の絵評 ・・・・・・・・・・・・・・・ 33
	8日、11日、11日、11日、11日、11日、11日、11日、11日、11日、1
	野津厚
	十勝沖地震の表面波の卓越分布と非定常スペクトルを用いたインバージョンによる
	震度推定精度 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	久世益充・杉戸真太

5. 巨大地震の地震動予測手法の高度化

首都圏における長周期地震動シミュレーション:関東地震と立川断層の地震 ・・・52 鈴木晴彦・増田徹・三宅弘恵・纐纈一起

- 地表面幾何形状のモデル化が有限要素波動場計算に及ぼす影響の一例 ・・・・・58 市村強・桑本寛之・堀宗朗
- 巨大地震の長周期地震動予測のための広帯域ハイブリッド法 ・・・・・・・・・64 佐藤俊明・渡辺基史・早川崇
- やや長周期地震動評価のための関東平野の3次元S波速度構造のモデルの構築 ・・74 山中浩明

6. 巨大地震の地震動予測と耐震検討事例

経験的グリーン関数法を用いた想定東南海、南海地震時の強震動予測 ・・・・・77
釜江克宏
東南海・南海地震による大阪での強震動予測事例 ・・・・・・・・・・・83
鶴来雅人・趙伯明, Petukhin Anatoly, 香川敬生
k-2 モデルによる東海地震を想定した入力地震動の策定例 ・・・・・・・・・92
久田嘉章
東海、東南海地震による強震動シミュレーションと耐震検討事例 ・・・・・・・100
杉戸真太・久世益充
東海地震による発電所地点の地震動評価事例 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
久野通也・立花篤史
経験的サイト増幅・位相特性を用いた東海地方における強震動評価事例 ・・・・・108
野津厚

1. はじめに

土木学会と日本建築学会は共同して、巨大地震の地震動の予測および既存構造物の 耐震診断と耐震補強に関する調査研究を進めるため、平成16年4月巨大地震災害へ の対応共同研究連絡会を設置した。この中で、プレート境界巨大地震による地震動の 予測に関して、この連絡会のもとに下記の委員から成る地震動部会(入倉孝次郎主査) が設置され、構造物への入力地震動の作成と標準的地震動の策定に関する検討を目的 として、これまでに7回の委員会を実施してきた。

本シンポジウムでは、地震動部会のこれまでの委員会活動において報告・議論され てきた上記の目的のための重要な事項、研究成果について取り纏めるとともに、長周 期地震動を含む広帯域地震動の予測に関する今後の展望について議論を進める。

土木学会·日本建築学会巨大地震対応共同研究連絡会 地震動部会 組織·構成

- 主 查 入倉 孝次郎 京都大学副学長
- 副主查 岩田 知孝 京都大学教授 防災研究所地震災害研究部門強震動地震学分野
- 副主查 川瀬 博 九州大学大学院教授 人間環境学研究院都市・建築学部門
- 副主査 杉戸 真太 岐阜大学教授 流域圏科学研究センターセンター長
- 委員 青井 真 (独)防災科学技術研究所固体地球研究部門
- 委員 市村 強 東北大学大学院助手 工学研究科土木工学専攻
- 委員 大川 出 独立行政法人建築研究所構造研究グループ主席研究監
- 委員 香川 敬生 (財)地域地盤環境研究所主席研究員
- 委員 片岡 正次郎 国土交通省国土技術政策総合研究所 危機管理技術研究センター地震防災研究室主任研究官
- 委員 久野 通也 中部電力(株)発電本部土木建築部火力・原子力グループ課長
- 委員 纐纈 一起 東京大学教授 地震研究所応用地質学部門
- 委員 佐藤 俊明 清水建設(株)技術研究所 施設基盤技術センター地震防災グループ部長
- 4. 日本市式 独立行政法人産業技術総合研究所
- 委員 関口 春子 活断層研究センター地震被害予測研究チーム研究員
- 委員 武村 雅之 鹿島建設㈱小堀研究室次長
- 委員 年縄 巧 明星大学教授 理工学部土木工学科
- 委員 野津 厚 独立行政法人港湾空港技術研究所地盤·構造部
- 委員畑山健(独)消防研究所基盤研究部(防災研究グループ)主任研究官
- 委員 増田 徹 応用地質(株)地震防災センターセンター長
- 委員 翠川 三郎 東京工業大学大学院教授総合理工学研究科人間環境システム専攻

委員 源栄正人 東北大学大学院教授

2. 地震動部会活動経過報告

岩田 知孝1

¹京都大学防災研究所教授 防災研究所(〒611-0011京都府宇治市五ヶ庄) E-mail:iwata@egmdpri01.dpri.kyoto-u.ac.jp

土木学会・日本建築学会巨大地震災害対応共同研究連絡会地震動部会は2004年3月の準備会を経て設立 された.ここではこれまでの活動経過報告を行う.

Key Words : Subduction earthquake, the 2003 Tokachi-Oki earthquake, Strong ground motion prediction

土木学会・日本建築学会巨大地震災害対応共同研究連 絡会に属する地震動部会においては、プレート境界巨大 地震時の構造物への入力地震動の作成と標準地震動の策 定に関する検討を行うため、平成16年3月に準備会を 経て設立、これまでに約1ヶ月に1回程度の頻度で計7 回の委員会を開催してきた.委員構成は以下の通りであ る.

主查:入倉孝次郎(京大),副主查:杉戸真太(岐阜大), 川瀬博(九大),岩田知孝(京大),委員:青井 真(防災 科研),市村 強(東北大),大川 出(建築研),片岡正 次郎(国総研),香川敬生(地域地盤環境研),久野通也 (中部電力),纐纈一起(東大),佐藤俊明(大崎総研), 関口春子(産総研),武村雅之(鹿島建設),年縄 功(明 星大),野津 厚(港湾空港技研),畑山 健(消防 研),増田徹(応用地質),翠川三郎(東京工業大),源 栄正人(東北大)

委員会では、2004 年度前期には、2003 年十勝沖地震 の地震動の特徴と分析結果、及び長周期地震動を主とし た強震動評価に関して、委員と関連研究者による研究成 果を発表し、相互の理解を深めるとともに、強震動評価 手法の到達点の議論を行ってきた.これまでの話題提供 に関する内容は、本シンポジウムセッション4に集約さ れている.

2004 年度後期においては、プレート境界巨大地震発 生時の地震動予測を念頭において、最新の予測手法の検 討や実際予測する際に重要である地下構造モデル情報な どについての情報交換を行っている.この内容について はセッション5及び6で紹介される.また日本建築学会 地盤震動小委員会と合同で,関連研究者にプレート境界 地震の想定地震による強震動予測に関するアンケートを 行って,予測されている想定地震やその手法,計算結果 などの情報を入手している.この情報を今後とりまとめ て,入力地震動の作成や利用についての方針を検討する ことに利用される.

地震動部会の活動報告としては、2004 年 9 月の土木 学会年次大会研究討論会で報告を行っている(岩 田,2004).そこでは、地震動部会の活動内容と、その 時点で報告された 2003 年十勝沖地震の長周期地震動の 検証、及び研究討論会直前に起きた 2004 年紀伊半島沖 地震の観測地震動についての話題提供を行った.周知の ように 2004 年 9 月の紀伊半島沖地震は想定東南海地震 の南側で起きたプレート内地震であるが、大阪・濃尾・ 関東平野の、特に湾岸域において長周期地震動が観測さ れた.この地震の検証もフィリピン海プレートでの巨大 地震時にこれらの都市圏が受けるであろう長周期地震動 の特徴を予め知ることに大いに役立つと考えられる.

地震動部会の議事録を付録として添付する.

参考文献

岩田知孝,巨大地震による長周期地震動,2004年土木学 会研究討論会資料集「巨大地震災害 今,土木技 術者は何をすべきか?」,巨大地震災害への対応特 別委員会,3-10.

3. 広帯域強震動予測の現状と展望

入倉孝次郎1

京都大学理事副学長 (〒606-8501 京都市左京区吉田本町) E-mail:irikura@egmdpri01.dpri.kyoto-u.ac.jp

今世紀の前半にも発生の可能性の高い南海トラフ地震はマグニチュード 8.0~8.4 の巨大地震で,南関 東から九州に至る広い地域が強い長周期の地震動に襲われることになる.強震動域となる名古屋,大阪, 東京などの巨大都市およびその周辺域には,未だ巨大地震の地震動では験されていない超高層建築物,免 震構造物,長大橋,石油タンクなどの長周期構造物が存在する.震源域近傍では長周期のみならず短周期 を含む広帯域の強震動が予測されるがそこには新幹線や高速道路など我が国の基幹交通網が走っている. しかしながら,このような巨大地震が発生したときの大都市の堆積盆地における長周期を含む広帯域地震 動の特性について,これまで地震防災の観点から殆ど検討がされてこなかった.予測される広帯域地震動 に対して既存の都市構造物が十分な耐震性を有しているかどうかの照査は緊急の課題といえる.このため, 土木学会と日本建築学会は共同して,巨大地震の地震動の予測および既存構造物の耐震診断と耐震補強に 関する調査研究を進めるため,巨大地震災害への対応共同研究連絡会を設置した.本研究は,巨大地震の 発生を想定して、①耐震診断・対策に供される構造物への照査用入力地震動を、所定の精度で設定するた めの方法論の確立、および②その手法に基づいて堆積盆地を有する大都市の任意サイトにおける具体的な 入力地震動の評価、を行うための中間報告である。

Key Words : devastating great earthquake, broad-band ground motion, Nankai-trough earthquake, strong motion prediction

講演レジュメ

- 1. 海溝型巨大地震の地震動シミュレーションの到達点
 - (1) 理論的手法:
 - 例:古村孝志(2004)¹⁾ 地球シミュレータによる大規模並列差分法(FDM)用いた想定東海地震のシミュレーション 青井・他(2005)²⁾ 不連続格子による3次元有限差分法による2003年十勝沖地震の地震動(周期3.3~50秒)シミュレ ーション
 - (2) 経験的グリーン関数法:
 - 例:Kamae, Kawabe and Irikura (2004)³⁾ 経験的グリーン関数法を用いた想定東南海,南海地震の地震動シミュレーション
 - (3) ハイブリッド法:
 - 例:森川・他(2004)⁴⁾,地震調査委員会強震動評価部会(2005)⁵⁾ 長周期成分(5秒以上)は3次元有限差分法,短周期成分(5秒以下)は統計的グリーン関数法

予測問題として上記のシミュレーション結果の有効性を議論するには、海溝型巨大地震の震源像、それ に基づく強震動予測のための震源のモデル化および適切な震源パラメータの設定、精度ある3次元地 下構造のモデル化等について個別に検討が必要とされる.

2. 海溝型巨大地震の震源像

- (1) 2003年十勝沖地震からわかったこと
 - イ.本震のすべり分布,津波生成域,余震分布,余劫変動(纐纈,2004)⁶ すべりの大きい領域は震源域の 10 数%,余震はすべりの大きい領域の周辺部発生,余劫変動は 本震の震源域の周辺に広がる.
 - ロ. 震源過程の波形インバージョン結果の比較(青井, 20047);引間・他⁸⁾)

強震動記録のインバージョンからは3つのアスペリティ、遠地記録からは1~3個、測地データ とのジョイント・インバージョンからのアスペリティは大きめになる. 短周期の強震動生成域と 津波の生成域は異なる.

- ハ. 経験的グリーン関数法による地震動のシミュレーション(Kamae and Kawabe, 2004)⁹⁾ 強震記録の主要動は3つのアスペリティから寄与. 震源像としてアスペリティ・モデルの有効性.
- (2) 過去の海溝型巨大地震の震源面内におけるすべり分布(Yamanaka and Kikuchi, 2004)¹⁰
 - イ. 1968 年十勝沖地震(Mw 8.3)は震源域の北側と南側に2つのアスペリティ(すべりの大きい領域, すなわち強震動の生成域),1997年三陸遙か沖地震(Mw 7.7)は1つのアスペリティを持ち、それ は1968年十勝地震の南側のアスペリティに重なる.
 - ロ. 2003年十勝沖地震と1952年十勝沖地震のアスペリティは重なる.両地震の震度分布はほぼ一致 している.
 - アスペリティはほぼ同じ場所で繰り返される.過去の地震データに基づいて将来の地震に対する震 源のモデル化が有効となる.
- 3. 地震動予測のための震源のモデル化
 - (1) 巨大地震の震源スペクトル (Houston and Kanamori, 1986)¹¹⁾ 変位震源スペクトルは短周期域(1~10 秒)でω2で減衰(短周期になるほど小さい).従って、これ らの短周期域で加速度震源スペクトルは平坦となる.
 - (2) 2003 年十勝沖地震による強震動記録の応答スペクトル(Kamae and Kawabe, 2004)⁹⁾ 震源域近傍における岩盤や硬質地盤での速度応答スペクトルは短周期域(1~10秒)で平坦.
 - (3) アスペリテー震源モデルの基本式(入倉孝次郎・三宅弘恵, 2002)¹²⁾ Das and Kostrov (1986)のアスペリティ・モデルに基づいて次の式で与えられる.

```
Seismic Moment (Boatwright, 1988)
```

Stress Dron (Boatwright 1988)

$$\Delta \sigma_a = \frac{7}{16} \frac{M_0}{r^2 R}$$

 $M_0 = \frac{16}{7} \Delta \sigma_a r^2 R$

Acceleration Source- Spectrum (Madariaga, 1977)

$$A_0^a = 4\pi\beta v_R \Delta \sigma_a r$$

ここで Rは全破壊域の半径, rはアスペリティ域の半径,

Δσ はアスペリティでの応力降下量, A は震源加速度スペクトルの平坦レベル,

βは媒質のS波速度, ν_gは破壊速度.

上の基本式は, single asperity model に対して導かれたものであるが, 一般性を失うことなく multipl e asperity model に対しても同様の形で与えられる. その場合, アスペリティの半径rは アスペリティの総面積の等価半径で置き換える必要がある.

- (4) アスペリティ震源モデルからの震源スペクトルの形状 (Miyake, et al, 2003)¹³⁾ 震源加速度スペクトルはアスペリティの面積に起因するコーナー周波数から Fmax まで平坦で与えら れる. それより低周波数域も高周波数域も小さくなる.
- 4. 海溝型巨大地震の強震動予測レシピ:入倉(2004)¹⁴⁾参照

- 5. 数値計算上の問題点
 - (1) 経験的グリーン関数法の基本式 (Irikura, 1986)¹⁵⁾
 - (2) ハイブリッド法 (Kamae and Irikura, 1998¹⁶);入倉・釜江, 1999¹⁷⁾) 理論計算における短周期限界と接続周期(佐藤・他, 2004¹⁸⁾)
 - (3) スリップ速度時間関数の与え方(入倉・三宅, 2004¹⁴⁾) Kostrov の関数 $1/\sqrt{t}$ は高周波数域で $1/\sqrt{\omega}$ で減衰するため平坦な加速度スペクトルが与えられない. それを防ぐには1/tの形状を持つ関数の導入が必要.

巨視的震源パラメータ 微視的震源パラメータ その他のパラメータ

- (4) 地下構造モデルの高精度化の必要性; 震源域から陸域までの海側の3次元地下構造の影響(纐纈, 2004)¹⁹⁾ 堆積盆地内での小盆地(sub-basin)の影響による大振幅で継続時間の長い地震動が生成された(青井・ 他, 2005⁷⁾).
- (5) 伝播媒質の Qs の設定 3 次元地下構造モデル設定の時の各層の Qs 値を周波数依存として与える(川辺・釜江, 2004)²⁰⁾.
- 6.構造物の応答を計算するときの問題点(北村, 2004)²¹⁾

参考文献

- 1) 古村孝志: 2003年十勝沖地震を教訓に考える、東海地震の長周期地震動と関東平野の揺れ、 東京消防、V83, No9、12-16, 2004.
- 2) 青井 真,本田 亮,森川信之,関口春子,早川 譲,藤原広行:2003年十勝沖地震の長周期地震動評価の検証, 海溝型巨大地震を考える一広帯域強震動の予測―シンポジューム(Feb. 19, 2005), 2005.
- Kamae, K., H. Kawabe and K. Irikura : Strong ground motion prediction for huge subduction earthquakes using a characterized source model and several simulation techniques, 13WCEE, Vancouver, Paper No, 655 (CD-ROM), 2004.
- 4) 森川信之, 本田 亮, 青井 真, 藤原広行: 2003年十勝沖地震, 強震動評価手法を検証する, 防災科学研究所ホ ームページ, 2004.
- 5) 地震調査委員会強震動評価部会:2003年十勝沖地震の観測記録を利用した強震動評価手法の検証, 地震調査 研究推進本部(平成16年12月20日)報告書, 2004
- 6) 纐纈一起:2003年十勝沖地震に関する緊急調査報告,土木学会・日本建築学会共同研究連絡会地震動部会(第 2回:2004年4月24日),2004.
- 7) 青井 真:2003年十勝沖地震の検証, 土木学会・日本建築学会共同研究連絡会地震動部会(第2回:2004年4月 24日), 2004.
- 8) 引間和人:強震動・測地・遠地波形・津波」データから見た:2003年十勝沖地震の尊厳過程,月刊地球 号外,49, 47-55,2004.
- 9) Kamae, K. and H. Kawabe: Source model composed of asperities for the 2003 Tokachi-oki, Japan, earthquake (M_{JMA}=8.0) estimated by the empirical Green's function method, Earth Planets Space. Vol. 56, pp. 323–327, 2004.
- 10) Yamanaka, Y. and M. Kikuchi: Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data, J. Geophys. Res., Vol. 109, doi:10,1029/2003JB002683, 2004.
- Houston and Kanamori: Source spectra of great earthquakes: Teleseismic constraints on rupture process and strong motion, Bull. Seis. Soc. Am., 76, 19-42, 1986.
- 12) 入倉孝次郎・三宅弘恵: 予測のための震源のモデル化,月刊地球,号外 Vol. 37, pp. 62-77, 2002.
- Miyake, H., T. Iwata, and K. Irikura: Source characterization for broadband ground-motion simulation: Kinematic heterogeneous source model and strong motion generation area, Bull. Seism. Soc. Am., 93, 2531-2545, 2003.
- 14)入倉孝次郎:強震動予測レシピー大地震によるよる強震動の予測手法一,京都大学防災研究所年報、47 A,2004
- Irikura, K.: Prediction of strong acceleration motions using empirical Green's function, Proc. 7th Japan Earthq. Eng. Symp., pp. 151-156, 1986.
- 16) Kamae, K., Irikura, K., and Pitarka, A.. A Technique for simulating strong ground motion using hybrid Green's function, *Bull. Seism. Soc. Am.*, 88, 357-367, 1998.
- 17) 入倉孝次郎・釜江克宏:1948 年福井地震の強震動—ハイブリッド法による広周期帯域強震動の再現—, 地震第2輯, 52, 129-150, 1999.
- 18) 佐藤俊明・渡辺基史・早川 崇: 巨大地震の長周期地震動予測のための広帯域ハイブリッド法,海溝型巨大地 震を考える一広帯域強震動の予測―シンポジューム(Feb. 19, 2005), 2005.
- 19) 纐纈一起:2. 地震動の特性,2003年(平成15年)十勝沖地震被害調査報告会(2003年12月5日,早 稲田大学),2003.
- 20) 川辺秀憲・釜江克宏:長周期地震動予測のための Qs 値の周期依存性に関する検討,2005 年日本地震学 会秋季大会予稿集 S15-08171135,2005.
- 21) 北村春幸:長周期地震動に対する長周期構造物の設計法-これまでの設計用入力地震波と検証応答値との比較から-,文部科学省学術フロンティア推進事業「強地震動下における構造物および機器・装置・

配管系の損傷制御および機能維持システムの開発」平成16年度研究報告書第1号,5-28頁,2004.

4. 十勝沖地震の震源過程と予測手法の検証

2003年十勝沖地震の震源断層と破壊過程モデル

纐纈一起・引間和人

2003年十勝沖地震による石油タンクの被害と長周期地震動 畑山健・座間信作・西晴樹・山田 實・廣川幹浩・井上涼介

1952 年と 2003 年の十勝沖地震の震度インバージョン解析 神田克久・武村雅之

2003年十勝沖地震の長周期地震動評価の検証 青井真・本多 亮・森川 信之・関口 春子・早川 譲・藤原 広行

経験的グリーン関数を用いた 2003 年十勝沖地震の波形インバージョン解析 野津厚

+勝沖地震の表面波の卓越分布と非定常スペクトルを用いたインバージョンに よる震度推定精度

久世益充・杉戸真太

2003年十勝沖地震の震源断層と破壊過程モデル

纐纈 一起1・引間 和人2,3

¹東京大学教授 地震研究所(〒113-0032 東京都文京区弥生1-1-1) E-mail:koketsu@eri.u-tokyo.ac.jp

²東京大学大学院生 地震研究所(〒113-0032 東京都文京区弥生1-1-1) E-mail:hikima@eri.u-tokyo.ac.jp

3応用地質株式会社 技術本部 (〒331-0804 埼玉県さいたま市北区土呂町2-61-5)

長周期地震動が問題となったもっとも最近の例として、2003年十勝沖地震の震源断層とその破壊過程に ついて紹介する.強震動および測地データの同時インバージョンにより破壊過程の解析を行い、破壊開始 点から北西方向に30~50km程度から断層深部にかけてアスペリティが存在することが示された.この結 果と遠地実体波、津波記録を用いた解析結果との一致点や相違点は、破壊過程そのものやデータの特徴を 反映したものである可能性がある.震源断層は沈み込む太平洋プレート上面に想定されたが、海底地震計 による余震観測によれば上面の深さは従来より10~20km浅い.また、上面は曲がった形状をしているの で、浅い曲面状の震源断層での破壊過程解析も行った.

Key Words: 2003 Tokachi-oki earthquake, source fault, rupture proces

1. はじめに

2003年十勝沖地震はプレート境界地震であり、今回の 震源域は1952年の十勝沖地震の再来と考えられる⁰ので、 その震源過程を解析することにより、沈み込み帯に繰り 返し発生する巨大地震の発生機構の解明が進むものと考 えられる.また詳細な震源過程を知ることで強震動の生 成及びその予測にも重要な情報が得られることが期待される.

この地震では、KiK-net,K-NET等による強震動デー タやGEONETによる測地データなど、良好な記録が多数 得られた.また、地震時に発生した津波についても北海 道・東北沿岸の験潮所等で記録が得られている.ここで は強震動及び測地データを用いた同時インバージョンを 実施した.併せて遠地実体波、津波波形を用いた解析も 行って、震源過程の共通像を明らかにするとともに、デ ータの違いによる描像の相違点を議論する.なお、本稿 は多くの部分を引間・他¹に拠っている.

2. 強震動・測地データ

はじめに強震動および測地データを用いたインバージョンを実施した.強震記録としてはKik-netのうち,表層の地盤条件に影響されることが少ない地中地震計の記録

を利用した.図-1に▲で示した11観測点の3成分加速度 記録を積分し、0.02~0.2Hz(周期5~50s)のバンドパスフ ィルタをかけて用いた.さらに、今回は破壊開始点付近 の解析精度を向上させるため、JAMSTECの海底ケーブ ル地震計(図-1の●印)記録も併せて使用した.ただし、 ケーブルの回転等の影響と思われる長周期成分が見られ たため²、フィルタは0.05~0.2Hz(周期5~20s)とした. 一方、宮崎・加藤(2003)³は図-1に+印で示した

図-2 強震動・測地データを用いた同時インバージョン結果

GEONETの127観測点で得られたGPSデータから本震時の 地表変位を求めている.本研究ではこれらのうち水平変 動データを用いて解析を行った.

断層モデルにはKoketsu *et al.* (2004)⁴と同様のものを用 いた.破壊開始点は、気象庁による震央を北緯41°46.78'、 東経144°4.71'におき、その深さはYamanaka and Kikuchi (2003)⁰⁰や、Katsumata *et al.* (2003)⁹に基づき25kmとした.ま た、Yamanaka and Kikuchi (2003)⁹による走向230°と傾斜20° を採用した.図-1に示した120×100km²の断層面を設定し、 これを、中心に点震源を置いた10×10km²の小断層に分割 した.すべり時間関数は立上り時間2sの傾斜関数を10個 重ね合わせて表現した.さらに、すべり角90±45°の2 成分で逆断層のすべりベクトルを表現し、時間・成分ご とのすべりの大きさをYoshida *et al.* (1996)⁷の方法でインバ ージョンした.グリーン関数の計算方法もKoketsu *et al.* (2004)と同じである.

3. 同時インバージョンの結果

強震動データと測地データの同時インバージョンの結 果得られたすべり分布を図-2に示す.すべてのデータに 同じ重みを与え,第1傾斜関数をトリガする時刻は破壊 開始点から速度3.6km/sで拡がると設定して解析を行った. 最大すべり量と地震モーメントはそれぞれ7.6m, 2.3×10²¹Nm (Mw 82)となり,KiK-netデータにも0.05~ 0.2Hzのフィルタを用いたKoketsu *et al.* (2004)の結果と比べ ると若干大きな値となった.大きなアスペリティが破壊 開始点から北西方向に30~70km離れた位置に存在する. さらに断層の深部端にもやや小さなアスペリティが見ら れる.

この時の強震動の計算波形と観測波形との比較を図-3 に、水平変動量の計算変位と観測変位の比較を図-4に示 す.図-3ではインバージョン結果に対する計算波形は観 測波形に良く一致していることがわかる.但し、海底ケ ーブル地震計KOB1のNS成分は観測記録の振幅が極端に 大きく、計算波形では再現できていない.この地点は震

図-3 観測波形と計算波形の比較

図-4 水平変動量の観測値と計算値の比較

源域に近く、地震発生時に海底地すべりなど地震動以外 の影響を受けて大振幅が観測された可能性も考えられる. 水平地殻変動についても計算値と観測値はおおむね良い 一致を示している.

図-5 遠地実体波を用いた解析結果

図-6 遠地実体波(P波)の観測波形と計算波形との比較

4. 遠地波形・津波記録の解析

次に、遠地波形と津波記録を用いた解析を試みた.遠 地波形はYamanaka and Kikuchi (2003)⁰など、津波記録は Tanioka *et al.* (2004)⁸などによって解析されているが、今回 の解析とは断層面などの解析条件が異なっており、結果 を単純に比較することができない.そこで、我々は同時 インバージョンと同じ条件で再解析を行った.

遠地実体波を用いた解析では、世界各地にある広帯域 地震計での波形記録をIRIS DMCより収集した. 観測地 点は24地点であり、全点でP波記録、5点ではSH波形記 録が得られている. グリーン関数は震源、観測点近傍の 地殻構造が考慮できるKikuchi and Kanamori (1991)⁹の方法 で計算した. すべり時間関数は立上り時間2sの傾斜関数 を8つ並べて表現し、先頭の傾斜関数をトリガする速度 は同時インバージョンと同じく3.6km/sとした. 図-5の解 析結果が示すように、最大すべり量は4.0mであり、地震 モーメントは1.1×10²¹Nm (Mw 8.0)である. Yamanaka and Kikuchi (2003)⁰とほぼ同じデータセットを用いているた

図-7 津波記録を用いた解析結果

め、すべり分布はよく似た結果が得られている. 地震モ ーメントもほぼ一致しているものの、同時インバージョ ンの結果と比較すると約半分の大きさであった. 一部の 観測点での観測波形とインバージョン結果による計算波 形の比較を、解析に使用した観測点配置とともに図-6に 示す. 波形の一致は良好であった.

次に、北海道から東北の太平洋岸に位置する9ヶ所の 験潮所,および釜石沖に設置された海底津波計2点の波 形記録を用いてインバージョン解析を行った. 用いた観 測記録はTanioka et al. (2004)⁸が使用したものと同じである. グリーン関数の計算にもTanioka et al. (2004)⁸と同じ手法・ モデルを用いた. インバージョンは断層面上の破壊伝播 の影響は無視できるとして行った.解析結果を図-7に示 す. すべりが大きな領域は破壊開始点から北西方向に存 在し、そこから北東の深部につながっている. この傾向 はTanioka et al. (2004)⁸と同様である。地震モーメントは 1.0×10²¹Nm (Mw 8.0)であり, Tanioka *et al.* (2004) ⁸や Yamanaka and Kikuchi (2003)⁹と同じ値である. 図-7では断 層東部で最も大きなすべり量となっているが、Tanioka et al. (2004)では今回の断層面よりも東の尻羽岬沖まで解析 領域を取り、そこでの平均すべり量を2.1mとしている。 今回用いた断層面では解析領域が狭かったために、この すべりが領域の東端に集中し、すべり量が大きくなった

ものと考えられる. 観測波形と計算波形との比較は図-8 に示したとおりであり、良く一致しているが、解析領域 を拡げることで釧路など東部の観測点での波形の一致が さらに改善される可能性がある.

5.2003年十勝沖地震の震源過程

以上の結果から2003年十勝沖地震の震源過程について 考察していく.図-9には同時インバージョン結果による 破壊開始から3秒ごとのすべり速度のスナップショット を示した.破壊開始点から30~40km離れた位置で15秒後 程度に大きなすべり速度を生じ,さらに破壊は断層深部 に進展して陸域に近い箇所で最大のすべり速度を生じて いる.また,図-2の最終すべり分布では明瞭なアスペリ ティとしては現れていないものの,□で示したように主 要な破壊にやや遅れて断層中央部から北東側の深部に向 けて破壊が進展している様子が見られる.全体の破壊継 続時間は45秒程度である.図-10には各小断層でのすべ り速度関数をプロットした.破壊開始点から断層傾斜方 向に伝播するアスペリティを詳しく見ると,図-10でI およびIIとした2つの領域に分けられる.Iはすべりの 継続時間が比較的長くその中でやや複雑なすべりを生じ

ている. IIでは継続時間が短いもののすべり速度のピークは大きくなっている.これらの特徴から, Iからは短 周期成分を含んだ比較的長周期の波動が放出されること が想定され, IIからはより短周期の波動が強く放出され ることが考えられる.北東向きの破壊進展に相当する領 域IIIでは継続時間がより短いためさらに短周期成分に富 んだ波動を放出したであろう.

また、図-10で I ~ II に連なるすべり関数を見てみる と、主要な破壊は伝播するにつれてウィンドウ内の早い 時刻にずれてきている.このすべり速度関数の分布から 主要なすべりの立ち上がり時刻を連ねて概略の破壊伝播 速度を求めると4.2km/s程度になる.震源域でのS波速度 は4.0~4.4km/sであるから破壊伝播速度はS波速度とほぼ 等しいか一部ではS波速度を超えてsuper shearで伝播して いる可能性がある.

次に、以上のような特徴が遠地波形、津波記録を用い た解析結果にどのように表れているか見てみる. 図-5. 図-7のすべり分布を見るとどちらも震源から北西方向に 30~50kmの位置にアスペリティが存在しており、これ は同時インバージョン結果ですべり量が大きく比較的長 周期のすべり速度関数となった領域 I に対応している. 遠地波形、津波記録は震源の長周期成分の震源過程を強 く反映しているので妥当な結果であろう. これに対して, 比較的短周期のすべり速度関数で構成されている領域Ⅱ, Ⅲは図-5、図-7には現れていない.また、図-7の北東部 の大きなすべりは、解析領域を拡げることでさらに東へ 移動する可能性があるので、やはり短周期の強震動を放 出した領域と津波を生成した領域は異なっていたという ことになる. なお、遠地波形、津波記録の解析から得ら れた地震モーメントの値は同時インバージョンによる地 震モーメントに比べて半分程度の小さな値であった. こ れらの違いの原因については今後の検討課題である.

最後に, 観測波形から以上の震源過程の特徴を検証し てみる. 図-11はKiK-netの孔中強震計の加速度波形を積 分した速度波形の動径成分である. 図-11で震源域の北 西に位置する観測点では明瞭な長周期パルスが見られる (図-11下線部). 2003年十勝沖地震は下向き傾斜の逆 断層タイプであるので,破壊伝播方向の地表観測点では P波やP波・S波の中間の近地項にその影響があらわれや すい.S波速度を越えるような破壊伝播速度はこうした 傾向を助長するので、強震動記録の比較的早い時期に大 きなパルス上の波形が現れることになる. また, 遠地波 形にも強いディレクティビティ効果を見ることができる. 図-6において、震源から破壊伝播方向である北西方向の 観測点では比較的単純なパルス状の波形をしており、継 続時間も短くなっている.このほか、図-11では震源の 北東側の十勝、釧路側の波形には短周期成分が多く含ま れていることがわかる.このことは領域Ⅲで短周期成分 を多く放出したと考えられることと調和的である.

6. プレート上面

本震直後から海底地震計を使った余震観測が行われた¹⁰. その結果(図-12)によれば、余震の深さが気象庁により決定された値に比べ、10~20km程度浅く決まっている. 余震域の直上に海底地震計が展開されたことにより(図の▽印)、震源深さの決定精度が向上した効果である. したがって、余震分布から推定される本震の震源断層、 あるいは太平洋プレート上面はこのように浅い領域に広 がっている可能性が高い.また,この震源断層は千島海 溝と日本海溝の接合部に近く,沈み込みの方向が大きく 変化している領域にあるので,断層面が曲面となってい る可能性が高い.

図-12 海底地震観測で決定された余震の分布

これらの要素を考慮して新たに図-13に示した断層面 を設定し, 強震動データのインバージョンをやり直して みた. なお, 断層面を構成する小断層の形状は, 曲面を 構成しやすいように矩形から三角形に変更した.

図-13 曲がった浅い断層面でのインバージョン結果

得られたすべり分布は図-2の同時インバージョン結果に 近いが、北東深部のすべりが小さめになり、より主アス ペリティへすべりが集中したように見える.

謝辞:解析には防災科学技術研究所KiK-netの波形記録および海洋研究開発機構による海底ケーブル地震計の波形記録,国土地理院のGEONETによるGPSデータを,さらに,気象庁,北海道開発局,海上保安庁海洋情報部の験潮記録を使用させていただきました.各機関に感謝いたします.

参考文献

- Yamanaka, Y. and M. Kikuchi : Source process of the recurrent Tokachi-oki earthquake on September 26, 2003, inferred from teleseismic body waves, Earth Planets Space, 55, e21–e24, 2003.
- 1) 引間和人・纐纈一起・谷岡勇市郎:強震動・測地・遠地波 形・津波データから見た 2003 年十勝沖地震の震源過程,月刊 地球,号外,49,47-55,2004.
- 山本容維,竹中博士,平田 賢治,渡邊智毅:2003年十勝沖 地震の海底強震計観測点における広帯域地動の推定,地球惑 星科学関連学会2004年合同大会予稿集,S046-P003,2004.
- 3) 宮崎真一,加藤照之:GEONET 資料から推定した十勝沖地震 とその余効変動に基づくすべり分布,http://www.eprc.eriutokyo.ac.jp/-teru/Tokachi-oki/kato.html,2003.
- 4) Koketsu, K., K. Hikima, S. Miyazaki, and S. Ide : Joint inversion of strong motion and geodetic data for the source process of the 2003 Tokachi-oki, Hokkaido, earthquake, Earth Planets Space, 56, 329–334, 2004.
- Katsumata, K., N. Wada, and M. Kasahara : Newly imaged shape of the deep seismic zone within the subducting Pacific plate beneath the Hokkaido comer, Japan-Kurile arc-arc junction, J. Geophys. Res., 108, 2565, doi:10.1029/2002JB002175, 2003.
- 6) 地震調査委員会:千島海溝沿いの地震活動の長期評価につい

て, http://www.jishin.go.jp/main/chousa/03mar_chishima/index.htm, 地震調査研究推進本部, 2003.

- 7) Yoshida, S., K. Koketsu, B. Shibazaki, T. Sagiya, T. Kato, and Y. Yoshida : Joint inversion of near- and far- field waveforms and geodetic data for the rupture process of the 1995 Kobe earthquake, J. Phys. Earth, 44, 437 - 454, 1996.
- Tanioka, Y., K. Hirata, R. Hino, and T. Kanazawa : Slip distribution of the 2003 Tokachi-oki earthquake estimated from tsunami waveform inversion, Earth Planets Space, 56, 373–376, 2004.
- Kikuchi, M. and H. Kanamori : Inversion of complex body waves-III, Bull. Seism. Soc. Am., 81, 2335-2350, 1991.
- Shinohara, M. et al.: Aftershock observation of the 2003 Tokachi-oki earthquake by using dense ocean bottom seismometer network, Earth Planets Space, 56, 295-300, 2004.

EARTHQUAKE SOURCE FAULT AND RUPTURE PROCESS OF THE 2003 TOKACHI-OKI, HOKKAIDO, EARTHQUAKE

Kazuki KOKETSU and Kazuhito HIKIMA

We carried out a joint inversion of the strong motion and geodetic data for the source process of the 2003 Tokachi-oki, Hokkaido, earthquake. The asperity is located in the center to a deeper portion on the fault plane, 50 km away from the hypocenter in the down-dip direction. The far-field body waves and the tsunami waveforms were also inverted to derive the source process, individually. The results share common features, but some differences can be pointed out. The characteristics of the rupture process and the natures of the data used in the inversions may have resulted in these agreement and disagreement. The source fault is assumed on the upper surface of the descending Pacific slab, and the aftershock observation by ocean bottom seismometers indicates that the surface is located at a depth 10-20km shallower than those by previous studies. In addition, the surface should be curved, so that we also carried out another rupture process inversion with a shallow curved fault plane.

2003 年十勝沖地震による 石油タンクの被害と長周期地震動

畑山 健¹・座間 信作²・西 晴樹³・山田 實⁴・廣川 幹浩⁵・井上 涼介⁶

1 非会員 独立行政法人 消防研究所 (〒 181-8633 東京都三鷹市中原 3-14-1)
E-mail:hatayama@fri.go.jp
2 非会員 独立行政法人 消防研究所 (〒 181-8633 東京都三鷹市中原 3-14-1)

E-mail:zama@fri.go.jp

3 非会員 独立行政法人 消防研究所 (〒 181-8633 東京都三鷹市中原 3-14-1)

E-mail:nishi @fri.go.jp

4 非会員 独立行政法人 消防研究所 (〒 181-8633 東京都三鷹市中原 3-14-1) E-mail:myamada@fri.go.jp

5 非会員 独立行政法人 消防研究所 (〒 181-8633 東京都三鷹市中原 3-14-1)

E-mail:hirokawa@fri.go.jp

6 正会員 茨城大学助教授 工学部都市システム工学科(〒 316-8511 茨城県日立市中成沢町 4-12-1) E-mail:inoue@mx.ibaraki.ac.jp

2003年十勝沖地震による石油タンクのスロッシングと被害の実態調査,各地の強震観測点で得られた 地震波形記録によるスロッシングの励起源である周期数秒から十数秒程度の長周期地震動の特徴の分析, 観測された地震記録に基づくスロッシングの解析結果と石油タンクの被害の関係の考察を行った.これら を通して,長周期地震動の予測・評価における留意点として,卓越周期は必ずしも直下の地下構造だけか ら決まらないこと,波長の長い長周期地震動といえどもその強度の空間変動には十分配慮すべきであるこ と,容量 10万m³級の大型石油タンクの被害評価においては,1次モードだけではなく高次モードのスロッ シングに相当する周期範囲の地震動も必要であることを挙げた.

Key Words : long-period ground motion, oil storage tanks, sinking of floating roof, sloshing, the 2003 Tokachi-oki earthquake

1. はじめに

2003年9月26日4時50分頃発生した「平成 15年(2003年)+勝沖地震」(以下,2003年+ 勝沖地震と呼ぶ)では,北海道内各地の数多くの大 型石油タンクにスロッシングによる被害が発生し た.なかでも苫小牧市周辺での被害は深刻で,現地 調査の結果,苫小牧市港地域と苫小牧東部地域(苫 小牧市東縁部と苫小牧市東方に隣接する地域を指す ものとする)にある特定屋外タンク貯蔵所の屋外 貯蔵タンク(消防法令では,「貯蔵し,又は取り扱 う液体の危険物の最大数量が1,000キロリットル (1,000m³)以上のタンク」と定義されるもので,以 下,特定石油タンクと呼ぶ)のうち,58%にあた る170基が何らかの被害を受けた.とりわけ,苫 小牧西港南岸の真砂地区では,2基の特定石油タン クから火災が発生した他,7基の特定石油タンクで 浮き屋根が沈没し(うち1基は火災が発生したタン ク),油面が大気にさらされるという危険な事態に 至るものが現れるなど甚大な被害が集中した.浮き 屋根の沈没は、スロッシングにより浮き屋根の浮き 室やデッキ板が損傷を被るなどして,浮力を失った ためと見られる、地震により浮き屋根式石油タンク で浮き屋根が沈没するという被害が発生したのは我 が国では初めてであり,これは全面火災の危険を伴 うことから重大視すべき事態である.発生したタン ク火災2件のうち1件は,地震発生直後に容量約3 万m³の原油タンクで起きたリング火災とそのタン ク周辺の配管等における火災で(9月26日4時52 分消防覚知),同日12時9分に鎮火するまで約7 時間にわたって燃え続けた(写真-1).地震の影響 により石油タンクでリング火災が発生したのは,我 が国では1983年日本海中部地震以来なかったこと である.2件目の火災は,地震発生から2日後の9

写真-1 地震直後に発生したリング火災と配管からの火 災(札幌市消防局撮影)

写真-2 地震から2日後に発生した全面火災(札幌市消 防局撮影)

月28日に容量約3万m³のナフサタンクで起きた もので(10時36分消防覚知),これは全面火災に 至り,9月30日6時55分に鎮火するまで約44時 間にわたって燃え続けるというゆゆしき事態となっ た(写真-2).この火災が全面火災となったのも, 浮き屋根が沈没し,ナフサ油面が大気に露出してい たためと見られる.我が国における浮き屋根式石油 タンクにおける全面火災は,1964年新潟地震以来 39年ぶりのことである.この他,石狩市,釧路市 の事業所でも,石油タンクに被害が発生したことが わかっている.

本稿ではまず,石油タンクのスロッシングと被害 に関して,北海道,東北地方,新潟県内の消防本部 に対して行ったアンケート調査と苫小牧市,石狩市, 釧路市の事業所で行った現地調査の結果を報告する (第2章).今回被害を受けた石油タンクの大きさか らすると,スロッシングの原因となる揺れは周期数 秒から十数秒程度の長周期の地震動である.そこで, K-NET と KiK-net,港湾地域強震観測,気象庁95 型震度計,自治体の震度計などで記録された強震波

図 -1 石油タンクの屋根形式による分類

形記録に基づき,2003年十勝沖地震の際の長周期 地震動の特徴を浮き彫りにする(第3章).最後に, 地震動とスロッシングによる最大液面上昇量の関係 について考察を行うとともに,観測された地震記録 に基づくスロッシングの解析を通して,最大液面上 昇量と石油タンクの被害の関係を調べる(第4章).

2. 石油タンクのスロッシングと被害

(1) 石油タンクの構造

円筒形石油タンクは,大まかに浮き屋根式(FRT, 図 - 1(a) と (b)), 内部浮き屋根を持つ固定屋根式 (CFRT,図-1(c)),内部浮き屋根を持たない固定屋 根式 (CDRT,図-1(d))の三つに分類できる.FRT は特定石油タンクの中でも大型の石油タンクに用 いられる型式である.一方, CFRT と CDRT は特定 石油タンクの中でも小型のタンクに用いられる型式 で,揮発性が高い油種には CFRT が,揮発性が高く ない油種には CDRT が用いられる. 浮き屋根式には ダブルデッキ型(図-1(a))とシングルデッキ型(図 -1(b)) の2種類がある.ダブルデッキ型は上下2枚 の鋼板(デッキ板)で屋根全面を浮き室にしたもの であり,シングルデッキ型は1枚の鋼板の円周上な どに浮き室を設けたものである.通常,FRTにはタ ンク下部から浮き屋根を貫通してタンク上部に達す る筒が2本取り付けられており,これらで浮き屋根 の回転を防止している.これらの筒はゲージポール, ガイドポールと呼ばれており,ゲージポールには液 面計や温度計などの測定装置が格納されている.

地震による石油タンク被害の形態を地震動の周期 特性から分類すると,短周期地震動によるものと長 周期地震動によるものとに大別される.前者の代表 的なものは側板下部の座屈・破断で,主としてタン ク本体下部で生ずる被害がこれに入る.一方,後者 には,貯液の溢流,浮き屋根デッキ板や浮き室の座 屈あるいは破損,ゲージポールやガイドポールの変 形あるいは破断,固定屋根の破損や変形など,主と してタンク上部で発生するものが入る.

(2) スロッシングと被害の調査方法

著者らは, 2003年十勝沖地震により石油タンク に発生したスロッシングと被害を知るために,アン ケート調査と現地調査を行ってきた.スロッシング と被害の発生範囲及びその概要を知ることを目的と したアンケート調査は,北海道,東北地方,新潟県 内の16の消防本部を対象としたものであり,回答 は全ての消防本部からあった.その結果,石油タン クに被害が発生したと回答したのは,石狩北部地区, 釧路市,胆振東部,苫小牧市の4つの消防本部で, それ以外の地域には被害が発生していないことがわ かった.現地調査は,苫小牧市,釧路市,石狩市, 青森県六ヶ所村の事業所に対して行った.苫小牧市 の事業所に対する現地調査は,地震発生日の2003 年9月26日から29日までの4日間の調査を皮切 りに,2004年3月までに7回行っている.また, 釧路市,石狩市,六ヶ所村の事業所に対する調査は, それぞれ 2003年11月, 2003年12月, 2004年 3月に1回ずつ行った.

(3) スロシッングによる最大液面上昇量

ここでは,スロシッングによる最大液面上昇量に 関する調査結果を報告する.アンケート調査の結果, 室蘭市,青森地域広域,秋田市,男鹿地区,酒田地区, 仙台市,新発田地域広域事務組合,上越地域の8つ の消防本部からは,スロッシングなし,あるいは確 認できていないとの回答があった.スロッシングの 発生の有無の確認及び最大波高の測定は、タンクの 液面計記録から可能な場合もあるが,そうでない場 合は,浮き屋根の揺動によりタンク側板内壁につい た擦過痕や原油など有色の油の揺動により側板内壁 についた油痕により行われることもある.スロッシ ングが確認できていないというのは, 浮き屋根式で はない石油タンクであるとか,灯油などスロッシン グによる油痕が残りにくい油種であるという事情に よるものであろう.アンケート調査では,スロッシ ングが発生している場合,石油タンク毎に,容量, 大きさ,油種等のタンク諸元,地震時の液高,液面 の最大上昇量とその確認方法などを回答するよう依 頼した.これと現地調査からわかった地域毎の最大 上昇量を図-2に示す.対象とした地域の中で最も 震源から遠い新潟でもスロッシングの発生が確認さ れている.苫小牧市とその周辺(以下,苫小牧地域 と呼ぶ),石狩市には,液面上昇量が2mを超す大 きなスロッシングをきたした石油タンクがあったこ とがわかった.苫小牧西港地域における最大液面上 昇量約3mのスロッシングは,リング火災が発生し た容量約3万m³の原油タンク(写真-1と表-2の

タンク H) と容量約 1 万 m³ の重油タンク(タンク 直径約 29m,地震時の液高はタンク高さに対して 約 71%,地震時の 1 次のスロッシング固有周期 5.9 秒,以下同様)で発生した.また,苫小牧東部地域, 石狩市における最大液面上昇量約 2.3m 及び約 3m のスロッシングは,それぞれ,容量約 4 万 m³ の原 油タンク(50m,約 86%,7.7 秒)と容量 5 千 m³ のガソリンタンク(約 21m,約 56%,5.0 秒)で発 生したものである.なお,石油タンクの 1 次のスロッ シング固有周期は下式で計算される¹⁾.

$$Ts = 2\pi \sqrt{(Di / 3.68g) \cdot \coth(3.68H / Di)}$$
 (1)

ここに, Ts は 1 次のスロッシング固有周期 (s), Di は内径 (m), H は液面高さ (m)、g は重力加速度 (m/s²)である.これは,円筒形の剛体容器内の液体 を非圧縮性完全流体とし,渦なしの場を考えた場合 の 1 次モードに対するものである.つまり,浮き屋 根の存在と内容液の粘性は考えていない.

苫小牧市とその周辺には294 基の特定石油タン クが立地しており,アンケート調査の結果,98 基 の石油タンクの液面上昇量を知ることができた.こ れらには,液面計により測定されたものの他,タン ク側板内壁に付着した原油痕や擦過痕から計測され たものも含まれる.図-3 は,この最大液面上昇量 実測値を地震時のTsに対して示したものである. 塗りつぶした点は,何らかの被害が発生した石油タ ンクであることを表している.Tsが7.6 秒の2 基 の石油タンクについては,油が溢流しており,最大

図-3 苫小牧の石油タンクの最大液面上昇量

液面上昇量は地震時の空間余裕高さ(液面から側板 頂上までの高さ)約2.1mを超えるものと考えられ る.この図から,最大上昇量が2mを超える大きな スロッシングは,Tsが6~8秒の石油タンクで発 生していることがわかる.苫小牧東部地域には,二 つの石油備蓄基地があり,そこには容量約11~12 万m³の地上タンクとしては国内最大級の石油タン クが集中している.これらのタンクは満液時にはTs が約11秒となるが,そのようなタンクには,最大 液面上昇量0.5ないし1m程度のスロッシングが発 生したことがうかがえる.なお,式(1)からわか るように液面が低くなるとTsは大きくなる.Tsが 約14秒である2基のタンクは容量の半分程度しか 油が入っていなかった国内最大級の石油タンクであ る. (4) 石油タンクに発生した被害

表-1 に被害を受けた石油タンクの数を地域毎に 掲げる.苫小牧地域では,石油タンクを抱える事業 所は二つの地域に分布している. 一つは, 製油所な どが立地する苫小牧西港地域であり、もう一つは、 二つの石油備蓄基地などが立地する苫小牧東部地域 である.この二つの地域は,10km 程度以上離れて いるので,別々の区分とした.被害タンク数の欄に 掲げている数字は,被害形態を問わず何らかの被害 を被った石油タンクの数で,括弧内はそのうち被害 程度が甚大なものの数である.ここで,被害程度が 甚大なタンクとして分類したのは,火災,浮き屋根 の沈没のいずれかあるいは両方が発生したものであ る.この表から北海道南部に立地する容量 1,000m³ 以上の特定石油タンクのうち 190 基が何らかの被 害を被ったことがわかる.そのうち9基は被害甚大 である.また,これより小さい容量 500~ 1,000m³ のいわゆる準特定屋外貯蔵タンクのうち6基にも何 らかの被害が発生している.苫小牧西港と苫小牧東 部地域を合わせた地域にあって被災した特定石油タ ンクは 170 基で,特定石油タンクの被害は苫小牧 地域に集中していると言える.後に詳述するが,苫 小牧地域で発生した被害のほとんどはタンク上部で 起こったもので,それらはスロッシングによる被害 の特徴を有している.震源に近い釧路市では,容量 500~1,000m³の小さめの石油タンク 15 基のうち 3基が被害を受けており,苫小牧西港地域に比べて 被害率が高い、釧路市の事業所における石油タンク の被害には,甚大なものはなかったものの,アルミ 製内部浮き屋根の補強材の一部変形,鋼製内部浮き

	Tanks with capacities			Tanks with capacities				
			over 1,000 m ³		of 500 to 1,000 m ³			
		Number	Number of	Damage	Number	Damage		
			damaged	ratio (%)		damaged	ratio (%)	
			(Seriously			(Seriously		
			damaged)			damaged)		
Tomakomai Western Port	Total	190	91(8)	48	24	2(0)	8	
	FRT*	24	22(7)	92	0	0(0)	-	
	CFRT*	44	31(1)	70	8	2(0)	25	
	CDRT*	108	38(0)	35	4	0(0)	0	
	Unknown	14	0(0)	0	12	0(0)	0	
Eastern	Total	104	79(0)	76	4	1(0)	25	
Tomakomai	FRT*	92	79(0)	86	2	1(0)	50	
	CFRT*	0	0(0)	-	2	0(0)	0	
CDRT*		12	0(0)	0	0	0(0)	-	
Kushiro		59	17(0)	29	15	3(0)	20	
Ishikari		12	3(1)	25	0	0(0)	-	
Total		365	190(9)	52	43	6(0)	14	

表 -1 北海道ににおける石油タンクの被害 (2004 年 4 月 1 日現在)

* FRT=Floating roof type/CFRT=Covered floating roof type/CDRT=Cone or dome roof type

写真-3 石狩市の石油タンクにおける浮き屋根破断(石 狩北部地区消防本部撮影)

屋根上へのガソリン飛散など,長周期地震動によっ てスロッシングが生じた場合に特徴的に見られる被 害が発生した他,タンクの傾斜(約1/48),アンカー ボルトの引き抜き,タンクヤード地盤の液状化など 強い短周期地震動に見舞われた場合に特徴的に見ら れる被害も発生している.ただし,タンクの傾斜な どは 1993 年釧路沖地震の影響も加わっている可能 性がある.今回の地震で甚大な被害が発生した9基 の石油タンクのうち1基は石狩市に立地している. 石狩市には12基の特定石油タンクがあり,いずれ も石狩湾新港地区に立地している. 甚大な被害を受 けたタンクは,容量5千m³のCFRT ガソリンタン ク (本章 (3) で最大液面上昇量が約 3m と報告した タンク)で,内部浮き屋根が破断するという激しい 損傷が見られた (写真-3). なお,青森県六ヶ所村 の事業所における現地調査でも浮き室に軽微な被害 が散見されたが,今回の地震によるものかは確認で きなかった.

表-1 が示すように被害程度が甚大なタンクは苫

小牧西港地域に集中している.苫小牧西港地域で は,48%にあたる91基の特定石油タンクが被災 し,そのうちの8基が甚大な被害を被っている.-方,苫小牧東部地域では,甚大な被害は発生してい ないものの,76%ものタンクが何らかの被害を受 けている.苫小牧東部地域と苫小牧西港地域の被害 状況を比較する上で,地震動などから決まるスロッ シングによる液面上昇量の議論が重要であることは 言うまでもないが,石油タンクの構造や運用形態も 考慮に入れなければならない.まず,苫小牧東部地 域に立地する特定石油タンクの大部分は備蓄用であ り,それらは通常満液の状態である(地震時の平均 貯油率約82%). さらに, 苫小牧東部地域の石油備 蓄基地の全ての石油タンクはダブルデッキ型 FRT (図-1(a))である.一方,苫小牧西港地域の特定石 油タンクは,製造,出荷,貯油用であり,満液であ るとは限らない(同約49%).また,この地域には, FRT, CFRT, CDRT など様々な構造を持つ様々な大 きさの特定石油タンクが混在している.さらに,こ の地域での浮き屋根は全てシングルデッキ型(図 -1(b))である.特定石油タンク全体で見ると,苫小 牧東部地域の被害率は苫小牧西港地域に比べて大き な値であるが, FRT すなわち特定石油タンクの中で も大型のタンクに限って見れば大差はない.苫小牧 西港地域には CDRT の特定石油タンクが多数立地し ているが,これら小型のタンクの被害率は35%と 低く,これが特定石油タンク全体に対する被害率を 下げる要因になっている.ダブルデッキ型の浮き屋 根はシングルデッキ型のそれに比べて,損傷しても 沈没するなど甚大な被害に至りにくいと考えられて いる. 甚大な被害が苫小牧西港地域に偏った一因に は,両地域における浮き屋根の構造の違いも考えら れる.

表-2 に苫小牧西港地域で甚大な被害を被った8 基の特定石油タンクを掲げる.8基の被災タンクの

Tank	Capacity (m ³)	Oil ¹⁾	Roof Type ²⁾	Diameter (m)	Liquid height ³⁾ (%)	Ts (s)	Wh (Obs.) ⁴⁾ (m)	Wh (Cal.) ⁵⁾ (m)	Damage ⁶⁾
A	109,900	CR	FRT	78.2	59	12.0	-	1.3	Sink
В	109,900	CR	FRT	78.2	58	12.1	~1.3	1.3	Sink
С	32,779	Ν	FRT	42.7	77	7.1	-	2.9	Sink & O. Fire
D	43,872	K	FRT	49.4	91	7.6	>2.1	3.4	Sink
E	43,872	K	FRT	49.4	91	7.6	>2.1	3.4	Sink
F	43,872	S	FRT	49.4	64	8.1	-	2.9	Sink
G	9,990	N	CFRT	27.8	25	7.3	-	1.8	Sink
H	32,778	CR	FRT	42.7	89	7.0	~3	2.9	R. Fire

表 -2 甚大な被害を受けた苫小牧西港地域の石油タンク

1) CR=Crude oil/N=Naphtha/K=Kerosene/S=Slop

2) FRT=Floating roof type/CFRT=Covered floating roof type

3) Percentage of liquid height during the earthquake to tank height

4) Observed maximum sloshing wave height

5) Maximum sloshing wave height calculated subject to observed ground motion consisting of two horizontal components

6) Sink=Sinking of floating roof/O. Fire=Open top fire/R. Fire=Ring fire

写真 -4 浮き屋根が沈没した容量約 11 万 m³の原油タン ク(札幌市消防局撮影)

写真-5 浮き屋根が沈没した容量約4万m³の灯油タン ク(札幌市消防局撮影)

写真-6 破損した浮き屋根浮き室(出光興産(株)撮影)

うち7基は, 浮き屋根が沈没したもので, これらの 内訳は容量約11万m³の原油タンク2基(タンク A, B), 全面火災が発生した同約3万m³のナフサ タンク1基(タンクC), 同約4万m³の灯油タン ク2基(タンクD,E),同約4万m³のスロップ(残 油)タンク1基(タンクF), 同約1万m³のナフサ タンク1基(タンクG)である.残りの1基である

写真 -7 浮き屋根が沈没した容量約4万m³のスロップ タンク(札幌市消防局撮影)

写真 -8 地震直後にリング火災が発生した容量約3万 m³ の原油タンクにおける浮き屋根の回転

容量約3万m³の原油タンク(タンクH)では,地 震発生直後にリング火災が発生している.タンクG は CFRT であるが,他はすべて FRT である.以下に, タンクAからFとタンクHの被害状況を写真で示す. 写真-4は、タンクAとタンクBの浮き屋根が沈没し、 原油の油面が大気に露出してしまっている様子を写 している.タンクBの油面の一部が白くなっている が,これは油面と大気とを遮断するために注入され た泡消火薬剤である.これらのタンクの周辺には, 原油が地盤上に漏洩した痕跡が見られる.側板外壁 に溢流の跡が見られないことから,雨水配水管から 流出したものと考えられる.タンクA,B以外の2 基のタンクも同じく容量約 11 万 m³ の原油タンク であるが,地震時には,これらのうち1基は検査の ため開放中,もう1基の液高はタンク高さの約8% であった. 写真-5は,約44時間燃え続けた結果原 形をとどめない程大きく変形したタンクCと浮き屋 根が沈没し,灯油の油面が大気に露出してしまって いるタンクDとタンクEの様子を写している.写真 -2 からわかるようにこれらの浮き屋根が沈没したの

は地震直後ではない.写真-5の右上に写っている タンクは, D, Eと同じ大きさのものであるが, 地 震時の液高はタンク高さの約33%であった.タン クから貯液を抜き取って浮き屋根を着底させた後の 調査によれば,タンクDでは浮き屋根外周上の26 個の浮き室のうち 6 個に損傷が認められている(出 光興産株式会社,私信).写真-6はそのうちの一つ の浮き室の損傷状況である.浮き室の外リム(側板 側の壁)と底板の溶接部が切れている.これは,地 震時の浮き屋根の揺動の他,屋根が沈没する過程と 貯液の抜き取りに伴って屋根が降下する過程の影響 も受けたものとして見る必要があるが, 浮き屋根が 自然に沈没したことからすると,地震時の浮き屋根 の揺動によってこのタンクの浮き室には写真-6に 象徴されるような貯液浸入の恐れがある状況が生じ ていたものと考えられる.写真-7は,タンクFの 浮き屋根が沈没し,油面が大気に露出してしまって いる様子を写している.油面が一部白くなっている のは泡消火薬剤が注入されたためである.このタン クの上方に写っているタンクで RC, K, CR と記号 が付してあるのは, それぞれ容量約6万m³の重油, 灯油,原油タンクである.原油タンクの浮き屋根に は原油が滞留した痕跡が見られる.浮き屋根が沈没 するほど甚大な被害を受けなかったこれら8基のタ ンクの地震時の Ts は 8.7 から 12.7 秒の範囲に分布 しており,浮き屋根が沈没した容量約3万あるいは 4万m³の4基のタンクC,D,E,Fよりも固有周 期が長い.一方,容量約11万m³のタンクA,Bは Tsを12秒付近に持ちながらも浮き屋根が沈没して いる.タンクA,Bの被害が甚大になった原因につ いては,第4章で議論する.写真-8は,浮き屋根 は沈没しなかったものの,地震直後にリング火災等 が発生したタンクHの浮き屋根上の様子である.こ のタンクには,側板頂上部に液面計指示部などを格 納した測定小屋が取り付けられていたが,これが屋 根上に落下している.これはスロッシングの際に, 測定小屋直下にボルトで取り付けられているゲージ ポールが浮き屋根の揺動によりタンク中心に向かっ て引っ張られたり, 揺動する浮き屋根自体が測定小 屋下部に衝突したりしたためと考えられる.しかも, この測定小屋は取り付け位置とは異なる所に発見さ れており,両者の位置関係などから浮き屋根は時計 回りに約 40°回転したものと見られる.

3. 苫小牧で観測された長周期地震動の特徴

 (1) 消防法に基づく空間余裕高さに関する技術基準 消防法に基づく「危険物の規制に関する技術上の 基準の細目を定める告示」(昭和58年自治省告示第 119号)では,特定石油タンクにおける空間余裕高 さを,次式における Hc(m) 以上とするよう定めている.

$$Hc = 0.45Di \cdot Kh_{\gamma} \tag{2}$$

ここに, Kh₂ は液面揺動の設計水平震度で, 同じ告示の中で,

$$Kh_2 = 0.15v_1 \cdot v_4 \tag{3}$$

$$v_{A} = 4.5 / Ts$$
 (4)

と決められている.ここで 1 は地域別補正係数で, 地震危険度に応じて 0.7,0.85 もしくは 1 の値をと る. 4 はスロッシングの固有周期を考慮した応答 倍率で,Ts は (1) 式により評価することになってい る.一方,スロッシングによる最大液面上昇量のお およその値は,速度ポテンシャル理論に基づく速度 応答スペクトル法²⁾を用いて下式により計算するこ とができる.

$$Wh = (Di/2g) \cdot 0.837 \cdot (2\pi/Ts) \cdot Sv \tag{5}$$

ここに,Whは最大液面上昇量(m),SvはTsにおける速度応答(m/s)である.(3)式における ₁は地 震危険度評価の考え方に基づくものであるからこれ を無視し,(2)式のHcと(5)式のWhを等しいとお けば Svは周期によらず約1.1m/sとなる.この値が, (2)式の規定に対応する地震動レベルであると解釈 できる.以降,本論文ではこの値を「消防法が規定 する地震動レベル」と呼び,地震動強さの議論は最 大振幅値の他,速度応答値を用いて行うこととする.

(2) 苫小牧西港における長周期地震動の特徴

図 -4 に苫小牧西港付近の地図を示す.写真-1 と 2 ならびに写真-4 から8 などの甚大な被害を受け た石油タンク8基は,いずれも苫小牧西港南岸の真 砂地区に位置する.真砂地区には製油所が立地して おり,その敷地内には3成分サーボ型加速度計が置 かれている(R-Tomakomai).製油所の対岸には, 港湾地域強震観測の苫小牧-G観測点(P-Tomakomai) があり,これは製油所から西方約3kmに位置する. P-Tomakomai から北西に約1km離れた苫小牧市役 所付近には,K-NETの苫小牧観測点(K-Tomakomai) がある.また,R-Tomakomai からほぼ西方に約 9km離れたJR糸井駅付近には,気象庁苫小牧測候 所(JMA-Tomakomai)があり,東方に13km程度離

れた所の苫小牧東部の石油備蓄基地(B-Tomakomai) でも加速度記録が得られている.

図-5にこれら5地点の加速度波形記録全体から計 算した速度応答スペクトル(減衰定数 h=1%)を示 す. P-Tomakomai, K-Tomakomai ではスペクトル の形状は似通っている.R-Tomakomai での値はこ れら2地点に比べて大きく,周期3.2秒から10.7 秒の範囲で NS, EW 成分のいずれかあるいは両方の 速度応答が 1m/s を超える長周期地震動が観測され ている.このうち周期3.7秒から8.3秒の範囲では, EW 成分の速度応答が 1.5m/s 以上のレベルを保ち, 周期4.8秒で最大値2.8m/sに達している.この値は, 消防法が規定する地震動レベルの約2.5倍に相当す る.また.P-TomakomaiあるいはK-Tomakomaiでも. 周期 4.8 秒から 8.3 秒の範囲で EW 成分の速度応答 が 1.5m/s 以上のレベルを保ち, R-Tomakomai に限 らず苫小牧西港一帯が同程度の長周期地震動に見舞 われたことがうかがえる.スペクトルの形状からわ かるように,苫小牧西港近傍で観測された長周期地 震動については,ある特定の周期成分が卓越したと いう言い方は適切ではない.

港湾地域強震観測は長い歴史を持ち, P-Tomakomai においては最古のもので 1973 年の 記録が公開されている.図-6に1982年浦河沖地 震以降の大きな地震の波形記録をならべた.これら は元々の地動加速度記録を積分して地動速度(0.05 ~ 5Hz)にしたものである.最後の記録は2003年 十勝沖地震本震の発生から約1時間20分後に起き たこれまでの最大余震であり,波形は本震とよく似 ている.過去においても,1993年北海道南西沖地 震や 1994 年北海道東方沖地震のように長周期成分 が卓越した地震動が観測されているが,今回観測さ れた地動速度は,最大振幅においてこれら2つの地 震を大きく上回っている.図-7は,図-6に示した 7つの地震について,加速度波形記録全体から計算 した速度応答スペクトル(h=1%)である.今回観 測された地震動の周期数秒から十数秒の帯域におけ る速度応答は,一部例外を除き,P-Tomakomaiに

図 -6 苫小牧西港における過去の地震の際の速度波形

図-7 古小牧西港にのける過去の地震の際の速度応答ス ペクトル (h=1%)

おける過去30年間の記録の中で最大である.一部 例外とは,1993年北海道南西沖地震において周期 10 秒弱の成分が卓越し,ほぼ南北方向の成分では 今回の十勝沖地震を上回っているという観測事例で ある.この特徴は速度波形にも現れている.図-6 からわかるように, 1993年北海道南西沖地震の波 形は、今回の十勝沖地震の波形よりも長い周期の成 分が卓越している様相を呈している.本事例は,苫 小牧西港地域における長周期地震動の卓越周期は、 直下の地下構造を考慮するだけでは評価不可能であ ることを示唆している.なお,1983年日本海中部 地震の際の P-Tomakomai における加速度波形記録 は残っていないが JMA-Tomakomai(苫小牧測候所) では,NS成分の加速度フーリエスペクトルが周期 10 秒付近でピーク値約 1.13m/s に達する大きな長 周期地震動が記録されている³⁾.

苫小牧市内の長周期地震動特性の決定要因におい て,地下構造のみが支配的ではないという見方は,

図 -8 速度応答のコンターマップ (周期 7 秒, EW 成分)

苫小牧測候所における気象庁1倍強震記録による過去の地震時の揺れの解析からすでに示されている⁴⁾. これによれば,苫小牧における長周期地震動の増幅 特性は震源地により異なり,日本海東縁部で発生す る地震については周期約10秒の成分が特に大きく なる傾向を示す一方で,北海道東方沖,北海道南東 沖で発生する地震については,他の周期に比べて特 別に大きくなる周期成分は見当たらないという結果 が得られている.なお,データが存在しないため, この研究では1952年十勝沖地震の際の観測事実は 検討されていない.

(3) 勇払平野における長周期地震動の空間変化

図 -5 を改めて見ると, P-Tomakomai などの苫 小牧西港地域, B-Tomakomai, JMA-Tomakomai の3地点の速度応答スペクトルには,周期数秒以 上の長周期帯域であっても大きな違いがあること がわかる.B-TomakomaiとJMA-Tomakomaiは, P-Tomakomaiからそれぞれ東西に約10km離れた 地点であるが,周期数秒から十数秒の長周期の帯域 であっても,その応答はP-Tomakomaiを大きく下 回っており,両者とも石油タンクのスロッシングに 関して消防法が規定する地震動レベルを超えていない.

図-8は,勇払平野及び石狩平野における長周期 地震動の強度分布を見るため,K-NET,KiK-net,自 治体震度計などの強震観測地点で記録されたEW成 分から計算した周期7秒での速度応答(h=1%)を コンターマップで表したものである.これは観測点 間の補間を幾何的に行うことにより作成したもの で、地下構造の影響は考慮されていない.この図 から、速度応答が大きい地域は、苫小牧西港付近の みならず、勇払平野と石狩平野東部の広い範囲に及 んでいることがわかる.この図に示した速度応答 は、勇払平野中央部から石狩平野東部にのびる南 北の軸に沿った地帯を尾根とする分布形状を呈し ており、とりわけ苫小牧西港地域(R-Tomakomai, P-Tomakomai)と石狩平野東部北端で値が大きい. この図からも、苫小牧市内の3つの地点、苫小牧西 港地域、苫小牧測候所(JMA-Tomakomai),苫小牧 東部地域(B-Tomakomai)で揺れの程度が大きく異 なっていたことがわかる.

一つの平野内の多数の地点で長周期成分を含む強震記録が得られた今回の観測事例は,たとえ予測・評価対象が長周期の地震動といっても,平野内において数 km 離れれば大きな空間変化があり得ることを認識する必要性を改めて示したものと言える.

4. 地震動,スロッシング,浮き屋根被害等の関係の考察

苫小牧西港地域で発生した甚大な被害のうち、浮 き屋根沈没のほとんどは写真-6が象徴するように 浮き屋根が損傷して浮力を失ったために生じたもの と見られ、この損傷の原因はスロッシングに伴う浮 き屋根の揺動と考えるのが自然である.また,総務 省消防庁による火災原因調査によれば,地震直後に リング火災などが発生した原油タンクH(表-2,写 真-1参照)の着火源は,浮き屋根の揺動に伴って 浮き屋根がタンク上部附属設備に衝突した時,ある いは測定小屋が浮き屋根上に落下した時(写真-8 参照)の摩擦衝撃による火花である可能性が高いと されており,スロッシングが火災の直接的な原因と なったことが疑われている.一方,同じ火災原因調 査では,地震発生から2日後に出火し全面火災に 至ったナフサタンクC(表-2, 写真-2参照)の着 火源として,浮き屋根沈没後に大気とナフサ油面と を遮断するために投入され油面上に浮いていた消火 薬剤の泡が帯電していたという可能性が指摘されて いる.これによれば,ナフサタンク全面火災の直接 的な出火原因はスロッシングではない.しかし,浮 き屋根の沈没という全面火災が発生しうる状況をも たらしたのはスロッシングである.以上述べたよう に,苫小牧地域の石油タンクに生じた甚大な被害は スロッシングを発端とするものであり,同地域にお けるそれ以外の被害のおおかたもまたスロッシング に起因するものであることから、スロッシングによ る浮き屋根外周上での最大液面上昇量と被害の有 無,程度の関係を整理することとした.これに先だ

ち,まず地震動と最大液面上昇量の関係を考察する. 地震動の速度応答と最大液面上昇量を結ぶ(5)式 は,水平一方向に加振される円筒形剛体容器内の非 圧縮性流体が渦なしの運動をすると仮定し, それに 対する速度ポテンシャルについての支配方程式を適 当な境界条件の下で正規モード展開して解くことに より得られるもので,1次モードのみが考慮されて いる.この(5)式の左辺Whを実測された最大液面 上昇量とすれば,その時の速度応答 Sv が逆算でき る.図-9は,このようにして苫小牧西港地域のタ ンクで実測された最大液面上昇量(図-3参照)か ら逆算した速度応答を,同じく苫小牧西港に位置す る R-Tomakomai (製油所)において記録された加 速度波形から計算した速度応答(h=1%)と比較し たものである.最大液面上昇量の測定は必ずしも計 器によって行われていないこと,一部のタンクでは |溢流が発生したこと,最大液面上昇をきたした方位 を区別していないことなどを考慮すれば,実測値が 多くある周期約6秒以上の領域では両者は合ってい ると言える.座間・井上 (1994)⁵⁾ はこのような検討 を 1993 年北海道南西沖地震の際に発生したスロッ シングに対して行っており,苫小牧,青森,秋田, 新潟の各地について,同様の合致を見ている.以上 の観測事実から,最大液面上昇量はスロッシングの 1次固有周期における地震動の速度応答とよく対応 すると言える.

次に最大液面上昇量と被害の有無,程度の関係を 整理することとするが,最大液面上昇量は全ての 石油タンクについて知られているわけではないの で,地震記録に基づき最大液面上昇量の計算を行っ た.その際,水平一方向の加振しか考慮しない(5) 式の速度応答スペクトル法は用いず,地震記録の水

図 -10 苫小牧の石油タンクについての最大液面上昇量の 実測値と計算値の比較

平2成分を入力とする時刻歴応答法³⁾により計算 した.この方法は,(5)式と同様,速度ポテンシャ ルについての支配方程式を適当な境界条件の下で正 規モード展開して解くものであるが,ここでは,1 次モードから3次モードのスロッシングの時刻歴 を,減衰定数をそれぞれ1%,5%,5%と仮定して 計算し,それらの結果を足し合わせた.一般には浮 き屋根外周上での最大液面上昇量への高次モードの 寄与は小さく,計算は1次モードまで考慮すれば 十分であるが,後述するように容量約11万m³の 石油タンクにおける浮き屋根沈没の原因考察を行 うため,ここでは3次モードまで計算した.図-10 は,最大液面上昇量が測定されている苫小牧地域の 特定石油タンクについて (図-3参照), 実測値と計 算値(浮き屋根外周に沿って計算された最大液面上 昇量の中の最大値)を比較したものである.苫小牧 西港地域と苫小牧東部地域のタンクについての計算 には, それぞれ製油所 (R-Tomakomai) と備蓄基地 (B-Tomakomai) で得られた地震動記録を用いてい る.最大液面上昇量実測値には計器測定以外のもの も含まれていること,溢流が発生したタンクがあっ たことなどを考慮すれば,両者はよく合っていると 言え,計算によって求める最大液面上昇量は被害の 有無,程度との関係の議論に用いることができると 考えられる.図-11は,苫小牧西港地域と苫小牧東 部地域にある特定石油タンクについて,図-10と同 じ方法で計算した最大液面上昇量を Ts に対して示 したものである.これによれば,周期5秒,7.5秒 付近で3mを上回り,およそ3.5秒から9秒の間で 2mを超える結果となった.この図で塗りつぶした

シンボルは何らかの被害があったものであるが,Ts が数秒台のタンクでは最大液面上昇量が2.5 m程度 以上,十秒台のタンクでは1m程度以上になると被 害が著しくなる傾向が見られる.また, 印は,火 災や浮き屋根の沈没という甚大な被害のあったタン クである.これらのタンクの最大液面上昇量はTs が7~8秒のものでは一例を除いて2.9~3.4m, Ts が 12 秒のタンクでは最大液面上昇量は約 1.3m と見込まれる.Tsが5秒弱のところにも,最大液 面上昇量が 3m を超えかつ被災したものが 10 基あ るが,被害は甚大なものにはなっていない.これら 10 基のうち 7 基は CDRT であり,本稿で甚大な被 害と定義したものが発生しにくい型式である.残り の3基はCFRTであるが,浮き屋根の沈没は免れて いる.これら3基のCFRTは,いずれも容量約5千 m³, 直径約 21.3m で, 最大液面上昇量計算値が同 程度で浮き屋根が沈没した容量約3万m³あるいは 4万m³のタンク4基(表-2参照)よりも小さい.

もしも最大液面上昇量と被害が一対一に対応する ならば,最大液面上昇量は地震動波形からほぼ評価 できることから(図-10),スロッシングによる石油 タンクの被害を予測するには,地震動を予測すれば よいことになる.しかし, Ts が約12秒であった容 量約 11 万 m³のタンクでは,計算による最大液面 上昇量はたかだか約1.3mで,浮き屋根の沈没とい う甚大な被害となった(表-2と写真-4のタンクA, B). また, 従来では, 油が溢流したり浮き屋根がタ ンク上部設備に衝突したりする危険性が大きいこと から,満液に近いタンクほど被害が発生すると考え られていたが,タンクA,Bは地震時の液高はタン ク高さの 60% 程度でありながら被害を受けており, このこととも異なる.そこで,この容量約11万m³ の石油タンクを対象とした計算結果をより詳しく見 ることにする.なお,タンクBについて地震後に撮 影された写真の中には油痕の高さが判別できるもの

クの地震時の液面形状についての計算結果

があり,それによれば実際の最大液面上昇量は1m 台前半と見込まれることから,計算値約1.3m は妥 当な値と考えられる.図-12 にタンクAに対して計 算されたスロッシング時の EW 方向の液面形状を示 す.表-2にあるようにタンクBの直径はタンクA のそれと等しく,液高もほぼ等しいので,タンクB についても同様の計算結果が得られる.黒線,破線, 灰色の線はそれぞれ1次モード(固有周期12秒), 2次モード(固有周期 5.6 秒), 3次モード(固有周 期4.3秒)が卓越していると見られる時点の液面形 状である.タンクAとBの浮き屋根はシングルデッ キ型であり,そのデッキ板の材質は厚さ4.5mmの 鋼板であることから、浮き屋根が液面形状に追随す るかあるいはそれに近い挙動をすると仮定すれば, この図からは,2次モード,3次モードが卓越する スロッシングにおいては,1次モードのみが卓越す る場合に比べて浮き屋根に生ずる曲げ歪みは大きく なると言える.また,浮き屋根外周上での最大液面 上昇量は1次モードに支配され,2次モード,3次 モードが卓越しても最大液面上昇量が大きくなると は限らない.以上から,最大液面上昇量が小さいに もかかわらず浮き屋根が沈没したという現象は,高 次モードの影響を考えることにより説明できる可能 性があると言える.高次モードの生成と地震動の関 係について言えば,今回の地震では,図-5におけ る R-Tomakomai (製油所)の速度応答スペクトル からわかるように,浮き屋根が沈没した容量約11 万 m³のタンクに対しては,1次モードよりも2次 モード,3次モードの固有周期において強い地震動 となっている.一方,現地調査によって浮き屋根の 損傷を見分したところでは, 浮き室周辺の溶接不具 合の疑いも持たれた.被害原因の考察においては, このことも検討対象とする必要がある.

5. まとめ

2003年十勝沖地震では,北海道内各地の数多く の大型石油タンクにスロッシングを発端とする被害 が発生した.なかには火災が発生したり,浮き屋根 が沈没したりするという甚大な被害を受けたものも あり、これらの被害は苫小牧西港南岸の真砂地区に 集中した.本稿では、アンケート調査や現地調査か らわかったスロッシングと被害の実態を報告した. また、スロッシングの原因となったのは、周期数秒 から十数秒程度の長周期地震動であったことから、 全国に稠密に分布する強震観測点で得られた地震波 形記録を用い、2003年十勝沖地震の際の長周期地 震動の特徴を調べた.さらに、苫小牧市とその周辺 の特定石油タンク(容量1,000m³以上)に対して、 地震動とスロッシングによる最大液面上昇量の関係 を考察するとともに、観測された地震記録に基づく スロッシングの解析を行い、最大液面上昇量と石油 タンクの被害の関係を調べた.

以上の調査・分析を通して,特に長周期地震動の 予測・評価において留意すべき点については,以下 のようにまとめられる.

港湾地域強震観測の苫小牧西港における過去 30 年の強震記録を調べたところ,2003年十勝沖地 震の際の地震動は,周期約5秒から約8秒の広 い周期帯域の成分が卓越したのに対し, 1993 年 北海道南西沖地震の際には周期 10 秒弱の成分が 卓越していたことがわかった.また,気象庁苫小 牧測候所においても, 1983年日本海中部地震と 1993年北海道南西沖地震の際には,ともに周期 10 秒弱の成分が卓越した地震動が記録されたの に対し,今回の十勝沖地震ではそうではない.こ れらの観測事実は,長周期地震動の卓越周期は, 直下の地下構造を考慮するだけでは評価不可能な 場合があることを示しており,地震動の予測・評 価においては、震源、伝播経路、堆積盆地構造な ど様々な影響要因を考慮する必要があることを改 めて示唆している.

2003年十勝沖地震の際に K-NET と KiK-net,港 湾地域強震観測,気象庁 95 型震度計,自治体の 震度計などで記録された強震波形記録を用いて, 勇払平野及び石狩平野における長周期地震動の速 度応答分布を調べたところ,長周期といえども地 震動の強度は空間的に急激に変動していたことが わかった.例えば,周期7秒における EW 成分の 速度応答(減衰定数 1%)は,苫小牧西港にある 製油所では 1.9m/s であるのに対し,そこから東 に約 10km 離れた苫小牧東部の石油備蓄基地では 0.9m/s と約2倍の開きがある.予測・評価対象 が波長の長い長周期地震動といっても、この程度 の空間変動はあり得ることに留意すべきである.

2003年十勝沖地震の際に苫小牧西港地域で浮き 屋根が沈没した容量約3~4万m³の石油タンク では,スロッシングによる最大液面上昇量は3m 程度と大きい値が見込まれるのに対し,同じく浮 き屋根が沈没した容量約11万m³の石油タンク2 基におけるそれは約 1.3m と小さい値が見込まれ る.浮き屋根円周上での液面上昇はこのように小 さいものであるにも拘わらず,浮き屋根が沈没し たのは,高次モードのスロッシングが大きく励起 されたことにより,浮き屋根の部材に大きな曲げ 歪みが生じたということで説明できる可能性があ る.このことは,容量 10万m³級の浮き屋根式 大型石油タンクの被害評価においては,スロッシ ングの1次モードだけではなく,高次モードに相 当する周期の地震動強さも考慮する必要があるこ とを示唆しており,地震動を予測・評価する場合 にはこのようなことにも留意する必要がある.

謝辞:石油タンクのスロッシングと被害に関するア ンケート調査及び現地調査にあたっては,各地の消 防本部並びに関係事業所に多大なご協力を頂きまし た.現地調査の一部は,総務省消防庁,危険物保安 技術協会,苫小牧市消防本部,胆振東部消防組合消 防本部,石狩北部地区消防事務組合消防本部と協同 して行いました.本研究では,防災科学技術研究所 K-NET ならびに KiK-net,港湾地域強震観測,気象庁, 自治体震度計,関係事業所の強震動波形データを使 用させて頂きました.以上,関係の皆様に心からお 礼申し上げます.図の作成には,Wessel and Smith (1991)⁶⁾によるGMT3.3.5を使用させて頂きました. 本研究の成果の一部は,科学技術振興調整費による 研究課題「平成 15 年(2003 年)+勝沖地震に関 する緊急研究」によるものです.

参考文献

- 1)Senda K. and K. Nakagawa, 1954, On the vibration of an elevated water-tank - I, Technical Report of the Osaka University 4, 170, 247-264.
- 2) 坂井藤一,1980,円筒形液体タンクの耐震設計法に 関する二,三の提案,圧力技術,18(4),16-24.
- 3) 座間信作,1985,1983年日本海中部地震による苫小 牧での石油タンクの液面揺動について,消防研究所報 告,60,1-10.
- 4) 座間信作,1998,苫小牧におけるやや長周期地震動 特性,消防研究所報告,86,11-21
- 5) 座間信作,井上涼介,1994,1993年北海道南西沖地 震による石油タンクのスロッシング,消防研究所報告, 77,1-10.
- 6)Wessel, P. and Smith, W. H. F., 1991, Free software helps map and display data, EOS Trans., Am. Geophys. Union, 72, 441.

1952年と2003年の十勝沖地震の 震度インバージョン解析

神田 克久1・武村 雅之2

¹鹿島建設株式会社 小堀研究室(〒107-8502 東京都港区赤坂6-5-30) E-mail:kandak@kajima.com

²鹿島建設株式会社 小堀研究室 (〒107-8502 東京都港区赤坂6-5-30) E-mail:takemurm@kajima.com

1952年と2003年の十勝沖地震の震度分布データを用いてインバージョン解析を行い,震源特性の比較を 行った.解析に用いた1952年の地震の震度データは,気象庁が発表した震度に,市町村ごとの住宅の全壊 率から評価したものを加えて精度を向上させた.その結果,1952年の震度分布は2003年の本震と極めて似 ていることが分かった.さらに,解析に用いた震度の距離減衰式およびサイト補正に用いる相対震度は, 2003年十勝沖地震のM6.0以上の6つの余震の震度データを分析して評価した.震度インバージョン解析に よって評価された2003年と1952年の十勝沖地震の短周期発生域を比較してみると,大部分の地域は重なっ ており,短周期に関してもほぼ同じ地震が繰り返したと考えられる.また,2003年の地震に関しては,波 形のインバージョン解析のすべりの大きい地域と短周期発生域を比較すると大部分は重なっており,すべ りの大きい領域と短周期発生域は概ね対応していることが分かった.また,2003年の最大余震の短周期発 生域は本震と重ならないことが分った.さらに,相対震度で補正した震度は、インバージョン解析で得ら れるエネルギー重心を中心とした同心円状に分布して方向性は明瞭でなく、破壊伝播効果やラディエーシ ョンの影響は少ないと考えられる.

Key Words : seismic intensity, collapse ratio of wooden houses, inversion analysis, short-period radiation zone, asperity

1. はじめに

著者らは、震度分布データを用いた震源断層面上の エネルギー放出分布のインバージョン手法を開発し¹⁾、 断層の破壊伝播や方向性など結果に影響のある要因を洗 い出し、その影響について分析を行い、南海トラフ沿い の歴史地震²⁾などに適用してきた.本手法を用いれば、 震源断層上の短周期地震動に関係した不均質すべりや規 模の情報を得ることができる.さらに、被害の記述に基 づく震度データ³⁾によって、近代以前の地震まで含め て歴史的に繰り返しているかどうかを検証することも可 能である.従って、南海トラフ地震のように歴史的に繰 り返し発生するプレート境界地震の震源特性を詳細に研 究することに適していると考えられる.

2003年9月26日十勝沖地震は,波形インバージョン解 析により1952年3月4日十勝沖地震と似たすべり分布であ ったと言われている⁴⁾.また,地震・火山月報⁵⁾では, 本震の位置,最大余震が本震の比較的近傍で発生してい ること,余震活動が浦河沖から徐々に釧路沖に移動して いく過程をたどったことなど類似点が多いことを指摘して、1952年の地震と同程度の地震が繰り返したと考えられると述べられている. さらに地震調査委員会では2003年の地震が、千島海溝沿いのプレート境界地震である想定十勝沖地震であると判断している⁶⁾.

本報告では、2001年と1952年の十勝沖地震について本 手法を用いて分析を行い、比較を行って同じ震源特性の 繰り返しかどうかなど検証する.1952年の地震について は、被害データに基づいて評価した震度データを加え、 精度を向上させる.

2. 解析手法

検討項目を図1のフロー図に示す.想定される震源断 層近傍で2003年十勝沖地震の余震の計測震度データを収 集分析し,震度の距離減衰式およびサイトごとの揺れや すさを表す指標である相対震度を評価する.震源断層面 を仮定し,解析対象とする歴史地震の震度分布を用いて インバージョン解析によって,震源断層面上の短周期地 震波のエネルギー放出分布を求める.この検討結果に基 づいて,地震の震源特性の考察を行う.

ここで用いる震度インバージョン解析とは、設定した 震源モデルから各地の震度を評価する解析の逆解析、す なわち震度分布から震源を推定する手法である. 震度と 震源の関係としては、等価震源距離 X_q⁷⁾ とマグニチュ ード M_iに関する震度 I の距離減衰式(1)を用いる^{1) 2)}. 用いる震度 I は、観測された震度から各地点における地 盤による揺れやすさの影響を示す相対震度を除いた値で ある.相対震度は、最近の中小地震の計測震度を分析し て評価する.

$$I = -a\log(X_{eq}) + bM + c \tag{1}$$

ここで,

$$X_{eq,k}^{-2} = \sum_{i} \left(E_{Ii} / X_{i,k}^{2} \right) / \sum_{i} E_{Ii}$$
(2)

等価震源距離 X_{aq} は, (2)式で示すように震源断層の i 番目の小断層の短周期エネルギー E_{II} の関数となる.ここで,下付文字 Iは短周期地震波に関係したパラメータであることを示す. (2)式に(1)式を代入して, (3)式の Jを最小になるように最小自乗法で E_{II} を同定する.

$$J = \sum_{k} \left(X_{eq,k}^{-2} - \sum_{i} \left(E_{Ii} / X_{i,k}^{2} \right) / \sum_{i} E_{Ii} \right)^{2} + \left(\sum_{n} E_{In} - N \right)^{2} + v^{2} \sum_{p} \left(2E_{Ip} - E_{Ip+1} - E_{Ip+2} \right)^{2}$$
(3)
+ $v^{2} \sum_{q} \left(3E_{Iq} - E_{Iq+1} - E_{Iq+2} - E_{Iq+3} \right)^{2} + v^{2} \sum_{q} \left(4E_{Ir} - E_{Ir+1} - E_{Ir+2} - E_{Ir+3} - E_{Ir+4} \right)^{2}$

ここで、右辺2項はN個の小断層の場合エネルギー値の 平均を1になるように規準化するためである、右辺3項 ~5項は、エネルギー分布を滑らかにするためで、順番 に2つから4つの小断層と接している小断層に関する拘束 条件である.ここで、いは超パラメータと呼ばれ、赤池 -ベイズの情報基準⁸⁾を最小にするようにvを定める.

3. 計測震度データの分析

(1) 2003年余震震度データと距離減衰特性

インバージョン解析に用いる距離減衰式や相対震度を 評価するために、図-2に示す2003年十勝沖地震のM6.0以 上の余震を用いることとする.(1)式の3つのパラメー タを回帰して求めると、(4)式となった.

$$I = -5.5 \log X + 1.2M + 7.3 \tag{4}$$

(4)式の個々の地震の適合度を見るために, Mの大きい 2つの余震の震度と重ね書いて図-3に示す. ±1.2程度の ばらつきはあるが, (4)式が平均的な震度の距離減衰の 傾向を示していることが分かる.

相対震度の評価結果を図-4に示す.日高地方から勇 払平野,石狩平野にかけて相対震度が大きいことが分か る. 十勝平野のように必ずしも大きくない場合もあるが, 概ね低地で大きくなる傾向がある.

4. 震度分布データ

インバージョン解析に用いる震度データについては、 2003年本震および最大余震は気象庁発表の0.1刻みの計測 震度を用い、1952年本震は宇佐美・濱松⁹⁾の収集したも のを用い、1刻みである.ただし、計測震度と体感震度 の違いがある可能性があるし、1952年の震度分布は、気 象官署だけでなく民間に委託した通信報告を含んでおり, 2003年の計測震度に比べて評価者による誤差があると考 えられる. そこで、1952年の地震に関しては、気象庁が 発表した震度に住宅の住宅全壊率から評価した震度を加 えて精度を向上させることにする. 住宅全壊率は、十勝 沖地震調査報告¹⁰⁾ に記述されている北海道庁建築部が 調査した市町村ごとのデータを用いる. 住宅全壊率と墓 石の転倒震度の関係から1952年十勝沖地震までは住宅の 耐震性能に時代的な変化はほとんどなかったと指摘され ている¹¹⁾ので、関東大地震と同じ震度と被害率区分¹²⁾ に従って、全壊率30%で震度6.5、10%で震度6.0、1%で 震度5.5、0.1%で震度5.0とし、震度0.1刻みに対数軸で内 挿して市町村の震度を評価した.評価結果を図-5に示す. 釧路地方から十勝地方および日高地方の市町村で建物被 害があり、震度6弱から6強に評価された.

図-5 1952年住宅の全壊率から評価した市町村ごとの震度

図-6 解析に用いた震度分布: (a)1952年, (b)2003年本震

評価した震度を加えてインバージョン解析に用いる震 度分布を図-6に示す. 震度の境界を線引きしてみると極 めて似ていることが分かる.

5. 震度インバージョン解析

(1) 短周期発生域

1952年本震,2003年本震および最大余震の震度インバ ージョン解析を行って得られた放出エネルギー分布を 図-7に示す.放出エネルギーは平均で規準化している. ★印はそれぞれの震央を示す.実線で囲まれた領域は, 放出エネルギーの平均の2倍以上を示し,短周期発生域 と呼ぶことにする.短周期発生域は,1952年および2003 年の本震は震央から陸寄りにあるが,2003年最大余震は 震央から西寄りにずれている.それぞれの短周期発生域 を重ね書きし,さらに,2003年本震のすべり分布¹³を加 えたものを図-8に示す.

すべり分布は、1m刻みのコンターで表示している.す べりの大きい領域と短周期発生域は重なっていることが 分かる.1952年本震と2003年本震の短周期発生域は大部 分は重なっており、短周期成分に関しては震源特性はほ ぼ同じであったと言える.すなわち、1952年の震源域が 繰り返したと考えられる.2003年最大余震の短周期発生 域は、本震と重なっていない.本震で滑った断層面の南 西端(最大余震の震央位置)から破壊が広がった可能性 が高い.

(2) 等震度コンター

震度インバージョン解析の結果得られた放出エネルギ ーの重心を求め、それを中心とする同心円状に震度が分 布しているかどうか検証し、震度の方向性について検討 する.

4

図-10 2003年十勝沖地震最大余震(M7.4)震度分布と等震度の同心円(中心:+エネルギー重心,深さ21kmと仮定)

図-9に2003年本震,図-10に2003年最大余震の震度分布 とエネルギー中心から震度の同心円を示す. 同心円は式 (4)に基づいて、震度6は5.5、震度5は4.5、震度4は3.5、震 度3は2.5の円を境界としている.実震度は、太平洋沿岸 に沿う方向に観測震度は同心円をはみ出して大きくなり, 伝播経路のQ値特性が震度分布に表れていることが分か る.しかし、相対震度を用いて補正すると、局所地盤の 影響だけでなく波動伝播の影響が除かれ、はみ出しが少 なくほぼ同心円に近い分布をしていることが分かる.本 震の場合,震央から北および北西に破壊が伝播した¹³⁾ 可能性が高いが、北や北西方向に震度が大きくなっては いないので、震度についてはラディエーションの影響や 破壊伝播効果は明瞭には見られないことが分かる. 余震 についても同様なことが分かり、相対震度で補正した震 度分布はエネルギー重心からみると方向性があまり見ら れないと言える.

震度インバージョン解析結果における破壊伝播効果の

影響については断層モデルのシミュレーション解析によって検討を行った結果²⁾,評価結果のずれはM8クラスの地震で最大15km程度であることが分かっている. 本震のエネルギー重心は、図-8に示したすべりが最大の領域とほぼ一致しており、破壊伝播方向にずれているわけではない. つまり、震度は、破壊伝播効果やラディエーションパターンの影響を極めて受け難いパラメータであることが分かる.

6. まとめ

震度インバージョン解析によって、1952年および2003 年の十勝沖地震の震源特性の分析を行った.主な得られ た知見は以下の通りである.

- ・1952年と2003年の本震の短周期発生域は極めて類似 しており、同じ震源特性の地震の繰り返しと考え られる.
- ・2003年の短周期発生域は波形インバージョン解析か ら得られたすべり分布と似ている.同じ領域で短 周期と長周期両方の成分が放出されていると考え られる.
- ・2003年の最大余震は、本震の南西端で発生し、本震 とは短周期発生域が重なっていない.
- ・相対震度で補正した震度は、インバージョン解析 から得られるエネルギー重心を中心とする同心円 状に分布している.破壊伝播効果による震度分布 の方向性は見られない.

参考文献

- 神田克久・武村雅之・宇佐美龍夫:震度データを用いた震源 断層からのエネルギー放出分布のインバージョン解析,地 震2,56,pp.39-58,2003
- 2)神田克久・武村雅之・宇佐美龍夫:震度インバージョン解析 による南海トラフ巨大地震の短周期地震波発生域,地震 2, 57, pp.153-170,2004
- 3) 宇佐美龍夫:最新版日本被害地震総覧[416]-2001, 東京大学 出版会, 605pp.,2003
- 4) 山中佳子・菊地正幸: EIC 地震学ノート No.139, http://www.eri.u-tokyo.ac.jp/sanchu/Seismo_Note/EIC_News/ 030926.html, 2003
- 5) 気象庁:平成15年9月地震·火山月報(防災編), 2003
- 6) 地震調査研究推進本部:千島海溝沿いの地震活動の長期評価 (第二版)について,http://www.jishin.go.jp/main/index.html, 2004
- Ohno, S., T. Ohta, T. Ikeura and M. Takemura: Revision of attenuation formula considering the effect of fault size to evaluate strong motion spectra in near field, Tectonophysics. 218, pp.69-81, 1993
- 8) 赤池弘次・北川源四郎(編集):時系列解析の実際(2), 統計科 学選書,朝倉書店, 1995

5

- 9) 宇佐美龍夫・濱松音蔵:日本の地震震度調査表[I]-[IV], 866pp., 1985
- 10) 十勝沖地震調査委員会:十勝沖地震調査報告, pp.886-888, 1954
- 11) 諸井孝文・武村雅之: 1995 年兵庫県南部地震による気象庁 震度と住家全壊率の関係, 地震 2, 52, pp.11-24, 1999.
- 12) 諸井孝文・武村雅之: 関東地震(1923 年 9 月 1 日) による

木造住家被害データの整理と震度分布の推定,日本地震工 学会論文集,2,3, pp.35-71,2002

13) Koketsu, K., K. Hikima, S. Miyazaki and S. Ide: Joint Inversion of Strong Motion and Geodetic Data for the Source Process of the 2003 Tokachi-oki, Hokkaido, Earthquake, Earth Planets Space, 56, pp.329-334, 2004

2003年十勝沖地震の長周期地震動評価の検証

青井 真1・本多 亮2・森川 信之3・関口 春子4・早川 譲5・藤原 広行6

¹防災科学技術研究所主任研究員 固体地球研究部門(〒305-0006 つくば市天王台3-1) E-mail: aoi@bosai.go.jp

²防災科学技術研究所特別研究員 防災基盤科学技術研究部門(〒305-0006 つくば市天王台3-1) E-mail: ryou@bosai.go.jp

³防災科学技術研究所特別研究員 防災基盤科学技術研究部門(〒305-0006 つくば市天王台3-1) E-mail: morikawa@bosai.go.jp

⁴産業技術総合研究所研究員 活断層研究センター(〒305-8567 つくば市東1-1-1中央第7) E-mail: Haruko.Sekiguchi@aist.go.jp

⁵防災科学技術研究所客員研究員 防災基盤科学技術研究部門(〒305-0006 つくば市天王台3-1) E-mail: hayakawa@bosai.go.jp

> ⁶防災科学技術研究所プロジェクトディレクター 特定プロジェクトセンター (〒305-0006 つくば市天王台3-1) E-mail: fujiwara@bosai.go.jp

2003年十勝沖地震では、震源から200km以上も離れた苫小牧(勇払平野)において石油タンクが溢流し 大規模火災が発生するなど、巨大地震と深い堆積平野構造に起因すると考えられる長周期地震動による被 害が起きた。十勝沖地震の波動伝播を再現するため、地下構造モデル・震源モデルを構築し、北海道の大 部分を含む約400km四方の広域をモデル化し、周期3.3-50秒に関して3次元有限差分法によるシミュレー ションを行った。得られた合成波形は、シミュレーションを行った領域の全域に渡って観測記録と良好な 一致をみせた。また、長周期地震動で石油タンクのスロッシングが起きた勇払平野では、深さ5km以上に も及ぶ深い堆積平野端部に入射した地震波が軟弱な堆積層で増幅し、表層でトラップされることで数百秒 にわたって継続する長周期地震動の波形、スペクトル、継続時間が精度良く再現された。

Key Words : finite difference method (FDM), simulation of seismic wave propagation 2003 Tokachi-oki earthquake, ground motion, ground motion prediction

1. はじめに

2003年十勝沖地震(2003/09/26,04:50,41.7797N,144.0785E, 42 km; JMA)では、震源から200 km以上も離れた苫小牧 (勇払平野)において石油タンクが溢流し大規模火災が 発生するなど、巨大地震と深い堆積平野構造に起因する と考えられる長周期地震動による被害が起きた。また、 これらの被害に隠れてしまいがちであるが、稍短周期 (周期1秒前後)地震動によると考えられる被害も出て おり、広い周波数帯域を対象とした地震動評価の重要性 が改めて認識された。1995年兵庫県南部地震を契機に全 国的に稠密な強震観測網^{1,2)}が整備され、2003年十勝沖 地震では日本周辺のM 8 クラスの海溝型地震としては初 めて詳細な観測記録が得られた(図1)。このような観 測記録をもとに、地震波動伝播の現象解明と地震動予測 手法の精度の検証を目的として、有限差分法による3次 元シミュレーションを行った。

2. 地下構造モデルと震源モデル

深部地下構造は、走時解析から推定された構造³(図 2)と太平洋プレートの上面深度モデル^{4,5}を参考に設定 した。また、浅部地下構造に関しては石油公団等による 反射法地下構造探査や基礎試錐、さらには屈折法地下構 造探査や地質情報などを参照し、5層から成る堆積構造⁶ を設定した。

Honda et al.⁷ は、震央距離200km以内のK-NETおよび KiK-netの15観測点の加速度記録に0.02から0.2 Hzのバン ドパスフィルターをかけ、積分することにより得られた 速度波形のS波部分から線形波形逆解析により震源過程 を推定した。解析に用いられたのは、解析周期帯域にお

1

Fig. 1. Distribution of peak ground velocity (PGV) and estimated total slip distribution. PGV's were obtained by integrating observed acceleration by K-NET and KiKnet. Star indicates the hypocenter. Slip distribution was estimated by multi-time window analysis using K-NET and KiK-net data for a bandwidth of 0.02-0.4 Hz. Circles with dotted lines show large plains.

いて観測波形が比較的表層の影響を受けていないと考え られる観測点のものであり、推定された震源モデルはこ れらの波形記録をよく再現している。本研究では新たに、 0.02から0.4 Hz の周波数の周波数帯における再解析を 行い(図1)、推定された震源モデルを差分格子に合わ せて離散化して用いた。

Fig. 2. Velocity and density profile of crust and mantle that was used for the waveform inversion and the FD simulation.

3. 手法

150 km四方におよぶ震源域および勇払平野、石狩平野、 十勝平野、根釧原野等をモデルに取り込むため、約400 km四方、深さ100 kmの領域を計算領域とした。周期3.3 秒以上の長周期を対象としたため必要となる格子点間隔 は250 mと比較的大きいが、計算領域が広大であるため 均質格子により離散化すると10億格子を越え、現在の計 算機では非常に困難な計算規模となる。本研究では、不 連続格子による有限差分法⁸を採用し、10km以深の格子 点間隔を3倍粗い750mとした。これにより、計算に必要 な格子数は約1.4億格子となり、計算精度を損なうこと なく計算規模は7分の1以下に軽減される。

4. 結果

図3に 印で示した観測点における、観測波形と有限 差分法による合成波形の比較を図4に示す。北海道の広 域にわたって、観測波形をよく再現していることが分か る。また、図6に示すように、合成波形による最大速度 は、ほぼ観測波形の倍半分以上の精度である。これは入 力とした震源モデルと設定した深部地下構造が妥当であ ったことを示唆している。

Fig. 4. Comparison between observed waveforms (solid lines) and synthetics (dotted lines) by FDM (0.04-0.3 Hz) for the stations indicated by squares in Figure 3. Waveforms are normalized by the maximum amplitude of each station and the numbers with each trace show the maximum amplitude in cm/s.

Fig. 5. Comparison between observed waveforms (solid lines) and synthetics (dotted lines) by FDM (0.04-0.3 Hz) for the stations indicated by circles in Figure 3. Waveforms are plotted in same scale and the numbers with each trace show the maximum amplitude in cm/s.

Fig. 6. Comparison between observed and synthetic PGV's at K-NET and KiK-net stations.

次に、震源域と長周期地震動で石油タンクのスロッシ ングが起きた勇払平野を結ぶラインの観測点(図3 印)に注目する。震源域から勇払平野に入射するまで (Group A)は振幅が小さく波形も単純であるが、平野 の東半分(Group B)の堆積層上の観測点においては振 幅が徐々に成長していく。さらに平野に西半分(Group C)では大振幅の地震動が長時間にわたって継続してい る。平野の西側(Group D)の岩盤(あるいは薄い風化 層)上の観測点では再び単純で振幅の小さな波形となる。 図5に点線で示した合成波形は、これらの特徴を概ね再 現している。GroupBは古第三紀層底面が深さ5 km以上に も及ぶ深い堆積平野[®]に位置し、端部に入射した地震波 が軟弱な堆積層により増幅している。さらに、GroupCで は、新第三紀層以浅の堆積層が2 km 近く堆積しており、 これらの表層でトラップされることで長周期の地震動が 数百秒以上にわたって継続している。このように、単に 深い堆積平野構造により地震波が増幅されたのではなく、 巨大地震の断層から放射された地震波が勇払平野に入射 し、sub-basin的な複雑な堆積構造⁸⁾に起因した波動伝播 現象により、大振幅かつ継続時間の長い長周期地震動を 生んだと考えられる。また、同様に深い堆積構造を持つ 十勝平野、根釧原野などでも長時間にわたって長周期の 地震動が継続しており、長大構造物が存在すれば同様な 被害が出た可能性があったことが示唆される。

参考文献

- Kinoshita, S. : Kyoshin net (K-NET). Seism. Res. Lett., 69, pp.309-332, 1998.
- Aoi, S., Obara, K. , Hori, S., Kasahara, K. and Okada, Y. : New strongmotion observation network: KiK-net, *Trans. AGU.*, 81, F863, 2000.
- 3) Iwasaki, T., Hirata, N., Kanazawa, T., Urabe, T., Motoya, Y. and Shimamura, H.: Earthquake distribution in the subduction zone off eastern Hokkaido, Japan, deduced from ocean-bottom seismographic and land observations, Geophys. J. Int., Vol. 105, pp.693-711, 1991.
- 4) 地震調査研究推進本部 地震調査委員会:千島海溝沿いの地 震活動の長期評価について,2003.
- Katsumata, K., Wada, N. and Kasahara M. : Newly imaged shape of the deep seismic zone within the subducting Pacific plate beneath the Hokkaido corner, Japan-Kurile arc-arc junction, J. Geophys. Res., Vol. 108, JB002175, 2003.
- 6) 鈴木晴彦・岩本鋼司・篠原秀明・藤原広行・青井真・早川 譲:北海道地域の深部地下構造モデル,物理探査学会予稿集, 2004.
- 7) Honda, R., Aoi, S., Morikawa, N., Sekiguchi, H., Kunugi, T. and Fujiwara H.: Ground motion and rupture process of the 2003 Tokachi-oki earthquake obtained from strong motion data of K-NET and KiK-net, Earth Planets Space, Vol. 56, pp.317-322, 2004.
- 8) Aoi, S. and Fujiwara, H. : 3D Finite-Difference Method Using Discontinuous Grids, Bull. Seism. Soc. Am. Vol. 89, pp.918-930, 1999.

経験的グリーン関数を用いた 2003年十勝沖地震の波形インバージョン解析

野津 厚1

¹正会員 (独) 港湾空港技術研究所 地盤・構造部 (〒239-0826 横須賀市長瀬3-1-1) E-mail:nozu@pari.go.jp

2003年十勝沖地震は我が国に密な強震観測網が整備されてから初めて発生したM8クラスの巨大地震で ある.この地震による記録を用いて強震動評価手法の適用性を確認しておくことは、東南海・南海地震に よる揺れを推定精度を向上させる上でも重要である.本研究では、工学的にも重要な周期数秒の揺れに着 目して、経験的グリーン関数を用いた波形インバージョンにより、震源モデルの構築を試みた.その結果、 三カ所にアスペリティを有する震源モデルにより、比較的広範囲の地震動を再現できることがわかった. また、得られた震源モデルに対して、経験的サイト増幅・位相特性を考慮した統計的グリーン関数法によ る強震動シミュレーションを実施したところ、周期数秒の揺れを一定の精度で再現できることがわかった.

Key Words : *The 2003 Tokachi-oki Earthquake, waveform inversion, empirical Green's function method, site effect, stochastic Green's function method*

1. はじめに

2003年十勝沖地震はK-NET¹⁾ に代表されるような密な強 震観測網が我が国に整備されてから初めて発生したM8ク ラスの巨大地震である.この地震では北海道を中心に多 数の貴重な強震記録が得られている.これらの記録を用 いて強震動評価手法の適用性を確認しておくことは、近 い将来の発生が予想される東南海・南海地震による揺れ の推定精度を向上させる上でも重要である.

本研究では、工学的にも重要な周期数秒の揺れを対象 とし、経験的グリーン関数を用いた波形インバージョン により、各地の揺れを再現できるような震源モデル (variable slip model)の構築を試みる.また、得られ た震源モデルに対して、経験的サイト増幅・位相特性を 考慮した統計的グリーン関数法²⁾による強震動シミュレ ーションを実施し、当該手法の妥当性についても検討を 行う.

2. 予備検討

経験的グリーン関数を用いた波形インバージョンによ り2003年十勝沖地震の破壊過程を推定するのに先立ち, 使用する余震の選択のための予備検討を実施した.予備 検討では本震波形と余震波形の類似性について検討を行

った.このとき主に対象とした観測点は図-1に示す震源 近傍のK-NET観測点である.この結果,図-1に▲で示す 観測点では、本震と表-1の余震1の波形に類似性のある ことがわかった、その例としてHKD098(K-NET大樹)お よびHKD095(K-NET帯広)における比較の結果を図-2お よび図-3に示す.これらの観測点では余震1の速度波形 (周期2-10秒)に適当な倍率を与えると、本震の速度波 形に類似したものが得られる. このように、本震と余震 1の波形に類似性が見られるのは、これらの波形が伝播 経路とサイト特性を概ね共有しているためであると考え られる. すなわち, 図-1に▲で示す観測点に対しては, 本震時に、余震1の震源と類似した方位から主要なエネ ルギーが到来したものと推察される. サイト特性はサイ ト近傍の堆積層への地震波の入射角にも依存することが 考えられるが、地震波が堆積層に対して同様の方位から 入射していれば、本震と余震の地震波に対して同様のサ イト特性が作用するものと考えられる.

表-1 余震のパラメタ

						-	
	日	時	北緯	東経	深さ	MJ	Mw
			(度)	(度)	(km)		
余震1	2003/9/26	7:20	42.057	143.734	40.9	5.2	5.4*
余震2	2003/9/27	17:06	42.733	144.346	59.2	5.2	5.3**
余震3	2003/9/28	9:23	42.265	143.324	43.4	5.0	5.0**
*余震1と	余震2のスペクトル	レ比から算	草定				
**F-NET	による						

一方、図-1に△で示した観測点に対しては、本震と余 震1の波形には類似性が認められなかった.その一例と してHKD084(K-NET阿寒)において比較を行った結果を 図-4に示す.そこで、本震と余震2の波形について比較 を行ったところ、図-5に示すように類似性が認められた. このことから、図-1に△で示す観測点に対しては、本震 時に、余震2の震源と類似した方位から主要なエネルギ

ーが到来したものと推察される.

さらに西方の観測点, 例えばSRCH09(KIK-NET栗山) の波形について検討したところ,本震と余震3の波形に 類似性が認められたが(図-6),余震1,余震2の波形と の類似性は認められなかった.

このように地域によって異なる余震の波形が本震波形 と類似しているのは、本震がM8クラスの巨大地震であり、 震源断層が大きいため、震源断層の異なる部分が各地の 揺れに寄与しているためであると考えられる.

以上のことから、以下において波形インバージョンを 実施する際には、余震1~3の波形を併用することとした.

3. インバージョンの方法

インバージョンで仮定した断層面の位置を図-7に示す. 断層面は地震調査研究推進本部の長期評価³⁰のプレート 境界と概ね一致するような深度となっており、走向 246°, 傾斜18°, 長さ120km,幅120kmである.その後, プレート境界面の深度について新たに検討が加えられて いるが、その結果についてはここでは反映されていない.

断層を30×30に分割し,計900個の小断層を設定した. 図-7に示すように,南西側部分の寄与を計算する際には 余震1の波形を,東側部分の寄与を計算する際には余震2 の波形を,北西側部分の寄与を計算する際には余震3の 波形を各々グリーン関数として用いることとした.

図-7 インバージョンに用いた観測点とインバージョンで仮定した断層面

表層地盤の非線形挙動の影響をできるだけ避けるため, インバージョンには主にKIK-NETの地中観測点の記録を 用いることした.本震,余震1,余震2,余震3のすべて を記録したKIK-NET観測点は全部で39あり,このうち余 震記録の精度が十分でなかったABSH06(湧別北), ABSH11(女満別),HDKH04(門別西)を除くすべての観 測点を対象とした.これに3箇所のK-NET観測点(HKD096, HKD098,HKD113)を加え,合計39観測点における速度波 形のN30W成分をインバージョンのターゲットとした.こ れらの観測点を図-7に示す.インバージョンには本震波 形のS波第一波を含む30秒間を用いた.

インバージョンはHartzell and Heaton⁴の方法に基づ いている. それぞれの小断層では,破壊フロント通過後 の6.0秒間に8回のすべりが許されるものとした. 各々の すべりによるモーメント解放量が余震モーメントの何倍 であるかを未知数としてインバージョンを行う.破壊フ ロントはHi-netにより自動決定された震央(これは気象 庁の震源よりも30kmほど北西に位置する)の真下から同 心円状に速度2.8km/sで広がるものとし,基盤のS波速度 は3.8km/sとした.インバージョンには非負の最小自乗 解を求めるためのサブルーチン⁵⁾を用いた.また,すべ りの時空間分布を滑らかにするための拘束条件を設けた. 記録のヘッダに記載された絶対時刻の情報を用いた.

4. インバージョンの結果

図-8にインバージョンの結果として得られた最終すべ り量の分布を示す. 同図に示すように破壊開始点付近と 釧路沖、それに海岸線沿いの広尾町付近の三カ所にアス ペリティを有する震源モデルが得られた. ここでのイン バージョンでは、直接には各々の小断層におけるモーメ ント解放量の余震モーメントに対する比が明らかになる だけであるから、最終すべり量を求めるためには、余震 のモーメントが別途必要である. ここで用いた余震のう ち余震2および余震3については防災科学技術研究所 (www.fnet.bosai.go.jp) によりCMT解が求められており, Mが推定されている.一方,余震1については,本震後 間もなく発生した余震であるためこれまでCMT解は公表 されていない. そこで, 余震1と余震2のK-NET各観測点 におけるスペクトル比(ただし幾何減衰に関する1/Rの 補正を施したもの)をとると,図-9に示すように0.1-0.3Hz付近では平均して1.5程度の値を示す. このことか ら、余震1のモーメントマグニチュードはM=5.4と推定 した. 図-8に示す最終すべり量の分布はこのようにして 求めたものである. 図-8に示す本震の最終すべり量の分 布はM_=8.1に相当する.

Kamae and kawabe⁶⁾ は経験的グリーン関数を用いたフ オワードモデリングにより当該地震のアスペリティモデ ルを構築しているが、図-8のアスペリティ1~3のうち、 アスペリティ1と2はKamae and kawabeのアスペリティ1と 3に、その位置は極めて良く一致している.一方図-8の アスペリティ3については、Kamae and kawabeのアスペリ ティ2と比べ、その位置はやや異なっている.しかし、 断層面の西半分に二つのアスペリティが存在していると いう点では、二つの震源モデルは類似している.

図-8の震源モデルから計算される合成波と本震の観測 波を網走,根室,釧路,十勝,日高,上川,空知,胆振 の各支庁につき一カ所づつ比較したものを図-10~17に 示す.いずれも地中の速度波形(周期2-10秒)である. 観測点の位置は図-7に示す通りである.インバージョン はN30W成分の波形を用いて実施しているが,ここでの比 較はEW成分とNS成分の双方について実施している.

図-8 インバージョンの結果として得られた最終すべり量の分 布

図-10~17を見ると、比較的広い範囲の地震動が図-8 に示したモデルで再現できていることがわかる.これら の図おいてハッチングをした部分がインバージョンに用 いた部分である.ここに示した観測点のうちKSRH07, SRCH09, IBUH05においては、地中の波形であるにも関わ らず、後続位相が発達している.この後続位相は、イン バージョンには用いていないが、一定の精度で再現でき ていることがわかる.

対照的にNMRH02およびKKWH08の波形は観測波,合成波 とも継続時間の比較的短い波形となっている.これらの 結果は,経験的グリーン関数を用いることにより,地震 動の継続時間について,適正な評価が可能であることを 示すものである.

5. 統計的グリーン関数を用いた検討

経験的グリーン関数法は有効な方法であるが,将来の 地震による強震動の評価を考えると,その適用条件が限 定的である点が問題となる.そこで,より適用範囲の広 い方法として,統計的グリーン関数法⁹が提案されてい る.ただし,統計的グリーン関数法にはサイト特性の考 慮の仕方等に応じて様々なバリエーションがあり,いず れの方法を採用するかによって地震動の評価結果は異な るものとなる.古和田他²は,統計的グリーン関数法の バリエーションの一つとして,経験的サイト増幅・位相 特性を考慮できる手法を提案している.この方法は,サ イト特性が地震動の振幅および位相の双方に及ぼす影響 を考慮できるという特徴を有している.そこで,以下に おいては,古和田他の方法を2003年十勝沖地震に適用し, その適用性について検討を行う.

古和田他の方法の概要は以下の通りである.一般に地 震動の振幅は震源特性・伝播経路特性・サイト特性の積 で与えられる.

$$A^{O}(f) = A^{S}(f) A^{P}(f) A^{G}(f)$$
(1)

一方,地震動の群遅延時間は震源特性・伝播経路特性・ サイト特性の和で与えられる⁸.

 $t_{gr}^{o}(f) = t_{gr}^{s}(f) + t_{gr}^{p}(f) + t_{gr}^{o}(f)$ (2) 式 (1) および (2) において添え字Oは観測点において 実際に観測される地震動を,添え字Sは震源特性を,添 え字Pは伝播経路特性を,添え字Gはサイト特性を示す. 古和田他は,規模と震源距離の十分に小さな地震が対象 サイトで観測されている場合,その記録の群遅延時間は, 時間軸上での平行移動の分を除けば,ほぼ式 (2) の右 辺第三項すなわちサイト特性を表現していると考え,こ のことを利用した手法を考案している.すなわち,先ず, 地震基盤での統計的グリーン関数をBore⁹の方法で計 算し,これにサイト特性を加味して地表での地震動を求 める.具体的には、地震基盤での地震動をいったんフー リエ変換し、振幅をA^c(f)倍し、さらに、上記の条件を 満足する記録を周波数領域で振幅1に調整して乗じ、フ ーリエ逆変換する.

本研究では、上で述べた条件に加え、サイト近傍の堆 積層への入射角ができるだけ大地震と共通となるような 小地震を選択することを念頭においた.サイト増幅特性 *A^G(f)*はスペクトルインバージョンにより求めた.算定 された統計的グリーン関数を、先に求めたvariable slip modelに従って重ね合わせることにより、十勝沖地震の の地震動を算定した.

結果の一部を図-18以下に示す.ここで比較を行って いるのは地表の速度波形(周期2-10秒)である.位相の 補正のための小地震記録としては、KSRH07では余震2, TKCH08では余震1,HDKH07では余震3の記録をそれぞれ用 いている.これらの図から,経験的サイト増幅・位相特 性を利用した古和田他の統計的グリーン関数法は,適切 な震源モデルと組み合わせて用いることにより,ここに 示す周期帯域での揺れを評価するために有効な手法であ ると考えられる.

6. 結論

本研究では、2003年十勝沖地震により取得された豊富 な強震記録を利用し、工学的にも重要な周期数秒の揺れ に着目して、経験的グリーン関数を用いた波形インバー ジョンにより、各地の揺れを再現できるような震源モデ ル(variable slip model)の構築を試みた.その結果、 三カ所にアスペリティを有する比較的シンプルな震源モ デルにより、比較的広範囲の地震動を再現できることが わかった.また、得られた震源モデルに対して、経験的 サイト増幅・位相特性を考慮した統計的グリーン関数法 による強震動シミュレーションを実施したところ、周期 数秒の揺れを一定の精度で再現できることがわかった.

謝辞:本研究では防災科学技術研究所のK-NETおよび KIK-NETの記録を使わせていただきました.記して謝意 を表します.

参考文献

- 1) Kinoshita, S. : Kyoshin Net (K-NET), *Seim. Res. Lett.*, Vol. 69, pp.309-332, 1998.
- 2) 古和田明,田居 優,岩崎好規,入倉孝次郎:経験的サイト 増幅・位相特性を用いた水平動および上下動の強震動評価, 日本建築学会構造系論文集,第514号, pp.97-104, 1998.
- 3) 地震調査研究推進本部:千島海溝沿いの地震活動の長期評価について,2003.
- Hartzell, S.H. and Heaton, T.H.: Inversion of Strong Ground Motion and Teleseismic Waveform Data for the Fault Rupture History of the 1979 Imperial Valley, California, Earthquake, *Bull. Seism. Soc. Am.*, Vol.73, pp.1553-1583, 1983.
- Lowson, C.L. and Hanson, R.J.: Solving Least Squares Problems, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1974.
- 6) Kamae, K. and Kawabe, H.: Source model composed of asperities for the 2003 Tokachi-oki, Japan, earthquake (MJMA=8.0) estimated by the empirical Green's function method, *Earth Planets and Space.*, Vol.56, pp.323-327, 2004.
- 7) 釜江克宏,入倉孝次郎,福知保長:地震のスケーリング則に 基づいた大地震時の強震動予測,日本建築学会構造系論文 報告集,第430号, pp.1-9, 1991.
- 8) 澤田純男,盛川 仁,土岐憲三,横山圭樹:強震動の位相ス ペクトルにおける伝播経路・サイト特性の分離,第10回日 本地震工学シンポジウム, pp.915-920, 1998.
- Boore, D.M.: Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, *Bulletin of the Seismological Society of America*, Vol.73, pp.1865-1894, 1983.

+勝沖地震の表面波の卓越分布と 非定常スペクトルを用いた インバージョンによる震度分布推定精度

久世 益充1・杉戸 真太2

¹正会員 岐阜大学非常勤研究員 流域圏科学研究センター (〒501-1193 岐阜市柳戸1-1) E-mail:kuse@cive.gifu-u.ac.jp

²正会員 岐阜大学教授 流域圏科学研究センター (〒501-1193 岐阜市柳戸1-1) E-mail: sugito@cc.gifu-u.ac.jp

2003年十勝沖地震の波形記録を用いて,北海道全域における表面波成分の卓越分布の状況を調べると共 に、非定常スペクトルを用いたインバージョン法による震源過程推定と、その断層モデルに基づく計測震 度推定の精度について検討した.北海道で観測されたK-NET,KiK-net各観測点の表面波成分卓越の有無 を評価して卓越分布を作成した結果、主に平野部で表面波成分が卓越する傾向を確認することができた. インバージョンによる震源過程推定においては、KiK-net観測記録を用いてアスペリティ分布を推定した. さらに、推定したアスペリティ分布を用いて波形シミュレーションを行い、得られた計測震度が観測値を 概ね再現していることを確認した.

Key Words : 2003 Tokachi-oki Earthquake, Surface Wave, Evolutionary Spectra, Inversion

1. はじめに

2003年十勝沖地震(M=8.0)では,行方不明者2名,負傷 者849名,住家全壊116棟,半壊368棟,一部破損1580棟 など,多くの被害が報告された¹⁾.さらに当該地震にお いては,地震動の長周期成分に起因すると思われる多数 の石油タンクの破損が報告されている².

地震動の長周期成分は、断層規模の大きな海溝型地震 で生成され、堆積盆地構造などの周辺地盤条件によって 表面波として大きく励起されるという特徴がある.

本報告では、2003年十勝沖地震で観測された防災科学 技術研究所K-NET³, KiK-net⁴地震動観測網の波形記録を 用いて,表面波成分の有無を非定常スペクトル⁵によっ て調査し,その卓越分布について考察を行う.

さらに、KiK-netで観測された波形記録を用いて、 Kuse et al.⁹が開発した非定常スペクトルに基づくインバ ージョンによってアスペリティ分布推定を行い、解析結 果に基づいて算出されたシミュレーション波形による各 地の計測震度算定値について、その精度の検証を行う.

2. 表面波卓越分布の特徴

(1) 概説

畑山ら²は、当該地震で発生した石油タンク被害について、北海道(苫小牧市、釧路市、石狩市)、青森県(六ヶ所村)への現地調査と、北海道、東北地方、新潟県の各 消防本部を対象としたアンケート調査を行った.畑山ら によると、調査した容量1,000m³以上の石油タンク(365 基)のうち、半数以上の190基で何らかの被害が発生し、 そのうち9基が甚大な被害であったとしている.さらに 長周期地震動と石油タンク被害の関係、スロッシング解 析による液面上昇量と石油タンク被害の関係を調べ、石 油タンク被害発生の原因について考察を行っている.

本報では、防災科学技術研究所による地震観測網K-NET³, KiK-net⁴で得られた波形記録を対象に非定常スペクトル³を算出し、表面波成分の卓越の有無について検討した.

(2) 非定常スペクトルによる表面波検出方法の概要⁷⁾

Sugito et al.⁷は、表面波の分散特性と表面波が実体波よ り遅れてくる性質に着目し、表面波成分有無を検出する 方法を示した.具体的には、周波数ごとの地震動パワー の時刻歴を表す非定常パワースペクトルにより表面波の 分散特性が判別できるようにした.Sugito et al.は、図-1 のように非定常スペクトルを周波数軸と時間軸で表し、 各周波数のピークとなる時刻を比較することで表面波の 有無を判定することとした.図に示すように,表面波成 分が卓越した地震動から算出した非定常スペクトルを周 波数軸と時間軸で表すと,faより低い周波数帯域におい て分散性を有する表面波成分が卓越していることが確認 できる.

(3) 表面波卓越分布図の作成

上記の検討法により,北海道で観測されたK-NET, KiK-netの波形記録を対象に非定常スペクトルを算出し, 表面波成分の有無を確認した.

図-2,3に,K-NET苫小牧地点(HKD129),K-NET帯広地 点(HKD095)の非定常スペクトル(上段),フーリエスペク トル(下段)をそれぞれ示す.両図共に長周期成分が卓越 していることから,非定常スペクトルより表面波の分散 特性を確認することができる.

同様に他の観測記録についても非定常スペクトルを算 出し,各地点ごとに3成分(水平2成分,上下動成分)それ ぞれの波形より表面波成分の有無を調査した.表面波成 分卓越の程度は次の6段階で分類した.

- As: 表面波成分が顕著に見られる
- A :表面波成分が見られる
- A':表面波成分が含まれている可能性が高い
- B : 表面波成分の判別が難しい
- B':表面波成分がほとんど見られない
- C : 表面波成分が全く見られない

図-1 非定常スペクトルによる表面波成分の検出"

図-4に、表面波成分の卓越分布を示す.石狩平野〜勇 払平野,根釧原野,斜里平野においてAs〜A'が顕著に 見られ、十勝平野の複数の地点で表面波成分が卓越して いるなど、平野部の地点では概ね表面波成分が卓越して いることが確認できる.

図-5に、9月26日 6時8分に発生した余震(M=7.1)について、本震と同様に非定常スペクトルを調査して得られた表面波成分の卓越分布を示す.図-4に示した本震の表面波卓越分布と同様に、平野部で卓越している地点が複数見られる.また、本震・余震共に表面波成分が顕著に見られる地点(As)が図-2,3にそれぞれ示した苫小牧地点(HKD129)、帯広地点(HKD095)など22地点あり、これらの地点は周辺地域の基盤構造により、地震の規模にはあまり依存することなく表面波成分が卓越しやすい地点であると思われる.

ところで、図-4,5両方において、北海道北部で表面波 成分が卓越している地点が本震・余震で多数見られるた め、周辺地盤条件との関連について今後考察を進める必 要がある.

図-6,7に、地点ごとの卓越周期を示す.図-4,5で表面 波成分が卓越している地点においては、周期3秒以上が 卓越していることが確認できる.また、北海道北部にお いて、卓越周期が本震では周期3~10秒、余震では3~5 秒と両者に違いが見られるが、本震と余震の断層規模や 震源特性によるものと思われる.

3. 非定常スペクトルを用いたインバージョンによ るアスペリティ分布の推定

(1) 概説

震源域近傍の地震動を高い精度で予測するためには, 当該地震による震源過程を精度良く推定することが不可 欠である.1章で述べたように,2003年十勝沖地震では K-NET, KiK-net 観測網により多地点の波形記録が得ら れている.

これらの波形記録を用いて、本章ではKuse et al^のの非 定常スペクトルに基づくインバージョン法により推定し たアスペリティ分布について考察を行う.

なお, Kuse et al.の手法で得られるアスペリティ分布と は, 断層面上の地震動パワー放出量の相対比率を示す. 地震動パワーの相対比率は, 断層を同じ面積の小断層に 分割した場合, 各小断層の地震モーメントのほぼ0.4乗 に比例することが示されている⁸.

2

(2) 非定常スペクトルを用いたインバージョン法の概要

図-8に推定法の概要を示す.図に示すように,震源位置(緯度・経度・深さ),断層位置(長さ・幅・走向・傾斜角)などの断層パラメータを予め設定してから推定を行う.

STEP I では、断層面上の地震動パワー放出は一様と 仮定し、地震モーメントM₀、断層の破壊伝播速度v,を推 定する.次にSTEP II では、与えられた断層パラメータ より算定した地震動波形を用いて、インバージョンによ るアスペリティ分布の推定を行う.

Kuse et al は,(1)加速度パワーの時刻歴を用いた手法,(2)周波数帯域を考慮した地震動パワーの時刻歴を用いた手法をそれぞれ検討しているが,本文では(1)の手法を用いてインバージョンを行った.

ところで、Kuse et al.のインバージョン法は工学的基盤 を対象とした地震動予測法EMPR⁸に基づいて開発され ているため、推定に用いる波形記録は工学的基盤相当に 変換して用いるのが望ましい。そこでKiK-netの地中観測 記録と地盤データより、地盤震動解析法FDEL⁹を用いて 工学的基盤相当に変換した記録を用いることとした。

(3) アスペリティ分布推定結果

図-9にKiK-net観測点(丸印)と断層モデルを示す.推定 には黒丸で示した20地点,水平2成分の地中記録を, FDELにより工学的基盤相当に変換して用いた.設定し た断層パラメータとSTEP I の地震モーメントM₀,断層 の破壊伝播速度_Vの推定結果を表-1に示す.

断層モデルは、本多ら¹⁰⁾のモデル(図-10(a)に後述)を 参考に設定した.表に示すように、STEP I により *M*₆-3.27×10²⁸(dyne・cm)、*v*₇=1.89(km/sec)が得られた.

次に, 表-1の断層パラメータを用いて, STEP II の加 速度パワーの時刻歴を用いたインバージョンにより推定 したアスペリティ分布を図-10(a)に示す.比較のため, 本多ら, Yagi^{II)}が推定したアスペリティ分布をそれぞれ (b), (c)に示す. (b), (c)に示す格子状の長方形は著者ら が設定した断層モデル(a)に対応している.

図-10に示す各アスペリティ分布を比較すると、震源 付近に大きなアスペリティが共通して見られる.また、 (b)、(c)で見られる震源北西側のアスペリティのやや大 きな領域が推定した(a)でも確認できるが、その大きさ

図-5 2003年9月26日6時8分に発生した余震の表面波成分卓越分布(EW成分)

図-7 2003年9月26日6時8分に発生した余震の卓越周期分布

図-8 インバージョン法の概要

走向(度)	249
傾斜角(度)	20
震源深さ(km)	29
長さ (km)	140
幅(km)	160
STEP I による推定	結果
地震モーメント (dyne・cm)	3.27×10^{28}
破壞伝播速度(km/sec)	1.89

図-9 断層モデルと KiK-net 観測点(●は解析に使用した地点)

は(b), (c)と比べ小さい. その他, (b)では見られない断 層東側のアスペリティが(a)には見られるなど, その分 布形状に若干の差違が見られるが, 前述のように震源付 近に共通して大きなアスペリティが見られることから, 推定したアスペリティ分布は概ね妥当な結果であると考 えられる.

(4) 推定したアスペリティ分布による計測震度算定

推定したアスペリティ分布を用いて波形シミュレーションを行い,各地の計測震度と比較を行う. 観測波形・ 合成波形の比較結果を図-11に示す.同図では,振幅の 時間変動が容易に把握できるように加速度包絡波形を示 した.なお,ここで述べる観測波形とは,3.(2)で述べ た手順に従い,FDELにより工学的基盤相当に変換した 波形を指す.アスペリティを全て一様に与えて合成した 図-11(a)と比較して,図-10(a)に示すインバージョン結 果より得られたアスペリティを用いて合成した図-11(b) の方が観測波形に近づいている傾向を確認できた.

図-12に、観測波形、合成波形それぞれより算出した 計測震度を示す.アスペリティを一様に与えて合成した 波形よりもインバージョン結果を用いて合成した波形に よる計測震度が観測地を再現している傾向が確認できた.

4. おわりに

本報告では2003年十勝沖地震を対象に,(1)北海道全域 における表面波成分卓越の有無の検出とその分布の作成, (2)非定常スペクトルを用いたインバージョン結果に基 づく計測震度算定結果の考察を行った.

(1)では、各地点の波形記録より非定常スペクトルを 算出し、表面波成分の分散性を確認することで表面波成 分卓越の程度を6段階で評価した.得られた表面波卓越 分布より、特に平野部において表面波が卓越している傾 向が見られ、同様の傾向が同日6時8分に発生した余震で も見られることを確認できた.

なお、今回は主に表面波卓越分布による考察であり、 今後観測点周辺の地盤条件や土地分類などを加えたより 詳細な考察を進める必要がある.

(2)では、Kuse et al.の手法を用いて推定したアスペリティ分布から得られた各地の計測震度が、観測地をよく再現していることが確認できた.ところで、今回の解析では300秒程度観測されているKiK-net記録より160秒分を抽出して行っているが、STEP I で得られた破壊伝播速度(v,=1.89km/sec)から断層の破壊時間が60秒程度であったことを考えると、今回の解析結果に反射波や表面波の影響が含まれていると考えられる。断層破壊時間を考慮し、60~70秒程度の記録に対して再度解析を行い、今回の結果を比較・考察する必要があるなど、より的確な推定を可能とするための種々の検討を行う必要がある。

謝辞:本研究ではK-NET観測記録, KiK-net観測記録・地 盤データを利用した. また,岐阜大学工学部社会基盤工 学科 小塚寛也氏には,2章において波形記録のデータ処 理に協力して頂いた.記して謝意を表する.

参考文献

- 1) 消防庁:平成 15 年(2003 年)十勝沖地震について(確定 報), http://www.fdma.go.jp/data/H160331TokachiJish in.pdf, 2004.3.
- 畑山健,座間信作,西晴樹,山田實,廣川幹浩,井上良介:2003年十勝沖地震による周期数秒から十数秒の長周期地震動と石油タンクの被害,地震第2輯第57巻, pp.83-103.2004.
- 3) 強震観測網 K-NET, http://www.k-net.bosai.go.jp/k-net/
- 4) 基盤強震観測網 KiK-net,http://www.kik.bosai.go.jp/kik/
- 5) 亀田弘行:強震地震動の非定常パワースペクトルの算 出法に関する一考察,土木学会論文報告集,第 235 号, pp.55-62,1975.3.
- 6) Kuse, M., Sugito, M., and Nojima, N.:Inversion of Source Process in Consideration of Filtered-Acceleration Envelope, 13th World Conference on Earthquake Engineering, Vancouver, BC Canada, 2004.8.

図-12 計測震度の比較(工学的基盤相当)

- Sugito, M., Goto, H., and Aikawa, F.:Simplified Separation Technique of Body and Surface Waves in Strong Motion Aaccelerograms, PROC. OF JSCE Structural Eng/Earthquake Eng, Vol.1, No.2, pp.71-76,1984.
- Sugito, M., Furumoto, Y. and Sugiyama, T.:Strong Motion Prediction on Rock Surface by Superposed Evolutionary Spectra, 12th World Conference on Earthquake Engineering, 2111/4/A, CD-ROM, 2001.
- 9) 杉戸真太,合田尚義,増田民夫:周波数特性を考慮した等価ひずみによる地盤の地震応答解析法に関する一考察,土木学会論文集,No493/III-27, pp.49-58, 1994.6.
- 10)本多亮,青井真,森川信之,関口春子,功刀卓,藤原広行:近地強震動記録による北海道十勝沖地震 (2003/09/26,4:50)の震源インバージョン(暫定), http://www.k-net.bosai.go.jp/k-net/news/tokachi-oki/inv/,2003.11.
- 11)Yagi, Y.:Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data, Earth Planets Space, 56, pp.311-316, 2004.

5. 巨大地震の地震動予測手法の高度化

首都圏における長周期地震動シミュレーション:関東地震と立川断層の地震 鈴木晴彦・増田徹・三宅弘恵・纐纈一起

地表面幾何形状のモデル化が有限要素波動場計算に及ぼす影響の一例 市村強・桑本寛之・堀宗朗

巨大地震の長周期地震動予測のための広帯域ハイブリッド法 佐藤俊明・渡辺基史・早川崇

東海地震の関東平野における長周期地震動予測

土方勝一郎・植竹富一・金谷淳二・真下貢・早川崇・渡辺基史・佐藤俊明

やや長周期地震動評価のための関東平野の3次元S波速度構造のモデルの構築 山中浩明

首都圏における長周期地震動シミュレーション: 関東地震と立川断層の地震

鈴木晴彦1· 增田徹2· 三宅弘恵3· 纐纈一起4

¹ 応用地質株式会社 技術本部 地震防災センター (〒331-8688 埼玉県さいたま市北区土呂町2-61-5) E-mail: suzuki-haruhiko@oyonet.oyo.co.jp

² 応用地質株式会社 技術本部 地震防災センター (〒331-8688 埼玉県さいたま市北区土呂町2-61-5) E-mail: masuda-tetsu@oyonet.oyo.co.jp

³ 東京大学 学振特別研究員 地震研究所(〒113-0032 東京都文京区弥生1-1-1)
 E-mail: hiroe@eri.u-tokyo.ac.jp

⁴ 東京大学 教授 地震研究所 (〒113-0032 東京都文京区弥生1-1-1) E-mail: koketsu@eri.u-tokyo.ac.jp

首都圏内で発生が予想される地震ついて長周期地震動のシミュレーションを行った.海溝型プレート境 界地震として関東地震,内陸地殻内地震として立川断層帯の地震を検討対象とし,前者の震源モデルには 1923年関東地震の不均質震源過程を用い,後者では中央防災会議モデルを基にに特性化震源モデルを作成 した.地下構造モデルには,弾性波探査や微動探査の結果のコンパイルと中小地震の強震記録を用いたチ ューニングにより構築された中央防災会議モデルを利用した.以上のモデルから工学的基盤における周期 3秒程度以上の長周期地震動を,差分法による数値シミュレーションによって計算し評価した.

Key Words: long-period ground motion, Kanto earthquake, Tachikawa fault system

1. 関東地震の震源モデル

プレート境界で発生する海溝型地震では、「ある領域 にはそれぞれに固有な大きさとメカニズムを持つ地震が 繰り返し発生する」とする固有地震モデルが、近似的に 成り立つ場合が多いと考えられている.関東地震は相模 トラフで発生する、フィリピン海プレートと陸側プレー トの境界で発生する地震であるから、来るべき次の関東 地震の震源モデルは、前回1923年の関東地震を詳細に調 べることによってある程度構築可能であると考えられる.

1923年といえば現代的な地震観測以前の時代であるが, そうした時代としては異例に豊富なデータが存在する. 特に,地殻変動のデータセットは図-1に示すような充実 したものである^{1,2}.また,海外で観測された遠地実体波 の波形記録^{3,4}(図-2左)も利用できるが,近年,国内 において気象庁・東京帝大・東北帝大により観測された 強震波形記録も発掘されている^{5,6}(図-2右).

これら各種データセットを総合的に利用して,1923年 関東地震の破壊過程を同時インバージョンにより求めた ⁷. 震源断層にはKanamori (1971)³を基にWald and Somerville (1995)⁴が設定したモデルを(図-1の点線四 角),同時インバージョンにはYoshida et al. (1996)⁸ の手法を用いた.地殻変動の理論値は半無限媒質で近似 的に計算し、遠地実体波・強震波形のグリーン関数はそれぞれPREMモデル、水平成層構造に対して計算された.

この同時インバージョンにより得られた震源断層面上のすべり分布を図-2に示す.神奈川県西部の破壊開始点(図-1,3上の星印)付近と,三浦半島・房総半島間の浦

賀水道付近に大きなすべりの領域(アスペリティ)が存 在する.前者でのすべり時間関数は急激に立ち上がるの に対して,後者では比較的ゆっくり立ち上がって長めに すべりが継続する傾向がある.関東地震が完全に固有地 震的か否かを断定的に述べることはできないが,より現 実的な微視的断層パラメータを用いた長周期地震動の評 価を行うため,ここで求められた1923年関東地震の不均 質震源過程を震源モデルとして採用する.

図-2 1923年関東地震のインバージョン[∂]に使用した遠地実体 波データ(左)と強震波形データ(右).

2. 立川断層帯の地震の震源モデル

M7クラスの内陸地殻内地震によって関東平野で励起される長周期地震動を評価するため、立川断層帯を起震断層とした場合を検討の対象とした.なお、立川断層帯に関しては、中央防災会議「首都直下地震対策専門委員会」によって統計的グリーン関数法に基づいた強震動評価⁹がなされている.ここでは震源モデルとして、アスペリティ領域と背景領域からなる特性化震源モデル¹⁰を採用し、断層セグメントや各領域に与える応力パラメー

タについては中央防災会議で設定されている断層パラメ ータ⁹に倣った.

立川断層帯の活断層については、地震調査推進本部・ 地震調査委員会¹¹⁾によって長期評価がなされており、立 川断層から名栗断層に至る長さ33 kmの断層帯が同時に 活動するとされている.地震発生層を拘束できる情報が 少ないため、断層の上端深さを5 km、断層幅を15 kmと 仮定した.断層の平均応力降下量は中央防災会議に倣い (3 MPa)、円形クラック¹²⁾近似により地震モーメントを算 出し、モーメントマグニチュード Mw 6.7、気象庁マグ ニチュード7.0に相当するシナリオを設定した(本稿末尾 の表-1).ここで求めた地震モーメントと断層面積の関 係は、近年の内陸地殻内地震の震源インバージョン結果 から得られた経験的関係式¹³⁾と調和的である.破壊開始 点は、過去の活断層形状に関する研究^{14,15)}を参考に立川 断層と名栗断層のステップオーバー部に設定し、断層破 壊がバイラテラルに進行するものとした(図-4).

立川断層帯の地震は、立川断層1、立川断層2、名栗断 層の3つのセグメントからなると仮定し、各セグメント には、応力降下量が14 MPaで断層面積の22%の領域をア スペリティとして与えた.アスペリティ領域における平 均すべり量は断層の平均すべり量の2倍¹³と仮定した. 背景領域の応力パラメータは、動力学的な検討¹⁶に基づ きアスペリティ領域の応力パラメータの20%としている. 差分法で用いる小断層は500 km メッシュに分割し、各 小断層には中村・宮武¹⁷によるすべり速度時間関数を入 力した.

図-4 立川断層帯に設定した破壊シナリオ(文献¹¹⁾に加筆)

3. 地下構造モデル

(1) 1次モデルの構築

1次モデルには、中央防災会議「首都直下地震対策専 門調査会」で作成した地盤モデル⁹を用いた.中央防災 会議では、関東地域で行われた弾性波探査結果により得 られている代表的な速度層、Vp5.5km/s,4.7km/s, Vp3.1km/s,2.1km/s相当層に分割しそれらの上面深度分 布を求めている.図-5に関東地方における弾性波探査測 線、微動アレイ探査観測点の位置図を、表-2に地盤モデ ルの物性値を示す.次に、図-5に示した微動アレイ探査 で得られている位相速度と地盤モデルで計算されるレイ リー波の基本モードの位相速度をあわせるように地盤モ デルの修正を行い地盤モデルを作成している.図-6に Vp4.7km/s層およびVp5.5km/s層の上面深度コンターを示 す.ここでは、上記の地盤モデル⁹を初期モデルとして、 中小地震により得られた卓越周期により地盤モデルのチ ューニングを行った.

(2) 中小地震を用いた地盤モデルのチューニング

関東地方(東京都・神奈川・埼玉・千葉・茨城・栃 木・群馬県)のK-NET観測点において2000年から2004年 に観測されたM6.5以上の27地震について解析を行った.

解析では、地震動のS波初動を読み取り、S波初動から 20秒以降の163秒間のデータを用いて水平動と上下動の スペクトルの比(以下H/Vスペクトルと呼ぶ)を求めた. NS成分とUD成分の比, EW成分とUD成分の比を求め、相加 平均によりH/Vスペクトルとした. 図-7にH/Vスペクトル を示す. H/Vスペクトルは振幅・形状ともに地震によら ず安定しており、地盤構造を強く反映していると考えら れる^{19,20}.

図-8はK-NET地点(CHB003)付近の下総深層ボーリン グ地点におけるS波検層結果²¹⁾および微動アレイ探査結 果²⁹により計算されるレイリー波の基本モードの水平動 と上下動の振幅比である.地震動のH/Vスペクトルの形 状と良く対応していることがわかる.したがって,地震 動のH/Vスペクトルのピークは表面波の卓越周期を表し ていると考えられる.そこで,チューニングでは,地震 動のH/Vスペクトルと地盤モデルより計算されるレイリ 一波の基本モードの水平動と上下動の振幅比のスペクト ル形状・ピーク周期が対応するように地盤モデルを修正 することを目的とし,Vp5.5km/s層より上位の速度層の 上面深度を調整した.その際には1次モデルで得られて いる速度層1から4の層厚の比率は保存した.

図-5 関東地方における弾性波探査測線(実線),微動ア レイ探査観測点(三角)

表-2 地盤モデルの物性値

	Vp(km/s)	Vs(km/s)	ho (g/cm ³)
速度層1	1.8	0.5	1.9
速度層2	2.1	0.7	2.0
速度層3	3.1	1.4	2.1
速度層4	4.7	2.4	2.6
速度層 5	5.5	3.0	2.6

図-6 1次モデル(a: Vp4.7km/s層上面深度, b: Vp5.5km/s 層の上面深度)

CHB003におけるH/Vスペクトル(黒)と既往の速度構造 により計算されるレイリー波の基本モードの水平動と上 下動の振幅比(赤)

図-9 チューニング後の地盤モデル (a:Vp2.1km/s, b:3.1km/s, c:4.7km/s, d:5.5km/s層の上面深度)

139 139.5 140 140.5

138.5

139.5 140 140.5 141

図-9にチューニング後の各速度層の上面深度分布を 示す. Vp4.7km/sの上面は千葉県中央部で深くなり深度3 kmを越えるような地域が広くなっている.また,この地 域ではVp3.1km/sの上面深度も1000mを超えている.

図-10にチューニング後の地盤モデルを用いて計算されるS波の1次固有周期と地震動のH/Vスペクトルピーク 周期の比較を示す.図-7にも見られるように地震毎のば らつきはあるものの、千葉県中央部には周期10秒以上と なる地域が広く分布していることがわかる(CHB012・ 014・015・017・026).東京・埼玉・神奈川の東部では 卓越周期は8秒程度であり(TKY007, KNG001, SIT008・ 011)、群馬県の南部にも8秒程度である観測点が見られ

図-7 地震記録のH/Vスペクトル 太線は平均値

る(GN008). 図-10に見られるように周期3秒以下の周 期帯域においては、観測H/Vスペクトルピーク周期と地 盤モデルの1次固有周期の対応が良くない観測点が多い. 周期1から3秒付近にピークを有する観測点ではあまり明 瞭なピークを有していない点もあり、(KNG008, IBR002 等)浅部のより詳細な速度構造を含めた検討が今後必要 であると考えられる.

図-10 地盤モデルによる1次固有周期とK-NET観測点におけるH/V スペクトルのピーク周期

4. 長周期地震動シミュレーション

以上の震源モデル,地下構造モデルに対して長周期地 震動シミュレーションを実施した.シミュレーションに は三次元有限差分法³³を用い,地下構造モデルから担保 されると考えられる周期3秒程度以上の地震動を評価の 対象とした.したがって短周期地震動のハイブリッド合成は行わず,結果は工学的基盤上の長周期地震動となる.

参考文献

- Military Land Survey: Re-survey of the Kwanto district after the great earthquake of 1923, *Bull. Imp. Earthq. Invest. Comm.*, Vol.11. pp.1–6, 1930.
- 佐藤裕・市原満:関東震災復旧三角測量について、測地学 会誌, Vol.17, pp.178–186, 1971.
- Kanamori, H., Faulting of the great Kanto earthquake of 1923 as revealed by seismological data, *Bull. Earthq. Res. Inst.*, Vol.49, pp.13–18, 1971.
- Wald, D. J. and Somerville, P. G.: Variable-slip rupture model of the great 1923 Kanto, Japan, earthquake: geodetic and body-waveform analysis, *Bull. Seism. Soc. Am.*, Vol.85, pp.159–177, 1995.
- 武村雅之・池浦友則・工藤一嘉・大沼啓人:岐阜測候所 で観測された 1923 年関東地震の本震・余震の記録, 地震第 2 輯, Vol.47, pp.193-200, 1994.
- 6) 横田治彦・片岡俊一・田中貞二・吉沢静代:1923 年関東 地震のやや長周期地震動-今村式2 倍強震計記録による 推定,日本建築学会論文報告集,Vol.401,pp.35-45,1989.
- Kobayashi, R. and Koketsu, K.: Source process of the 1923 Kanto earthquake inferred from historical geodetic, teleseismic, and strong motion data, *Earth Planets Space*, submitted.
- Yoshida, S., K. Koketsu, B. Shibazaki, T. Sagiya, T. Kato, and Y. Yoshida: Joint inversion of near- and far-field waveforms and geodetic data for the rupture process of the 1995 Kobe earthquake, *J. Phys. Earth*, Vol.44, pp.437–454, 1996.
- 9) 中央防災会議:「首都直下地震対策専門委員会」(第 12 回),地震ワーキンググループ報告書,2004.
- 10) 入倉孝次郎・三宅弘恵:シナリオ地震の強震動予測,地学 雑誌, Vol. 110, pp.849-875, 2001.
- 11) 地震調査推進本部・地震調査委員会:立川断層帯の長期 評価について
 - http://www.jishin.go.jp/main/chousa/03aug_tachikawa/index.htm, 2003.
- Eshelby, J. D.: The determination of the elastic field of and ellipsoidal inclusion, and related problems, *Proc. Roy. Soc.*, Vol.A241, pp.376-396, 1957.
- Somerville, P. G. et al. : Characterizing crustal earthquake slip models for the prediction of strong ground motion, *Seism. Res. Lett.*, Vol. 70, pp.59-80, 1999.
- 14) King, G. and Nabelek, J. : Role of fault bends in the initiation and termination of earthquake rupture, *Science*, Vol. 228, pp.984-987, 1985.
- 15) 中田高・他:活断層はどこから割れ始めるのか?一活断層の分岐形態と破壊伝播方向一,地学雑誌, Vol.107, pp.512-528, 1998.
- 宮武隆: 震源物理に基づく震源モデルー強震動予測のために-,月刊地球,号外 Vol. 37, pp.42-47, 2002.
- 中村洋光・宮武隆:断層近傍強震動シミュレーションの ために滑り速度時間関数の近似式,地震第2輯, Vol.53, pp.1-10,2000.
- Kanamori, H.: The energy release in great earthquakes, J. Geophys. Res., Vol. 82, pp.2981-2987, 1977.
- 佐藤智美・川瀬博・松島信一:微動とS波,P波,codaから求められる地盤特性の違いとその理論的解釈,地震第2 輯, Vol.51, pp.291-318, 1998.
- 20) 大熊裕樹・松岡昌志・山崎文雄・原田隆典:宮崎県にお ける常時微動 H/V スペクトル比を用いた地震動の推定,

土木学会論文集, No.696/I-58, pp.261-272, 2002.

- 太田裕・後藤典俊・塩野計司・高橋博・山水史生・栗田 重利:やや深い構造のS波速度(II)一下総2300m地震 観測井における測定,地震第2輯, Vol.31, pp.299-308, 1978.
- 22) 松岡達郎・白石英孝・梅沢夏実:深部地下構造推定のための微動探査法の適用方法に関する検討―深層ボーリン

グ資料を利用した位相速度の逆解析―,物理探査, Vol.53, pp.12-28, 2000.

23) 林宏一・引間和人::差分法による三次元粘弾性波動場計 算(2) -不等間隔格子の導入と PC クラスタによるパラレル 化-,物理探査学会学術講演会講演論文集, Vol.105, pp.263-266, 2001.

		1	र- 1 꼬川肉	旧市の例准	ヨハノメーク	>	
			立川断層1	立川断層2	名栗断層	パラメータ設定根拠	参考文献
活断層に関する情報							
上端深さ	d	km	5	5	5		中央防災会議 (2004)
長さ	L	km	15	7	11	合計 33 km	推本·長期評価部会(2003)
幅	W	km	15	15	15	下限の深さは不明	推本·長期評価部会(2003)
巨視的断層パラメータ							
断層面積	S	km ²			495	S = LW	
地震モーメント	Мо	Nm			1.36E+19	Mo = $16/7 \pi^{1.5} \Delta \sigma S^{1.5}$	Eshelby (1957)
モーメントマグニチュード	Mw				6.7	log Mo = 1.5 Mw + 9.1	Kanamori (1977)
マグニチュード	М				7.0	Mw = 0.879 Mjma + 0.536	中央防災会議(2004)
S波速度	Vs	km∕s			3.5		中央防災会議(2004)
平均密度	ρ	g/cm ³			2.8		中央防災会議(2004)
剛性率	μ	N/m ²			3.4E+10		中央防災会議(2004)
平均的な応力パラメータ	Δσ	MPa			3.0	仮定	中央防災会議(2004)
平均すべり量	D	m			0.808	$D = Mo / \mu S$	
破壊伝播速度	Vr	km			2.5		中央防災会議(2004)
微視的断層パラメータ(アスペリティ)							
アスペリティの面積	Sa	4 km ²	50	23	36	$Sa = 0.22 S = 109 \text{ km}^2$	Somerville et al. (1999)
アスペリティ内の平均すべり量	Da	m	1.62	1.62	1.62	Da = 2.01 D	Somerville et al. (1999)
アスペリティでの地震モーメント	Moa	Nm	2.75E+18	1.27E+18	1.98E+18	合計 6.00E+18 Nm	
アスペリティの応力パラメータ	Δσa	MPa	14	14	14	仮定	中央防災会議(2004)
微視的断層パラメータ(背景領域)							
背景領域の面積	Sb	km ²			386	Sb = S - Sa	
背景領域での地震モーメント	Mob	Nm			7.60E+18	Mob = Mo - Moa	
背景領域の平均すべり量	Db	m			0.579	$Db = Mob / \mu Sb$	
背景領域の応力パラメータ	σb	MPa			2.8	$\sigma b = 0.2 \sigma a = 0.2 \Delta \sigma a$	宮武 (2002)

表-1 立川断層帯の断層パラメータ

LONG-PERIOD GROUND MOTION SIMULATION IN THE TOKYO METROPOLITAN AREA

Haruhiko SUZUKI, Tetsu MASUDA, Hiroe MIYAKE and Kazuki KOKETSU

Long-period ground motions from future earthquakes in the Tokyo metropolitan area have been simulated. We adopted the Kanto earthquake as an interplate event in the subduction zone and an earthquake due to the Tachikawa fault system as a crustal inland earthquake. The rupture process of the 1923 Kanto earthquake was used for the former source model, and we constructed a characterized source model for the latter, based on the model of the Central Disaster Prevention Council. For the underground structure, we also used the CDPC model, which had been built from the compilation of seismic and microtremor survey results, and tuned with strong motion records of small earthquakes. Ground motions on the engineering bedrocks were numerically simulated with these models and the finite difference method for periods longer than 3s.

地表面幾何形状のモデル化が 有限要素波動場計算に及ぼす影響の一例

市村強¹·桑本寬之²·堀宗朗³

 ¹正会員 博(工) 東北大学大学院工学研究科土木工学専攻(〒980-8579 仙台市青葉区荒巻青葉 06) E-mail:t-ichim@msd.civil.tohoku.ac.jp
 ²正会員 学(工) 東北大学大学院工学研究科土木工学専攻(〒980-8579 仙台市青葉区荒巻青葉 06) E-mail:kuwamoto@msd.civil.tohoku.ac.jp
 ³正会員 Ph.D 東京大学地震研究所(〒113-0016 文京区弥生 1-1-1) E-mail:hori@eri.u-tokyo.ac.jp

地震動を検討する際に,差分法,有限要素法,境界要素法等の数値計算が用いられることが多くなってきて いる.これらの手法により地震動を数値シミュレーションする際に,地表面の水平近似や構造格子の適用等の 対象モデルの幾何形状の近似がよく行われる.本報告では,非構造格子型の有限要素法と構造格子型の有限要 素法による波動場計算例の比較から幾何形状の近似が及ぼす影響について基礎検討を行った.数値実験を通し て,非構造格子型の有限要素法と構造格子型の有限要素法では,幾何形状の近似により計算波形に差異が生じ る場合があること,また,構造格子型の有限要素法による離散化の閾値の設定によっても差異が生じる場合が あることがわかった.

Key Words : finite element method, earthquake motion modeling, surface topography

1. はじめに

長周期側の地震動を検討する際に,差分法,有限要 素法,境界要素法等の数値計算が用いられることが多 くなってきている.これらの手法により地震動を数値 シミュレーションする際に,地表面の水平近似や構造格 子の適用等の対象モデルの幾何形状の近似がよく行わ れる.本報告では,非構造格子型の有限要素法と構造 格子型の有限要素法による波動場計算例の比較から幾 何形状の近似が及ぼす影響について基礎検討を行う.

2. 数值計算手法

線形動弾性を対象とし,支配方程式として,

$$(c_{ijkl}u_{k,l})_{,i} + \alpha \dot{u}_j + \rho \ddot{u}_j = 0, \tag{1}$$

を考える.ここで, *c_{ijkl}*, *u_j*, *α*, *ρ*, , *j* は各*α*, 弾 性テンソル, *j* 方向の変位, 減衰定数, 密度, 時間微分, *j* 方向の偏微分を表す.

時間積分として Newmark の β 法 (δ =1/2, β =1/4) を適用し,空間方向の離散化として有限要素法を用い ると,式 (1) は,

時間間隔,全体剛性マトリクス,減衰マトリクス,質 量マトリクス,変位ベクトル,速度ベクトル,加速度 ベクトルである.右肩添え字は時間ステップ数を表す. 地震動の波動場計算では,陽解法がよく用いられる.離 散化条件を同様にするため,質量マトリクスを集中質 量マトリクスとする.式(2)を解くために反復解法の ひとつである BI-CGSTAB 法¹⁾を適用する.収束条件 の許容誤差を相対誤差 ≤10⁻⁸ とする.

3. 非構造格子型と構造格子型の有限要素法

任意形状を表す非構造格子型の有限要素法により波 動シミュレーションを行う際には、メッシュ生成及び式 (2)の**K**の評価に莫大な計算コストが費やされる(例 えば参考文献²⁾).

この問題を解決するため構造格子型の有限要素法が 提案されており,地震動シミュレーションにも適用さ れている(例えば,参考文献^{3),4)}).非構造格子型の有 限要素法では,任意形状の領域を四面体要素等を用い てその幾何形状に沿った離散化を行うが,構造格子型 の有限要素法では,ひとつもしくは数種類の形状の要 素を用いて空間の離散化を行う.全体剛性マトリクス を陽的にメモリ上に確保せずに,用いられている幾つ かの要素毎の要素剛性マトリクスを予めメモリ上に確 保しておき,これらを組み合わせることによって陰的

図−1 解析用モデル I

に全体剛性マトリクスを作る.メッシュ生成の計算コ ストが少なく,要素毎の要素剛性マトリクスを逐次的 に計算する必要がないため大幅に計算効率をあげるこ とができる.しかし,その一方で,数種類の形状の要 素のみを用いて空間の離散化を行うため,幾何形状の 近似が必然的に発生する.

4. 数值実験

変位ベースの四面体一次要素を用いた非構造格子有 限要素法(NFEM)と変位ベースの立方体アイソパラ メトリックを用いた構造格子有限要素法(VFEM)を 用いて数値実験を行い、上記の幾何形状の近似が波動 場計算に及ぼす影響について検討する.

(1) 問題設定

図-1に示す領域を考え、上面での波動場分布を検討 の対象とする.領域の上面は数値地図の 50m メッシ ュ標高データから抽出した実地表面形状である.地表 面の標高の平均値が 500[m] になるよう調整した.物 性に縦波速度,横波速度,密度,減衰定数として各々 1000[m/sec],600[m/sec],2500[kg/m³],0.008 を用いる. この領域下面に、xyz 方向に中心周期 1 秒,中心時間 1 秒の Ricker 波の 1[Hz] 以上の成分をカットしたものを 変位として入力する.境界条件について多くの研究が なされているが、未だに透過境界条件、半無限境界条 件には誤差がある.その影響を除くため、側面の境界 条件は自由境界とした.また、上面の境界条件も自由 境界である.dt を 0.01 秒とし、10.24 秒間の波動場の 数値シミュレーションを行う.

図-2 解析用モデル II

(2) 幾何形状の近似がない場合

まず,図−1の上面を水平とした図−2を対象として上 記の境界条件で波動場の数値シミュレーションを行う. この場合,NFEM,VFEMのどちらで数値シミュレー ションを行っても離散化の際の幾何形状の近似はない.

図-3,図-4に、NFEM とVFEM による波動場シ ミュレーションの結果を示す.地表面でのx方向成分 変位時刻歴応答をフーリエ変換し、0.98Hzの周波数成 分の分布を示している.要素数は、一波長当りの要素 数を表している.本報告では、対象周波数を0.98Hzと 考えているので、一波長は約600mとなる.一波長当 り50要素で離散化するとは、12m程度の要素を用いて 離散化することを意味している.

NFEM の 50 要素の解を収束解と考え,図-3,図-4の相対誤差の分布を図-5,図-6に示す.相対誤差[%] を

相対誤差 [%] = $\frac{(\text{sol}_{\text{target}} - \text{sol}_{\text{NFEM50}})}{\text{Max}(\text{sol}_{\text{NFEM50}})} \times 100.,$

と定義した.ここで, sol_{target}, sol_{NFEM50} は各々, 評価 対象となるシミュレーション結果, NFEM の 50 要素の シミュレーション結果である.NFEM も VFEM もと もに良好な収束を示しており, 両者とも 24 要素程度で 凡そ同じ解に収束していることが分かる.

(3) 幾何形状の近似がある場合

次に、図−1のモデルを用いて同様の境界条件で波動 場の数値シミュレーションを行う.この場合、NFEM では幾何形状の近似はないが、VFEMでは立方体要素 で離散化するため幾何形状の近似が発生する.

図-7,図-8に,NFEM とVFEM による波動場シ ミュレーションの結果を示す.地表面でのx方向成分 変位時刻歴応答をフーリエ変換し,0.98Hzの周波数成 分の分布を示している.要素数は,一波長当りの要素 数を表している.NFEMでは,要素が細かくなればな るほど収束しているようにみえる.しかし,VFEMで は,大域的な分布は似ているものの,局所的には大き な差異があるように見られる.図-7,図-8を元に,上 記の相対誤差の定義を用いて相対誤差を求めた.各々 の相対誤差の分布を,図-9,図-10に示す.NFEMの 結果は,幾何形状の近似がない場合と同様に要素が細 かくなるほど収束解に近づいており,24要素程度で凡 そ収束している.一方で,VFEMの結果は,要素が細 かくなるほど収束に向かっているとは思われるが,30 要素程度であっても,依然として局所的に大きな誤差 がある.

幾何形状の近似がない場合には、NFEM、VFEM と もに24 要素程度でよく収束していることから、幾何形 状の近似の影響を見るため、一波長あた24 要素を用い たシミュレーション結果によりNFEM と VFEM をポ イントワイズで比較する.

図-11に地表面上の点 (x, y) = (300, 300)での x 方 向時刻歴変位波形及び加速度応答スペクトルを示す.振 幅で少しの差異はあるものの,ほぼ同じ波形になって いる.また,加速度応答スペクトルについても同様で ある.図-12に地表面上の点 (x, y) = (900, 150)での x 方向時刻歴変位波形及び加速度応答スペクトルを示す. NFEM と VFEM では波形の概形も異なり,また,加 速度応答スペクトルでも大きな差異が生じていること がわかる.

以上から,幾何形状の近似がある場合,VFEMの大 域的な結果はNFEMと似たような結果になるが,局所 的には,NFEMと同様の解が得られる場合もあるが, 場合によっては,大きな誤差が生じる可能性があるこ とが分かった.ポイントワイズでの評価にボクセル有 限要素法を適用する際にはさらに十分な検討が必要に なると思われる.

(4) 離散化の閾値が及ぼす影響

VFEM で任意の幾何形状を離散化する際に,その閾 値の取り方に任意性がある.前節の VFEM では,図 -13 に示す②の閾値を用いた.これは,地表面の座標 が要素の中心座標より上にあるならば領域に含めると いう閾値である.ここでは,閾値①として要素上面の 中心座標が地表面の座標より下にあるならば領域に含 める,閾値③として要素下面の中心座標が地表面の座 標より下にあるならば領域に含めるという閾値を新た に定義し,閾値の違いが VFEM の結果に及ぼす影響に ついて検討する.

図-14に一波長当り24要素で、閾値①、③を用いた VFEMのシミュレーション結果を示す.地表面でのx 方向成分変位時刻歴応答の0.98Hzの周波数成分の分布 である.大域的な分布性状は 50 要素を用いた NFEM によって得られた結果に似ているが,局所的には, 閾 値②の場合と同様に大きな誤差が生じている.

次に、ポイントワイズで波形をみてみる.前節でみ た地表面上での点点 $(x,y) = (300,300) \ge (x,y) =$ (900,150)の時刻歴波形及び加速度応答スペクトルの グラフを図-15、図-16に示す.点 (x,y) = (300,300)では、閾値②の場合、NFEM とVFEM で良い一致を 示していたが、他の閾値では大きな差異を生じている. 点 (x,y) = (900,150)でも同様に大きな差異が生じて いる.このように、VFEM は同じ地点の結果であって もモデル化の際の閾値のによって解が大きく異なる可 能性があることがわかる.

5. まとめ

以上の数値実験による基礎検討を通して以下のこと が分かった.

- 幾何形状の近似がない場合には、NFEM も VFEM も同様によい解析結果を与える.
- 幾何形状の近似がある場合には、大域的な傾向は NFEM も VFEM も同様であるが、局所的な評価 では差が生じる場合がある。
- VFEMの離散化の際に用いる閾値の選択によって
 も、局所的な評価では、差が生じる場合がある。

このような数値計算手法の選択から生じる波形の差 異が構造物の動的応答・設計照査等に対して有意な差異 を生むかどうかを鑑みながら、必要に応じて波動場の 計算手法について検討を行っていきたいと考えている.

謝辞: 入倉部会長をはじめ,地震動部会の委員の方々 から有意義なコメントをいただきました.ここに記し て,感謝いたします.

参考文献

- H.A. van der Vorst: BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of non symmetric liner systems, *SIAM J. Sci. Stat. Comput.*, **13–2**, pp.631-644, 1992.
- 2) Bao, H., Bielak, J., Ghattas, O., Kallivokas, L. F., O'hallaron, D. R., Shewchuk, J. R., and Xu, J.: Large-scale Simulation of Elastic Wave Propagation in Heterogeneous Media on Parallel, *Computers, Comput. Meth. Appl. Mech. Eng.* 152, pp.85-102, 1998.
- 3) Kim, E.J., Bielak, J. and Ghattas, O.: Large-Scale Northridge Earthquake Simulation using Octree-Based Multiresolution Mesh Method, ASCE 16th Engineering Mechanics Conference, 2003.
- Koketsu, K., H. Fujiwara and Y. Ikegami, Finiteelement simulation of seismic ground motion with a voxel mesh, *Pure Appl. Geophys.*, 161, 11-12, pp.2463-2478, 2004.

図-6 モデル II 相対誤差 VFEM

589

(c) 30 要素

(a) 12 要素

(d) 50 要素

図-7 モデル I NFEM

-161

(b) 24 要素

-161 589 (b) 24 要素 図-8 モデル I VFEM

(a) 12 要素

2.61[%] (c) 30 要素

-1.86 4.73[%] (b) 24 要素 図-9 モデル I 相対誤差 NFEM

16.1[%] (a) 12 要素

図-10 モデル I 相対誤差 VFEM

(a) 12 要素

巨大地震の長周期地震動予測のための 広帯域ハイブリッド法

佐藤 俊明1・渡辺 基史1・早川 崇1

¹正会員 清水建設株式会社 技術研究所 (〒135-8530 東京都江東区越中島三丁目4-17) E-mail:toshiaki.sato@shimz.co.jp

本研究は、現在、政府の地震調査研究推進本部や中央防災会議で用いられている強震動予測手法を M8 クラスの巨大地震に適用する際に、長周期構造物の地震時安全性検討に重要となる周期数秒から十 秒の帯域で生じると予測される問題点を示した.また、その問題点を解決するハイブリッドグリーン関 数法あるいは 2 段階ハイブリッド法による予測手法のコンセプトと予測事例を示した.これらの手法に よる予測結果は、経験的グリーン関数法や経験的距離減衰式ともよく対応し、巨大地震の長周期地震動 予測に有効な手法であることが確認された.

1. はじめに

本研究は、石油タンク、超高層建物、免震建物などの 長周期構造物の地震時安全性の検討に重要となる、M8 クラスの巨大地震による周期数秒から十秒の帯域の地震 動成分に特に着目し、この帯域の地震動成分の発生と増 幅に大きな影響を及ぼす断層破壊過程と堆積盆地構造が 適切に考慮できる広帯域地震動予測手法を検討する.

現在,政府の地震調査研究推進本部や中央防災会議で 用いられている強震動予測手法を M8 クラスの巨大地震 に適用する際には、いくつかの問題が生じることが予想 される. 2 章では、その問題点を示し、その解決に必 要な、震源および地下構造のモデル化と適切な計算手法 のコンセプトについて議論する.3 章では、手法の重要 な位置を占めるの M6 クラスの強震動予測精度の検証の ため、実際に発生した地震に対してシミュレーションを 実施し、震源および地下構造のモデル化の妥当性を確認 する.4 章では、2 章に示した適切な手法と、3 章で妥 当性が検証されたモデルを用いて想定地震に対する強震 動予測を実施し、その結果を従来手法によるものと比較 し、その有効性を示す.

2. 震源・地下構造のモデル化と手法のコンセプト

(1) ハイブリッド法と接続周期の問題

現在の広帯域地震動予測では、ある特定の周期(接続 周期)を境に周期帯域を2つに分け、長周期帯域の波の 計算に決定論的事象が適切に表現できる理論的方法(有 限差分法や波数積分法など)を、短周期帯域の波の計算 に確率論的事象が適切に表現できる半経験的方法(経験 的グリーン関数法や統計的グリーン関数法)を適用する, ハイブリッド法¹⁾が用いられることが多い(地震調査研 究推進本部等).

この手法特有のパラメータとして接続周期があるが, この接続周期をどのように設定するかは,震源や地下構 造の不均質性をどのような手法でどのようにモデル化す るかに大きく依存する.この設定如何では予測地震動が 大きく変わることになりかねない.現実的には,理論的 方法で用いる震源のモデルや地下構造のモデル,計算能 力によって決まる理論的方法の短周期側適用限界周期を 考慮して接続周期を設定することとなる.

(2) 震源のモデル化と理論的方法の短周期側限界周期

地震の震源モデルとして、点震源モデル、断層面全体 の平均的な断層運動をモデル化した巨視的震源モデル、 断層面内の破壊の不均質性をモデル化した微視的震源モ デルがある.ここでは、微視的震源モデルとして、予測 のために単純化された、1 ないし数個のアスペリティと 非アスペリティ領域から構成される特性化震源モデル²⁾ を考える.

理論的方法の適用周期範囲は、地震規模と用いる震源 モデルに依存し、その概ねの値は震源スペクトルのコー ナー周期を目安に決められる.

巨視的震源パラメータによるコーナー周期 Tcl 付近よ り非常に長い周期帯域では、震源から放射される地震波 は点震源モデルで、周期 Tcl 付近では巨視的震源パラメ ータのみで適切に表現できる. Tcl より短い周期帯域で は、断層面内の破壊の不均質性の影響を受けるようにな る. 周期 Tc1 からアスペリティのパラメータによるコ ーナー周期 Tc2 付近の地震波は、アスペリティのサイズ やアスペリティ内の平均的特性を表すパラメータを用い て適切に表現できる. Tc2 より短い周期帯域の地震波は、 アスペリティ内のより細かなスケールの不均質性の影響 を受ける. したがって、そのような影響を陽に考慮して いない上記の特性化震源モデルを用いて理論的方法から 計算される地震波振幅は過小評価される. そこで、この 帯域では、地震波の高周波数成分が周波数の2乗に逆比 例して低下するというスペクトルの経験則(オメガ2乗 モデル)が適用できる半経験的方法の適用が必要となる.

具体的には、特性化震源モデルを用いた理論的方法の 短周期側適用限界周期は、アスペリティの等価半径が約 20 km の M8 の地震では約 10 秒、アスペリティの等価半 径が 6-7 km の M7 の地震では約 2、3 秒である.一方、 巨視的震源モデル(あるいは近似的・便宜的に点震源モ デル)を用いた場合のそれは、M8、M7、M6、M5 の地震でそ れぞれ数十秒、約十秒、数秒、約1秒である(図 1).

以上から,理論的方法による周期2,3秒から十秒程度 の長周期地震動予測を考えると,M6の地震では巨視的 震源モデルで妥当な結果を与える一方,M8の地震では 特性化震源モデルを用いても結果が過小評価となること が予想される.

(3) 地下構造のモデル化と理論的方法の短周期側限界周 期

大規模堆積盆地である関東平野,濃尾平野,大阪平野 では、既往の調査研究成果に基づいて、周期 2-3 秒以上 の長周期地震動の観測波をシミュレートできる 3 次元堆 積盆地モデルが構築されつつある.東京,名古屋,大阪 で観測される地震動の卓越周期は,それぞれ 4-10 秒,

図-1 震源スペクトルの巨視的コーナー周期,アスペリティに よるコーナー周期の M 依存性,ならびに理論的方法による巨視 的震源モデル,特性化震源モデルの適用可能周期範囲(▼)

3-5秒,4-6秒程度(図1)であり,それぞれの堆積地盤 モデルはこれらの卓越周期の地震動を表現することが可 能となっている.

(4)特性化震源モデルを用いたハイブリッド法

現在用いられているハイブリッド法には、ハイブリッ ド合成法とハイブリッドグリーン関数法がある.前者は、 長周期の波と短周期の波の重ね合わせを、求めようとす る地震波に最終段階で適用する¹⁾.後者は、長周期の 波と短周期の波の重ね合わせを、従来の半経験的方法で 用いる小地震による地震波の作成の際に適用する³⁾.

この2つの手法を、M8の地震の震源や地下構造のモ デル化と接続周期の観点から考察する.ハイブリッド合 成法では、理論的方法で特性化震源モデルと3次元堆積 盆地構造モデルを同時にモデル化して計算するため、理 論的方法の短周期側適用限界周期は、特性化震源モデル から決まり、約十秒以上となる.周期約十秒よりも短周 期帯域では、統計的グリーン関数法を適用することにな り、堆積盆地による表面波の励起による後続動が考慮で きない.したがって、最終的に得られる広帯域地震動に おいても、周期数秒から十秒では、堆積盆地の影響を考 慮できない.

一方,ハイブリッドグリーン関数法では,強震動を強 く励起する各アスペリティ位置に、適切な規模の小地震 を設けることができる. この小地震として, 例えば, M6 の地震を仮定すれば、巨視的震源モデル(あるいは便宜 的に点震源モデル)を用いた理論的方法の短周期側適用 限界周期は数秒となる. したがって、この小地震に対し てハイブリッド法を適用し、接続周期を数秒に設定して、 これより長い周期の波を巨視的震源モデル(あるいは点 震源モデル)と3次元堆積盆地構造モデルを考慮した3 次元有限差分法で計算し,短周期の波を統計的グリーン 関数法で計算すれば、ハイブリッド法で得られる小地震 の広帯域波において、堆積盆地の影響が周期数秒以上で 考慮できる. そして, M8 の特性化震源モデルに対して, 断層面内の不均質性の影響を経験的に考慮できるオメガ 2 乗のスペクトルモデルに則った半経験的方法を適用し て、この小地震の広帯域波を多数重ね合わせれば、周期 数秒から十秒程度の地震動を過小評価することなく計算 できる.

想定地震と同じメカニズムをもつ小地震を想定地震の 断層面の各要素断層位置に設定し、上記のハイブリッド グリーン関数法を適用すれば、周期約十秒以上の長周期 帯域に対しても特性化震源モデルに忠実な結果となるは ずであるが、これには大変な計算労力を要する.そこで、 実用的には、特性化震源モデルの2ないし3個のアスペリテ ィの中心位置に想定地震と同じメカニズムをもつ小地震

図-2 理論的方法の短周期側適用限界周期を考慮した, M8 の地 震の広帯域地震動予測のためのハイブリッドグリーン関数法と 2段階ハイブリッド法

をそれぞれ設け、その小地震をアスペリティの中心位置 以外の要素断層に対しても近似的に適用することを考え る(図2).

このハイブリッドグリーン関数法による波と理論的方法による波を,接続周期十秒でハイブリッド合成すれば, 周期十秒以上の長周期帯域の波は特性化震源モデルに忠 実に再現される.これを2段階ハイブリッド法と呼ぶ (図2).

(5) 経験的グリーン関数法とハイブリッドグリーン関数 法

事前に想定地震の各アスペリティ付近で想定地震と同 じメカニズムをもつ適切な規模の小地震が起き,観測記 録の SN 比の問題さえなければ,広帯域地震動予測に経 験的グリーン関数法が適用できる.しかし,想定地震が 起こる前は,アスペリティ部分は固着しており小地震は ほとんど起こらない.また,固着域周辺部で小地震が起 こっても,想定地震と同じメカニズムを持つ可能性は低 いのが実状である.小地震のメカニズムや位置が想定地 震のアスペリティのそれらと異なるにもかかわらず経験 的グリーン関数法を広帯域地震動予測に適用した場合, 小地震の震源スペクトルの巨視的コーナー周期よりも長 周期帯域で想定地震とは異なった振幅の方位依存性や表 面波の励起が表れる可能性が高い.

一方,ハイブリッドグリーン関数法では,想定地震の 各アスペリティ付近で想定地震と同じメカニズムをもつ 適切な規模の小地震を設定できる.ただし,小地震の震 源のモデル化や堆積地盤のモデル化の精度検証を行う必 要があり,想定地震の震源域で実際に起こった小地震の 堆積盆地上の観測波形のシミュレーションを行うことが 望ましい.

3. 震源および地下構造モデルの検証

(1) 三重南部の地震(M5.7)の強震動シミュレーション 概要

本章では2章のコンセプトにおいて重要な位置を占め るハイブリッドグリーン関数法に用いる広帯域な小地震 波のシミュレーション精度の検証のため、実際に発生し た三重南部の地震(M5.7)を対象にシミュレーションを 実施した.検証地点は濃尾平野に位置する K - NET 観測 点である AICOO3(津島)である.長周期域を三次元有限差 分法で、短周期域を統計的グリーン関数法⁴⁰で算定し、 接続周期2秒でハイブリッドした.

(2) 震源モデルの設定

震源モデルは、震央位置、地震モーメント、震源メカ ニズムは Freesia による推定値を用い、震源深さは山内 他[®]を参考に 33.8km に設定した点震源でモデル化した. 差分法ではすべり時間関数を二等辺三角形でモデル化し、 立ち上がり時間は震源近傍の K-NET の MIE013 の観測記 録の直達 S 波から読み取った. 最終的には震源モデルの 妥当性を MIE013 の観測記録の再現性から確認している. 統計的グリーン関数法における応力降下量は震源周辺の 岩盤上の観測記録を, fmax は MIE013 の観測記録が説明 できるように設定した. 図 3 に震源および MIE013 の位 置を示す. 表1に震源の諸元を示す.

表-1 2000年10月31日の三重南部の地震の諸元

地震	М	北緯 東経	深さ (km)	走向	傾斜	すべ り角	モーメ ント	Rise time	応力降 下量	fmax
2000/10/31 三重県南部	5.7	34.2 N 136.4 E	33.8 km	306 deg.	72 deg.	130	1.70E+ 17Nm	0.8 sec	41.3 Mpa	6Hz

図-3 震源, 強震観測点および地震動評価地点(AIC003)

(3) 地下構造モデル

計算に使用した堆積盆地の三次元地下構造モデルは 様々なデータをコンパイルして愛知県設計用入力地震動 協議会によって作成されたもの⁶⁰で,盆地西の地震に対 しては周期約2.5秒以上の強震動が説明できると考えら れる.図3に基盤構造と堆積層モデルを示す.同モデル で AIC003 地点直下の一次元地下構造を表2に示す.地 盤の一次固有周期は約4秒である.統計的グリーン関数 法で用いた伝播経路のQ値は遠方のGIF022の観測記録 が説明できることを確認したうえで海溝型地震用⁷⁰の Qs=200f⁶⁷を用いた.

表-2 AIC003 地下直下の地下構造

シン 公式主体 の 汁 パテナ・	Depth(m)	Q	$ ho (g/cm^3)$	Vs(m/s)	Vp(m/s)
%和估计时日在12-12	0	100	1.80	400	1632
いてはK-NET によ	192	100	1.80	600	1998
z 主屈の声産構造	275	100	2.00	600	1977
る衣信の述及伸延	371	100	2.00	800	2246
も考慮した	520	100	2.00	1000	2514
	679	100	2.00	1200	2783
	841	100	2.00	1400	3051
	871	100	2.68	3000	5500
	2500	150	2.70	3430	5800
	7000	200	2.70	3670	6200
	16500	350	2.90	3780	6700
	34500	500	3.20	4410	7800

(4) シミュレーション結果

長周期成分(周期2秒以上),短周期成分,ハイブリ ッド波形を観測波形と比較して図4に示す.長周期成分 は振幅レベルや包絡形状が計算と観測で良く対応してお り,三次元地下構造モデルの妥当性が確認できる.また, ハイブリッド波形において,主要動部(30~50秒)で短 周期成分が卓越し,その後長周期成分による後揺れが卓 越するという観測波の様子も概ね再現されている.しか し,周期2秒以下の後続動部の再現には,さらなる手法 の改良が必要になる.

シミュレーションと観測記録の比較

4. 想定東南海地震に対する強震動予測

(1) 想定東南海地震の特性化震源モデル

本章では、2章に示された手法および3章で検証され たモデルを用いて想定地震に対する強震動シミュレーシ ョンを実施する.想定地震の断層位置と形状は図5に示 す.地震モーメントと短周期レベルは既往の平均的な関 係をあらわす経験式を用いて断層面積から設定した.微 視的な断層パラメータの設定手順は壇他[®]によった.表 3に断層パラメータを示す.

(2) 小地震波の作成

小地震波はハイブリッド法で作成し、長周期において は三次元有限差分法を、短周期においては統計的グリー ン関数法を用いた.3章で地盤モデルが検証され有効な 理論計算が実行可能であることが確認された周期2秒を ハイブリッド法の接続周期に設定した場合、その地震規 模は、コーナー周期が2秒付近であると考えればよいの で、M6程度の地震となる.今回、計算対象となる小地震 の規模はこの考え方と想定地震との関係を考慮しM6.4の 地震を設定することとした.震源は点震源とし、その位

表-3 想定東南海地震の断層パラメータ

巨視的	り断層モデ	ル	微視的断層モデル				
地震モーメント	1.50E+21	N cm	第1	面積	3000	4 km²	
短周期レベル	1.21E+20	N cm/s ²	アスペリティ	すべり量	5.51	m	
断層長さ	180	km	(東側)	応力降下量	14.89	Мра	
断層幅	80	km	第2	面積	1600	4 km ²	
断層原点	34.3432N	137.8305E	アスペリティ	すべり量	3.89	m	
断層上端深さ	10	km	(中央)	応力降下量	14.89	Mpa	
走向	230	degree	第3	面積	900	4 km²	
傾斜	15	degree	アスペリティ	すべり量	2.75	m	
すべり方向	90	degree	(西側)	応力降下量	14.89	Mpa	
破壊様式	同心円状		バック	すべり量	1.07	m	
破壊伝播速度	2.83	km/s	グラウンド	応力降下量	3.44	MPa	

表-4 小地震の断層パラメータ

図-6 各小地震による地震波

置は地震動が強く放射される各アスペリティの中心とした.従って小地震は3つとなる.メカニズムは想定東南海地震と同じとした.表4に小地震の諸元を示す.三次元有限差分法においては周期約1.6秒まで有効なグリッド化を行った.計算結果を図6に示す.この小地震波を利用して,想定地震に対する強震動予測を実施した.

(3) 従来の計算手法による強震動予測結果

本研究による手法の計算結果を示す前にまず,従来の 強震動予測手法による計算結果を示し,考察する.

図7は従来のハイブリッド合成法における短周期帯域 波である統計的グリーン関数法⁹による計算結果,同様 に図8は長周期帯域波である3次元有限差分法¹⁰による 計算結果である.それに加えて,計算対象となる AIC003 で観測された三重南部の地震記録(前章参照) を用いた経験的グリーン関数法¹¹による計算結果を図3 に示す.これら3つの手法による計算結果の擬似速度応 答スペクトル(減衰5%)と距離減衰式により得られた スペクトル値¹⁰を比較したのが図10である.

距離減衰式によるスペクトルとの比較から,経験的グ リーン関数法による計算結果は良好な予測結果を与えて いることがわかる.これを踏まえて考察すると,統計的 グリーン関数法による計算結果はスペクトルレベルや S 波主要動部は良好な予測結果であるが,当然のことなが ら時刻 60~70 秒以降の盆地構造の影響を反映した後続 動部分が予測できていない.有限差分法による計算結果 は波形を見ても明らかなように主要動部・後続動部とも に過小評価であることがわかる.経験的グリーン関数法 とスペクトルで比較すると,周期 7~10 秒程度から徐々 にその差は大きくなり続け,周期 3 秒付近では 10 倍以 上の差となっている.この結果から,特性化震源モデル により設定された本震源モデルで計算される有限差分法 による理論波形の適用周期は7~10秒以上と考えられる.

(4) ハイブリッドグリーン関数法による強震動予測結果

ハイブリッドグリーン関数法¹³による強震動予測手法 は、各アスペリティ中心を震源としたハイブリッド合成 法による小地震波を波形合成して想定地震の波形を計算 する手法である。各アスペリティ位置に想定地震と同じ メカニズムを有する小地震を設定することができるため, 経験的グリーン関数法の場合に生じる想定地震と小地震 のメカニズムの差異の問題は生じない。そのため、振幅 の方位依存性や盆地構造による影響を容易に取り込むこ とができる手法である。

図 11 がハイブリッドグリーン関数法による計算結果 である. 比較の対象として,先に示した統計的グリーン 関数法による波形と有限差分法による波形を周期 2 秒 (地盤構造のモデル化精度から求めた適用限界周期)で ハイブリッドした従来のハイブリッド合成法による計算 結果を図 12 に示す. 擬似速度応答スペクトルによる比 較が図 14 である.

ハイブリッドグリーン関数法による計算結果は、距離 減衰式によるスペクトルとよく一致しており良好な予測 結果を与えている.また、計算波形や擬似速度応答スペ クトルの周期 3~5 秒の領域を比較するとわかるように、 従来のハイブリッド合成法では予測できなかった速度の 最大値や、経験的グリーン関数法による波形に見られる ような盆地構造の影響を反映した後続動部が予測できて いる.さらなる手法として、本震源モデルにおける有限 差分法の適用周期(7 秒とした)で、ハイブリッドグリ ーン関数法による波形と有限差分法による波形をさらに ハイブリッドする2 段階ハイブリッド法(図 13)があ る.これにより、従来のハイブリッド合成法では予測で きない周期3~5秒に加え、周期10秒以上も含めた広帯 域の高精度な強震動が得られる.

5. まとめ

適切な検証がなされた小地震のハイブリッド波形を利 用したハイブリッドグリーン関数法あるいは2段階ハイ ブリッド法による強震動予測手法のコンセプトと予測事 例を示した.これらの手法による予測結果は,経験的グ リーン関数法や経験的距離減衰式とよく対応し,M8 ク ラスの巨大地震に対して大規模堆積盆地で卓越する周期 2,3秒から十秒程度の地震動を含む広帯域の強震動予 測手法として,既往の特性化震源モデルを用いる場合に は有効な手法であることが確認された.

謝辞:本研究で使用した地下構造モデルは愛知県設計用入力地震動作 成事業で作成したモデルおよび結果の一部を使用しました. 同プロジ ェクトにおいて,東京大学久保哲夫教授,名古屋大学大学院福和教授 をはじめとした委員会の方々には貴重なご意見を頂きました. また本 検討では防災科学技術研究所の K-NET の強震記録を使用しました. 記 して感謝いたします.

参考文献

- 1) 佐藤・他(1998):第10回日本地震工学シンポジウム,第1分冊, 679-684.
- 2) 入倉・三宅(2001);地学雑誌, 110, 849-875.
- 3) Kamae, K., et al. (1998): BSSA, 88, 357-367.
- 4) 壇・他(2000): 建築学会構造系論文集,第503号,pp.53-62.
- 5) 山内他(2001): 2001年地球惑星科学関連学会合同大会, Sy-P002.
- 6) 早川他(2002): 建築学会大会学術講演梗概集BII.pp.131-132.
- 7) 居他(1994): 第9回日本地震工学シンポジウム, Vol.1, pp.51-

756.

8) 壇・他(2001): 建築学会大会学術講演梗概集 BII,pp.89-90.

- 9) 壇·他 (2000):建築学会構造系論文集, 第530号.pp.53-62.
- 10) Pitarka (1999): BSSA, Vol. 89, pp. 54-68.
- 11) 壇·佐藤(1998):建築学会構造系論文集, 第509号.pp.49-60.
- 12) Takahashi et. al. (2000): ICSZPS, CA, EERI, CD-ROM.
- 13) 釜江・他(1990):建築学会構造系論文集,第416号. pp.57-70.

東海地震の関東平野における長周期地震動予測

土方 勝一郎1·植竹 富一1·金谷淳二1·真下 貢2·早川 崇3·渡辺 基史3·佐藤 俊明3

¹東京電力 技術開発研究所(〒230-8510 神奈川県横浜市鶴見区江ヶ崎町4番1号) **E-mail**:hijikata.katsuichirou@tepco.co.jp

²東電設計(〒110-0015 東京都台東区東上野3-3-3)

E-mail: mashimo@tepsco.co.jp

3大崎総合研究所(〒100-0011東京都千代田区内幸町2-2-2富国生命ビル)

E-mail:haya@ohsaki.co.jp

本研究は、現在その逼迫性が指摘されている東海地震を対象に、関東平野の各評価地点における周期4秒以上の長 周期地震動を予測したものである。地下構造モデルは関東平野の厚い堆積層の影響を考慮できる3次元モデル等を基 に設定し、小地震の観測記録を用いてキャリブレーションを行った。震源モデルは中央防災会議の東海地震のモデルに 準拠して設定した。強震動の計算はハイブリッド法により行った。接続周期を9秒とし、これより長い周期帯域は3次元有 限差分法で計算した。また短い周期帯域はアスペリティーの中心に小地震を設定し3次元有限差分法により地震動を算 定し、これを半経験的波形合成法により合成して計算した。予測された波形から、東京湾の西側と東側の評価地点で長 周期地震動に有為な差異が存在すること等の知見が得られた。

1. 検討の目的

2003年9月26日に発生した十勝沖地震における石油タ ンクの災害を契機として、巨大地震の長周期地震動に対す る関心が高まっている。長周期地震動は平野の厚い堆積層 において増幅する特性を有している。このため、東海地震 など南海トラフに巨大地震が発生すると首都圏で長周期の 大きな地震動が長時間継続することが想定される。南海トラ フ沿いの巨大地震は1944年の東南海地震、1946年の南 海地震以来発生がなく観測記録も不足しており、長周期地 震動の特性に関する知見は必ずしも充分ではない。

本研究は、近年の数値シミュレーション技術の進展や地 下構造モデルの蓄積を踏まえ、現在その逼迫性が指摘さ れている東海地震を対象に、長周期地震動を予測するもの である。なお、長周期地震動の評価地点は 2003 年十勝沖 地震を念頭に、東京湾岸に存在する火力発電所の立地地 点等とした。

2. 地下構造モデルの作成

(1) 地下構造モデル

長周期地震動を予測するためには、関東平野の厚い堆積層を適切に評価することが重要である。この堆積層は首

都圏地下で盆地状に堆積しており、これが長周期成分の励 起と密接に関係していることが近年明らかとなってきた。

本研究では、東海地震の震源から東京湾岸の評価地点 を包含するように地下構造をモデル化した。地下構造モデ ルの範囲と地震動の評価地点を図-1に示す。なお地下構 造モデルの深さは50km とした。地下構造モデルは大きく2 つのモデルに分けられる。すなわち、関東平野とその周辺 は図2に示す Sato et al.(1999)による3次元地下構造モデル (文献1:以下 Sato のモデルと呼ぶ)を用い、関東平野にお ける周期数秒の盆地生成表面波が評価出来るようにした。 Satoのモデルは1990年小田原地震(M5.1)の観測記録で検 証されている。また、東海地域を主な対象とするそれ以外 の地域では、東海地震による地震動の伝播特性が適切に 評価できる水平成層構造モデルを用いた。この水平成層構 造モデルとしては、Ichinose et al.(2003)が浜名湖周辺で発 生した小地震(M4.9)のF-net の JIZ(中伊豆)における記録 を説明できるよう最適化した地下構造モデル(文献2:以下 Ichinose のモデルと呼ぶ)を用いることとした。本モデルは 東海地震の関東平野への主たる伝播経路に対応すると考 えられる。図-3 には小地震と IIZ の関係ならびに Ichinose のモデルを示す。

図-1:モデル化範囲と地震動評価地点

0.6km/s層下面 0.84km/s層下面 2.4km/s層下面 図-2:関東平野の3次元地下構造モデルのS波深度

図-3:Ichinoseのモデルおよび同モデルの 最適化に用いた小地震と観測点

(2) 小地震によるキャリブレーション

以上に示した地下構造モデルの妥当性を検討するため、 1997 年3月16日の愛知県東部の地震(M5.8、震源深さ 41Km)を用いてキャリブレーションを行った。本地震の発生 位置を図-4の★位置に示す。この地震はマグニチュード が小さいため点震源でモデルし、震源直近に位置し地盤が 硬質である K-NET の AIC013(長篠)の記録を基に、2等辺 三角形の形状を有する震源時間関数を決定した。

本小地震のシミュレーションを、三次元有限差分法(文献 3)により実施した。代表的な観測地点の EW 方向の速度波 形に関する計算結果と観測との比較を図-4に示す。なお、 ANG(姉ヶ崎)での記録は(独)消防研究所から提供いただ いた速度記録であり、継続時間が 300 秒となっている。

図-4から以下のことが指摘される。

①震源近傍の AIC013(長篠)では、計算結果は観測記録と よく対応しており、計算に用いた震源パラメータは妥当であ る。

②関東平野の厚い堆積層に地震動が入射する直前に位置 すると考えられる KNG012(秦野)に着目すると、計算結果 は観測記録の主要動である数十秒をおおむね再現してお り、Ichinose のモデルは第一近似的には妥当である。しかし ながら、後続動部分に関しては十分再現されていない。 ③東京湾岸に位置する ANG(姉ヶ崎)に着目すると、Sato の モデル及び Ichinose のモデルの原論文に示される Q 値 (100~150程度)を用いた計算結果は特に波形の後続部分 で観測記録を大きく下回っている。これは②で述べた盆地 入射直前の後続動の再現不足及び今回採用した Sato のモ デルのQ値の設定等が原因と考えられる。そこで本研究で は計算波形の後続部分の不足を Q 値を大きくする(全域で Q=5000)ことにより補った。その結果、ANG で計算の後続 波形の振幅レベルは観測に近づいている。以上から、本研 究では Q 値をモデル全域で 5000 とした。なお、Q 値は Graves(1966)(文献4)による評価法を用い、レファレンス振動 数は 0.2Hz とした。

3. 震源断層のモデル化

本研究で用いる東海地震の断層モデルは、中央防災会 議の曲面モデルを平面で近似して設定した。(文献5) 近似に際しては以下の各点に留意した。

- ① 面の傾斜角が曲面の平均的な傾きであること。
- ② 水平投影面がほぼ一致すること。
- ③ 断層の中央付近で平面と局面の深度が一致すること。

図-5に断層モデルの概要を示す。断層面上の黒い部 分が6個のアスペリティーであり白い部分が背景領域である。 表-1には巨視的断層パラメータの比較を示す。短周期レ ベル(A)は文献 6 に従い下式から計算した。ここでσi は 応力降下量、βiはS波速度で添え字iは要素番号を表す。

$$A = \sqrt{\sum 16 \pi \sigma_i^2 S_i \beta_i^4}$$

また、各アスペリティーと背景領域のすべり量と応力降下量 に関しては中央防災会議の値(応力降下量一定モデル)と 同一とした。破壊開始点は中央防災会議の2つの開始点の 内、関東平野により影響の大きいと考えられる西側の開始 点を選定した。

衣 I 巨虎的的信パノハ ア			
	本検討	中央防災会議	
断層面積(km²)	10197	約 9400	
地震モーメント(N m)	1.30e+21	1.10e+21	
Mw	8.0	8.0	
短周期レベル	1.34e+20	1.17e+20	
(N m/s ²)		(本検討で算定)	

表-1 巨視的断層パラメータ

4. 計算方法

(1) 広帯域地震動予測の課題

本研究では、火力発電所の石油タンク等の長周期構造 物を検討対象に想定し、周期4秒以上の長周期地震動を評 価することとした。特性化震源モデルを用いて M8クラスの 強震動を予測する場合、一般的にアスペリティーのサイズ に起因して理論的方法の適用範囲は周期10秒程度以上と なる。一方、統計的グリーン関数法で短周期を評価する場 合、厚い堆積層による長周期地震動の励起を評価できない ことから、その適用範囲は周期2~3秒程度以下となる。し たがって、以上の方法をハイブリッドする評価法では中間 の周期帯域における地震動のパワーを適切に評価できな い可能性がある。本研究では周期4秒以上の長周期地震 動を対象としているが、上記の課題から周期10秒程度以下 の地震動をどのように評価するかが問題となる。そこで以下 の方法に従い対象周期領域を10秒程度以上と以下に分け て別途地震波形を計算し、計算結果をハイブリッドすること で強震動を予測することとした。

(2)周期10秒程度以上の計算方法

三次元有限差分法(文献3)により地震動を計算した。すべり時間関数は運動力学的モデルから設定された中村・宮武(2000)(文献7)を用いることとした。地下構造モデルの格子間隔は全領域で0.4kmとした。

(3)周期4秒以上10秒程度以下の計算方法

図-6に示すように東海地震震源の6個のアスペリティー の各中心位置に小地震を設定し、これによる地震動を3次 元有限差分法で理論的に計算した。この小地震の規模は 周期4秒以上で点震源としてモデル化が可能なM6.2とした。 これら6個の点震源の担当領域を図ー6のように定め、各領 域において点震源から計算された小地震の波形に対して 壇・佐藤の方法(文献6)を適用し、半経験的波形合成法より 要素断層の波形を合成した。このような方法を用いることに より、断層内の破壊の不均質性が評価可能で、理論的方法 のように周期 10 秒以下の地震動を過小評価することなく、 表面波成分も適切に評価できると考えた。一方、本方法で は小地震の要素断層への補正において放射特性を正しく 評価することは困難である。震源断層面を6個の担当領域 に分割し各領域ごとに計算を実施しているのは、このような 問題に対応するためである。

図-6:小地震の評価位置と担当領域

(4)接続方法

接続周期はアスペリティーのコーナー周期に対応する10 秒程度と想定されるが、本研究では(2)(3)に示した両方法 で計算したスペクトルを比較して接続周期を設定した。検討 結果は省略するが、周期約7秒以下で理論的方法は経験 的グリーン関数法の値を下回るようになり、これから理論的 方法の適用限界を周期7秒と考えマッチングフィルターの 減衰幅を考慮して接続周期を9秒に設定した。

5. 予測結果

図-7にHOG(東扇島)及びANG(姉ヶ崎)における速度 波形の予測結果を示す。HOG では速度波形の最大値は NS 方向で約 25cm/s、EW 方向で約 39cm/s となった。また HOG の70~80 秒付近には断層からサイトに直達したパル ス波の存在が認められた。ANG では最大速度はNS 方向で 約 29cm/s、EW 方向で約 41cm/s となった。また ANG の 100 秒付近には断層からサイトに直達したパルス波の存在が認 められた。両速度波形を比較すると、ANG の方が HOG より 後続動の振幅がおおむね大きい傾向が認められた。また、 ANG の上下方向に着目すると、180秒前後に大きな振幅が 認められた。これは、相模湾にトラップされた地震動が存在 し、到達時間が遅れて東京湾の南西方向から到来すること によるものと考えられる。なお、両計算地点とも継続時間は 250 秒以上であった。

図-8には両地点の減衰定数5%の速度応答スペクトル を示す。HOG の速度応答スペクトルは EW 成分の周期10 秒付近で最大となり、100 cm/s程度となった。ANG ではEW 成分の周期10秒付近で最大となり、130 cm/s程度となった。 両速度応答スペクトルを比較するとANG ではEW 方向で明 瞭なピークが認められるのに対して、HOG ではピークは明 瞭ではない。これに付随して、EW 方向とNS 方向のスペクト ル形状の差異も ANG の方が明瞭である。

以上に示したように、東京湾西側の HOG と東側の ANG では計算結果に有為な差異が生じることが分かった。

図-8 には、2003 年十勝沖地震における苫小牧の観測 記録と ANG の予測結果をあわせて示す。十勝沖地震は東 海地震と同程度の M8 であり、それぞれの地震のアスペリテ ィーからの距離に関しても苫小牧と ANG でほぼ等しく 150km 程度であることから両者を比較することには意味があ ると考えた。応答スペクトルの最大値の大きさは両地震で同 程度の値となっている。また、両者の速度応答スペクトルの ピークが異なるのは主に堆積層の卓越周期の相違に起因 すると考えられる。

6. まとめ

本研究では東海地震よる関東平野の長周期地震動の予 測を試み、ANGとHOGで地下構造に起因して有為な差異 が存在する等の知見が得られた。本検討はQ値の扱い等 地下構造モデルの設定において多くの仮定に基づいてい る。関東平野の長周期地震動の予測には伝播経路を適切 にモデル化することが極めて重要であり、複数の観測記録 を用いて3次元地下構造モデルのキャリブレーションを行う など、今後の更なる見直しが必要である。

謝辞:(独)消防研究所基盤研究部座間信作博士より姉ヶ崎の観 測記録を提供していただきました。また K-NET の観測記録を使 用いたしました。ここに記して感謝いたします。

参考文献

1) Toshiaki Sato, Robert W. G. and P. G. Somerville (1999) Three Dimensional Finite-Difference Simulations of long-Period Strong Motions in the Tokyo Metropolitan Area during the 1990 Odawara Earthquake (Mj5. 1) and the Greate 1923 Kanto Earthquake (Ms8. 2) in Japan, Bull. Seism. Soc. Am., Vol. 89, No. 3, pp. 579-607.

2)Gene A. Ichinose, Hong Kie Thio, P.G. Somerville, Sato, T. and Ishii, T. (2003) Rupture process of the 1994 Tonankai earthquake (Ms8. 1) from the inversion of teleseismic and regional seismograms, J. Geophys. Res., 108 (B10), 2497, 2003.
3) Pitarka, A. (1999) 3D Elastic Finite-Difference Modeling of Seismic Motion Using Staggered Grids with Nonuniform Spacing, Bull. Seism. Soc. Am., 89, 54-68.

4) Graves, R.W. (1996): Simulating Seismic Wave Propagation in 3D Elastic Media Using Staggered-Grid Finite Differences, Bull. Seism. Soc. Am., 86,1091-1106.

5) 中央防災会議事務局(2001):中央防災会議東海地震に関する 専門調査会(第7回),平成13年8月10日

6) 壇一男・佐藤俊明(1998):断層の非一様滑り破壊を考慮した 半経験的波形合成法による強震動予測,日本建築学会構造系論 文集,第509号, pp.49-60.

7) 中村洋光・宮武隆(2000):断層近傍強震動シミュレーションのための滑り速度時間関数の近似式,地震,第2輯,第53巻,第1号

図-8:HOG 及び ANG の速度応答スペクトル(h=5%)と 2003 年十勝沖地震の KNET 苫小牧での観測記録

やや長周期地震動評価のための関東平野の 3次元S波速度構造のモデルの構築

山中 浩明1

東京工業大学助教授 総合理工学研究科 (〒226-8502 横浜市緑区長津田町4259) E-mail:yamanaka@depe.titech.ac.jp

この研究では、関東平野での微動アレイ探査を実施するとともに、既往の調査による位相速度データを 収集し、やや長周期微動の位相速度のデータベースを作成した.さらに、各地点で得られている位相速度 データを統一した基準で逆解析し、200以上の地点での地震基盤に至るまでの1次元S波速度構造を新たに 推定した.その結果を用いて、関東平野の堆積層の3次元モデルを構築した.

Key Words : long-period strong motion, 3D basin model, microtremors, phaase velocity

1. はじめに

大規模な平野でのやや長周期地震動評価のためには, 震源から観測点までの地下構造を明らかにし,その影響 を評価することが重要となる.とくに,堆積層のS波速 度構造を明らかにしなければならない.S波速度を探査 する手法はいくつかあるが,やや長周期微動は,構造推 定のベースとなるデータが評価の対象となる地震動と同 じ波動で同じ周期帯域であり,やや長周期地震動の評価 には,非常に都合がいいと考えられる.関東平野では, 多くのやや長周期微動の観測が行われているが,一部の 地域に限られており,いまだに地下構造に不明確な部分 がある地域もある.さらに,それぞれの調査では,逆解 析時の仮定が異なり,3次元モデルを作成する際に不都 合が生じることもある.

この研究では、関東平野での微動アレイ探査を実施す るとともに、既往の調査による位相速度データを収集し、 やや長周期微動の位相速度のデータベースを作成した. さらに、各地点で得られている位相速度データを統一し た基準で逆解析し、200以上の地点での地震基盤に至る までの1次元S波速度構造を新たに推定した.その結果 を用いて、関東平野の堆積層の3次元モデルを構築した.

2. 微動観測によるレイリー波の位相速度

図1には、本研究による観測および既存の微動アレイ 探査の調査位置が示されている.既存のデータの主なも のは、大学や研究機関による観測(神野,2000;松岡・

白石, 2002, 山中·山田, 2002), 東京都, 神奈川県, 千葉県、横浜市、川崎市による地下構造調査などであり、 合計236地点である. すべての地点で位相速度の逆解析 が行われ、S波速度構造の推定が行なわれている. 収集した位相速度データは、周期範囲やその間隔などが それぞれ異なっている. そこで、それぞれの地点での位 相速度データを線形補間して以下の検討に用いることに した. 図2は収集したデータの周期別の数, 平均位相速 度およびその標準偏差が示されている. 周期0.6秒から5 秒の間でデータ数が多い. それより長周期では、アレイ のサイズや微動の振幅スペクトルの低下などに理由によ りデータ数が急激に少なくなる.一方,ほとんどの微動 アレイ探査ではやや深い地盤の探査を対象にしているこ とから、周期0.6秒以下でもデータ数が少なくなってい る. 平均位相速度は比較的スムーズなものとなっている が、周期6秒程度まで2km/s以下となり、より長周期ま でデータが得られている結果が平均に反映された結果と なっていると考えられる. 位相速度の標準偏差は、周期 1~5秒で大きくなり、この周期帯域で位相速度が空間 的に著しく変動していることを示している.

3. 3次元S波速度構造の推定

次に、4層構造を仮定し、表層を除く3つの層のS波 速度値を1.0、1.5、3.0km/sとして、すべての地点での 位相速度の逆解析を行い、3つの堆積層の厚さを決める ことを試みた.こうした逆解析では、かなり強い拘束を 与えてことになり、観測された位相速度が十分に説明で

きない場合も当然でてくる.しかし,統一して逆解析す ることで、長周期地震動の評価により適切な堆積層のモ デルを構築することができると考えられる.図3は、第 2,3層までの深度および基盤深度を示したものである. 関東山地では、基盤深度が露頭していると仮定している. S波速度1km/sの第2層目までの深さは、平野北部と房 総半島で0.4km以上と深く、南西部では浅くなっている. S波速度1.5km/sの第3層目までの深度も房総半島中央 部では、2kmと厚い. この傾向は、基盤深度でも認めら れ, 房総半島中心部で深さ4kmに達している. 北部で は基盤深度は2km以下と浅く、その他の地域では、 2.5km前後である.図3には、逆解析から得られた表層 のS波速度分布も示されている. 東京湾北部の臨海ぶで S波速度は小さく、平野西部では大きな値となり、山 中・山田(2002)に指摘されているように表層のS波速 度には地域性がある.

4. まとめ

本研究では、関東平野北部および房総半島を中心にし た地域においてやや長周期微動のアレイ観測を行い、既 往のやや長周期微動のアレイ観測によるレイリー波の位 相速度データを収集することによって、関東平野全域の 周期0.5秒から5秒の間でのレイリー波の位相速度のデ ータベースを作成することができた.これらのデータを 同一の基準で逆解析し、3次元S波速度構造を構築した. このモデルは、やや長周期帯域の表面波の位相速度から 推定されたモデルであり、関東平野のやや長周期地震動 を説明する際には有益なモデルになると期待される.

図1:本研究(○)および既往(■)の微動アレイ 観測点の位置

図3:位相速度の逆解析結果による深部地盤構造モデル

6. 巨大地震の地震動予測と耐震検討事例

経験的グリーン関数法を用いた想定東南海、南海地震時の強震動予測 釜江克宏

東南海・南海地震による大阪での強震動予測事例 鶴来雅人・趙伯明, Petukhin Anatoly, 香川敬生

k-2 モデルによる東海地震を想定した入力地震動の策定例

久田嘉章

東海、東南海地震による強震動シミュレーションと耐震検討事例 杉戸真太・久世益充

東海地震による発電所地点の地震動評価事例

久野通也·立花篤史

経験的サイト増幅・位相特性を用いた東海地方における強震動評価事例 野津 厚

経験的グリーン関数法を用いた想定東南海、 南海地震時の強震動予測

釜江 克宏

非会員 京都大学教授 原子炉実験所 (〒590-0494 大阪府泉南群熊取町朝代西1010番地) E-mail:kamae@kuca.rri.kyoto-u.ac.jp

想定南海地震及び想定東南海地震における広帯域強震動を経験的グリーン関数法を用いて予測した.得られた結果をまとめると、大阪都市部における予測地震動は、最大加速度80~100 cm/sec²、最大速度30cm/sec程度ではあるが、4~6秒の長周期成分が卓越し、継続時間が5分を超えるものとなった.これは地震の規模が大きく、震源域が非常に大きいことに加え、大阪盆地の深い地下構造が関係するものと推定される.予測地震動の特性は破壊開始点の違いなど、破壊過程によってもによっても影響を受けるため、今後複数のシナリオに基づいた評価も必要であるとともに、長周期地震動については複雑な大阪堆積盆地の高精度な地下構造モデルに基づいた理論的な検討も併せて行っていく必要がある.

Key Words : Nankai earthquake, Tonankai earthquake, empirical Green's function method, Osaka area, broad-band strong ground motion, prediction

1. はじめに

フィリピン海プレートの沈み込み速度がほぼ一定であ るために、南海トラフでは周期的に巨大地震(東南海地 震・南海地震)が発生する. その発生間隔は 90~150 年 と言われている。前回の昭和の東南海(1944年)・南海 (1946 年) から既に 60 年近くが過ぎ, 地震調査推進本 部・地震調査委員会・長期評価部会によって今後 30 年 以内の発生確率が東南海地震で約 60%, 南海地震で約 50%と発表されている.また,来るべき東南海,南海地 震を想定した強震動試算結果も既に同・強震動評価部会 によって中間報告の形で公表されている. 一方、中央防 災会議からは東南海、南海地震の同時発生を想定した強 震動予測が実施され、既に震度分布として発表されてい る、しかし、現時点で公表されているのは統計的グリー ン関数法によって計算された最大速度や時刻歴波形を基 に得られた広域な震度分布である. 大都市大阪で想定さ れる地震動を考えた場合、震源域までの距離がかなり遠 いことから最大振幅はそう大きくないが、地震の規模が 非常に大きい(破壊域が非常に広い)ことなどから長周 期成分の卓越した継続時間の長い地震動となり、その震 動特性は盆地構造を反映したものとなることが予想され る ¹⁾. こうした継続時間の長い長周期成分の卓越した地 震動は,2003年十勝沖地震(M8.0)や2004年紀伊半島南東 沖で発生した地震(M7.4, M6.9)時の観測記録によって立 証された.ここでは強震動評価部会によって提案された

想定南海地震及び想定東南海地震の震源モデルを用いた 両地震時における大阪をはじめとするいくつかの地点で の地震動の試算結果を報告する.波形計算には経験的グ リーン関数法²⁰を用いた.この方法は震源の位置など適 切な地震の記録を経験的なグリーン関数として用いるこ とによって,伝播経路やサイトの特性を自動的に考慮で きる利点を有している.ただし,今回対象とする巨大地震 のように震源域が非常に大きい場合への適用については, 後述するような課題も有り,予測結果の精度向上に向け た検討も今後必要である.

2. 震源モデル

想定南海地震及び想定東南海地震の震源域は長期評価 部会によって、過去の地震の震源モデル、微小地震等に 基づくプレート境界面の推定結果、当該地域の速度構造 などから評価されている.また、破壊域の幾何学的な形 状や地震動を計算するために必要な地震モーメントなど の巨視的なパラメータに加え、短周期地震動の生成に重 要な役割を果たす微視的なパラメータ(アスペリティの 大きさや実効応力など)の推定が最新の研究成果³を用 いて行われている.両想定地震に対して設定されたアス ペリティの場所や各震源パラメータなどについては推本 のホームページを参照されたい.なお、強震動評価部会 ではアスペリティの大きさの異なる2つのモデルが提案 されているが、ここではケース2として位置付けられて いるモデルを用いた.このモデルではアスペリティを小 さくすることによって実効応力が上がり,相対的に地震 動(特に短周期成分)が大きく評価される.推本のモデ ルでは複雑なプレートの形状を忠実に反映させた湾曲す る断層面を採用しているが,ここでは想定南海地震に対 しては傾斜角の異なる3枚の断層面に,想定東南海地震 に対しては1枚の断層面に置き換えてモデル化した.

3. 経験的グリーン関数法による強震動予測

(1) 想定南海地震

図-1 に想定南海地震の震源モデルを示す.経験的グリ ーン関数法を適用した地点は図に示す大阪市内の2箇所 (0SA, WOS),和歌山市内のWKY,潮岬(SHI),室戸岬 (MLR)の合計5箇所である.0SAは比較的硬質な上町台地 上にある大阪管区気象台,WOSは大阪市西部の大阪湾岸 の軟弱地盤上,WKYは東京大学地震研究所和歌山微小地 震観測所で岩盤上の観測点である.以上の3箇所は京都 大学防災研究所の地震災害部門が行っている村松式速度 型強震計による観測点である.SHIとMLRは気象庁が展 開していた87型電磁式強震計による観測点であり,比 較的硬質(岩盤に近い)な地盤上である.これらの観測点 では経験的グリーン関数として用いた1991年10月20 日に紀伊半島白浜沖で発生したM5.1の地震(図中の☆ 印)時の記録が得られている.

図-2 には経験的グリーン関数として用いた 5 箇所で の記録波形(加速度あるいは速度)を示す. 観測地点の 地盤の違いをあらわす特徴的な波形となっている. 図-3 には経験的グリーン関数法によって評価された 5 箇所に

図-1 想定南海地震の震源モデル(推本)と予測サイト ☆:経験的グリーン関数として用いた地震の震央

図-3 想定南海地震に対する予測地震動(NS成分)上:加速度波形 下:速度波形

おける加速度波形、速度波形の水平2成分(NS,EW)を それぞれ示す.これらの図から岩盤あるいは岩盤に近い 観測点(WKY,SHI,MCR)では短周期成分が卓越しており, また波形形状は個々のアスペリティからの距離を反映し た特徴的なものとなっている.一方,大阪市内での2箇 所の地震動は震源域からの距離が遠いこともあり,最大 振幅は最大で80 cm/sec²,30 cm/sec 程度であるが,盆 地構造を反映した非常に継続時間の長い波形になってい る.これは図-2 に示した経験的グリーン関数としての 地震記録そのものに大阪平野での特徴的な震動特性,す なわちS波の後に振幅の大きい特徴的な後続波(東側の 盆地境界から2次的に発生する表面波)が含まれている ためである.このことは南海地震のような破壊域の大き い地震に対して,すべての領域から発生する地震波をあ る方向の1つの地震の観測記録だけから合成することに

対しての問題点も残されていることを付記しておく. こ のような2次的な表面波の影響については差分法による 理論的な計算によって検討する必要がある. またこれら の波形を擬似速度応答スペクトルで見たものが図-4 で ある. 大阪市内では5秒程度に卓越が見られ, その応答 値は100 cm/sec を超えている. OSA と WOS との違いはそ う明瞭ではないが, WOS の方が周期5秒程度を中心とし て広い周期帯で応答値が大きくなっていることと,やや 短周期成分が大きいことである. 両者の継続時間の違い は経験的グリーン関数の継続時間(記録時間)に依存し ており, 震動特性としての意味を持たないことを付け加 えておく. 図-4 には限界耐力設計時の基準スペクトル も併せて示したが,周期5秒あたりで安全限界レベルを 大きく上回っていることは興味深い.

図-4 想定南海地震に対する大阪市内における予測 地震動の擬似速度応答スペクトル(5%減衰)と限界 耐力設計用スペクトルとの比較

(2) 想定東南海地震

図-5 に想定東南海地震の震源モデルを示す.経験的 グリーン関数法を適用した地点は図に示した大阪平野内 の3箇所(FKS, MRG, YAE)と京都盆地内(KYU:京大本 部構内)及び周辺硬質地盤上(DIG, HSD)である.これ らは関西地震観測研究協議会が設置している地震観測点 である.経験的グリーン関数として用いた地震は2000 年10月31日に発生した三重県中部の地震(M_M5.5)で, その震央位置は図5に☆印で示されている.この地震は フィリピン海プレートの内部で発生したいわゆるスラブ 内地震であり,ここで対象としているプレート境界地震 ではない.従って,地震波の伝播経路の違いや複雑な震 源過程の影響など,経験的グリーン関数としての精度に ついては今後検討する必要がある.ただし,スラブ内地

図-5 想定東南海地震の震源モデル(推本)と予測サイト ☆:経験的グリーン関数として用いた地震の震央

震では一般に応力降下量が高いと言われており、ここで は岩盤に近い観測点での記録から震源スペクトルを求め、 評価された応力降下量(約 50MPa)に基づき対象とする 東南海地震との違いを補正した. 応力降下量については インバージョン解析から評価された平均値的な値と局部 的(すべりが非常に大きな場所)に得られた大きな値の 範囲内にある⁴.図6には6箇所における加速度,速度 合成波形 (NS 成分) を示す. 最大振幅については前述 の想定南海地震とは対象地点が異なるため、単純な比較 はできないが、加速度、速度ともやや大きな値となって いる. 図7には擬似速度応答スペクトルを示す. 大阪平 野内では2秒以下の短周期に加え、その応答振幅は想定 南海地震よりやや小さいものの、4秒~6秒程度の長周 期地震動が卓越することを示している. ここで用いた三 重県中部の地震については K-net や Kik-net においても 多数の観測点で記録が得られており、広域での予測が可 能である. 結果は省略するが, 震源 (アスペリティ) 近 傍で大きな計測震度(震度6強以上)となっており、強震 動評価部会における結果ともほぼ整合する値であった. 大阪平野内では震度5弱が最大で,想定南海地震同様, 震度としてはそう大きくはないが、周期の長い波が卓越 し、その継続時間も長いことから高層ビルなどへの影響 が危惧され、今後よりきめ細かく最大値分布のみならず、 卓越周期の分布についても調べる必要があろう.

ここで述べた経験的グリーン関数法による予測につい ても前述の想定南海地震同様,1つの地震記録のみを使 っており,地震波伝播経路の影響などが十分に再現され ているかどうかの検討が必要である.

図-6 想定東南海地震に対する予測地震動 (NS 成分)の例

上:加速度波形 下:速度波形

4

図-7 想定東南海地震に対する予測地震動(№ 成分)の擬似速度応答スペクトル(5%減衰)

(3) 想定東南海・南海地震の連動を想定した場合

ここでは東南海・南海地震が連動して発生した場合を 想定し、前述の 0SA(NS 成分)における地震動を計算した. 震源モデルはそれぞれの震源モデル図-1 と図-5 に従い、 図-8 として再掲する.予測される地震動は破壊開始点 の場所によっても影響を受けるが、ここで示した連動の 場合のシナリオは東南海地震がまず★1 から始まり、あ る破壊速度のもと、破壊が南海地震の★2 に到達した後 南海地震が始まると想定した場合である.それぞれの地 震による地震動は前述の2つの地震をそれぞれ経験的グ リーン関数として用いて合成した.図-9 には予測波形と その擬似速度応答スペクトル(5%減衰)を示す.この

図-8 想定東南海地震、南海地震の同時発生を想定した場合の震源モデルと大阪市内におけるサイト(0SA)

図-9 想定東南海地震、南海地震の同時発生を想定した場合の 0SA における予測地震動(上:NS 成分)と擬似速度応答スペクトル(5%減衰) 波形は上から南海地震、東南海地震、同時発生

図にはそれぞれの地震が単独で発生した場合の結果も示 してある.最大振幅,擬似速度応答値とも単独の場合よ

りやや大きくなっているが、その増大は顕著ではない、継 続時間など予測地震動の特性は想定する破壊過程に影響 されるため、今後複数のシナリオに基づく評価も必要で ある.

4. 今後の課題

ここでは経験的グリーン関数法を海溝型巨大地震時の 強震動予測に適用した、海溝型巨大地震の場合、震源域は 非常に大きく、アスペリティも分散している、従って経験 的グリーン関数法を適用する場合には、伝播経路による 影響を適切に取り入れるため,複数の地震を経験的グリ ーン関数として用いることが望ましいと考えられる.し かし,残念ながら適切な地震記録が存在しなかったた め,1 つの地震しか用いることができなかった.このこと が結果に与える影響について若干検討した.長周期地震 動に対しては、1%程度以上の減衰のある建築物(超高層 ビル)以外に,非常に減衰の小さい石油タンクのスロッ シングに対する検討も必要とされており、予測地震動の 低減衰スペクトルを計算し、図-10 に示した、対象とした のは想定南海地震時の OSA と WOS における予測地震動で ある.図に示すように、減衰が 0.1%になると応答振幅が 非常に大きくなることがわかる.これは周期 5 秒あたり の波が非常に長時間振幅を維持して継続するためであろ うと考えられる.これは前述したように1つの地震記録

 図-10 想定南海地震時の予測地震動(上:08A-NS、下:W08-EW)の5種類の減衰を仮定した 擬似速度応答スペクトル

をすべてのアスペリティに適用したためであり,今後理 論的地震動予測手法などを用いてその影響の定量的な評 価が必要である.

5. おわりに

発生確率が非常に高いと言われる南海・東南海地震時 の強震動予測は、被害軽減などにとって非常に重要であ り、既に中央防災会議などによって広域の震度分布など が報告されている.しかし、多種多様な構造物が存在す る都市部 (大阪や名古屋) では震度のみで被害を予測す ることは困難である.ここでは、想定南海、東南海地震 を対象とし、経験的グリーン関数法を用いた大阪都市部 (限られた地点) における強震動予測(広帯域時刻歴波 形の予測)を試みた.その結果、大阪都市部では震源域 が大きいことや盆地構造による影響などから周期の長い 地震動が卓越するとともに、 揺れの継続時間が非常に長 いことがわかった. その揺れの周期は高層ビル,超高層 ビルや石油タンクのスロッシングの固有周期に近く, そ うした構造物の被害軽減に向けた対策が必要である.な お,ここでの試算をより高精度化するためには、早急に 大阪平野の3次元的な地下構造モデルの高精度化やそれ を用いた理論地震動予測 5のみでなく、広帯域強震動の 予測手法の高精度化も必要かつ重要である.

謝辞:ここでは気象庁,京都大学防災研究所・強震動地 震学分野,独立行政法人・防災科学技術研究所(K-NET, KiK-net),関西地震観測研究協議会による観測記録を使 用させていただきました.記して感謝の意を表します.

参考文献

- 金江克宏、入倉孝次郎:1946 年南海地震(Mw=8.1)時の震源 近傍及び周辺地域における強震動評価、日本建築学会構造系 論文報告集、第455号、pp.61-71、1994.
- Irikura, K, : Prediction of strong ground acceleration motions using empirical Green • s function, Proc. 7th Japan Earthq. Eng. Symp., pp. 151-156, 1986.
- 3)入倉孝次郎・他: 将来の大地震による強震動を予測するためのレシピ,京都大学防災研究所年報,第46号 B, pp. 105-120, 2003.
- 4)山内麻記子, 寛楽麿, 波形インバージョンによる 2000 年 10 月 31 日の三重県中部のスラブ内地震の震源過程,地球惑星 科学関連学会合同大会, Sp-P008, 2001.
- 5) Kamae, K., H. Kawabe, and K. Irikura: Strong ground motion prediction for huge subduction earthquakes using a characterized source model and several simulation techniques, 13th WCEE, Vancouver, 2004.

東南海・南海地震による大阪での強震動予測事例

鶴来雅人¹, 趙伯明², Petukhin Anatoly³, 香川敬生⁴

 ¹財団法人 地域 地盤 環境 研究所 (〒550-0012 大阪市西区立売堀 4-3-2) E-mail:turugi@geor.or.jp
 ²財団法人 地域 地盤 環境 研究所 (〒550-0012 大阪市西区立売堀 4-3-2) E-mail:zhao@geor.or.jp
 ³財団法人 地域 地盤 環境 研究所 (〒550-0012 大阪市西区立売堀 4-3-2) E-mail:anatolyp@geor.or.jp
 ⁴財団法人 地域 地盤 環境 研究所 (〒550-0012 大阪市西区立売堀 4-3-2) E-mail:kagawa@geor.or.jp

大阪盆地内の地震観測点を対象として東南海・南海地震の強震動シミュレーションを実施した.広周期帯域の地震 動を評価するため、シミュレーションの方法としてハイブリッド法を採用した.断層モデルは中央防災会議によるモ デルに準拠し、サイト増幅特性は中小地震の観測記録から経験的に求めたものを用いた.解析の結果、海溝型巨大地 震および大阪の厚い堆積盆地構造による地震動特性を反映した広周期帯域の地震動を得ることができた.また、東南 海地震や南海地震がそれぞれ単独で発生する場合の試算も行なった.その結果、これらが同時に発生するに比べ、凡 そ 60~80%程度の地震動となることが明らかとなった.さらに、長い伝播経路による地震波の散乱等によって継続時 間が延びることも考慮したシミュレーションも行なった.

Key Words: The Tonankai and Nankai Earthquake, Strong ground motion prediction, Osaka prefecture, Hybrid method

1. はじめに

東海沖から四国沖にかけての南海トラフを震源とする 東南海地震(あるいは東海地震)や南海地震は100年~100 数十年間隔で発生し,広範囲に大きな被害をもたらしてい る.文部科学省地震調査推進本部地震調査委員会の長期 評価では,次の東南海地震や南海地震は今後30年以内に 40~50%程度,50年以内には80~90%程度の確率で発生 するとされている¹⁾.また,東南海地震と南海地震が同時 にあるいは単独で発生する場合の震度分布や被害の予測 結果が中央防災会議東南海,南海地震等に関する専門調 査会(以下「調査会」と称す)から公表される^{2),3)}など, 次の東南海地震や南海地震への関心が高まりつつある.そ こで,今後の防災対策に資することを目的に、南海・東南 海地震を対象とした地震動シミュレーションを行い,大阪 府域における地震動を試算した.

まず、南海地震および東南海地震が同時に発生する場合 について試算を行い、波形やスペクトルの特徴および震度 分布について検討する. 続いてそれぞれの地震が単独で発 生する場合について試算を行い、これらが同時に発生した 場合の予測結果と比較する. さらに、長い伝播経路におけ る散乱等の影響により地震動の継続時間が延びることを 考慮に入れたシミュレーションを行なう. 最後に東南海地 震の震源域付近で発生した地震の観測記録との比較を行 なうことで,得られた予測結果の特徴の妥当性を定性的に 議論する.

2. 解析概要

(1) 地震動シミュレーションの方法

広帯域にわたって信頼性の高い大地震動を得るため、地 震動シミュレーションはハイブリッド法⁴⁾を用いて行な った.この方法の概要を図-1に示す.この方法は1~2秒 程度以下の短周期領域の大地震動を統計的手法⁵⁾と経験 的グリーン関数法^{6,7)}の考え方を用いて、すなわち統計的 グリーン関数法により求め、1~2秒程度以上の長周期領 域の大地震動を理論的手法で作成し、最終的に両者を時間 軸上で足し合わせることにより広帯域の大地震動を得る ものである.ここで、短周期大地震動を求めるにあたって は、観測記録から評価した経験的サイト増幅特性を考慮し

図-1 ハイブリッド法による大地震動の作成手法

	南海地震		東南海	毎地震
	西部断層	東部断層	西部断層	東部断層
基準点緯度(°)	32.630	32.810	33.830	34.160
基準点経度(°)	135.100	135.950	136.990	138.120
断層分類		逆断層+相	黄ずれ成分	
断層走向角(°)	245.0	270.0	215.0	235.0
断層傾斜角(°)	7.0	14.0	14.0	10.0
すべり角 (°)	120.0	145.0	90.0	100.0
断層上端深度(km)	10.0	10.0	10.0	10.0
断層長さ(km)	220	170	120	130
断層幅 (km)	160	100	80	110
断層面積(km ²)	36,500 (約36,500)		15,800(約14,500)	
応力降下量(MPa)	3.0 (3.0)		3.0 (3.0)	
地震モーメント (N・m)	8.37×10^{21} (8.34×10^{21})		2.38×10^{21} (2.15×10 ²¹)	
平均すべり量 (m)	5.61 (5.70)		3.69 (3.63)
モーメントマグニチュード	8.55 (8.55)		8.18 (8.15)
破壊伝播速度(km/sec)	2.7 (2.7)			

表-1 南海地震・東南海地震の巨視的断層パラメータ

() 内の数字は調査会の設定値

た.また、長周期大地震動は大阪堆積盆地の3次元地下構造およびプレートの沈み込みを含む深部構造を考慮した差分法⁸により求めた.なお、鉛直動についてはサイト増幅特性の評価法や、特に短周期領域の地震動予測手法が確立されているとは言い難いため、水平動のみを対象とした.

(2) 震源断層パラメータ

調査会の断層設定²⁾では3次元的に複雑な曲面構造を 持つ震源域を約500個の小断層で近似している.その小断 層の長さ・幅は約10kmであり、小断層毎の走向角や傾斜 角はそれぞれ異なっている.本検討では、複雑な曲面構造 を持つ断層面を南海地震西部断層、同東部断層、東南海地 震西部断層、同東部断層の4つの矩形セグメントに分割・ 近似し、それぞれのセグメント内の小断層は同じ走向角や

	南海地震		東南流	毎地震
	本検討	調査会	本検討	調査会
アスペリティの個数	5	5	4	4
アスペリティの面積 Sa (km ²)	9,100	約9,100	3,900	約3,900
アスペリティでの総モーメント <i>Moa</i> (N・m)	4.17×10 ²¹	4.25×10 ²¹	1.18×10 ²¹	1.16×10 ²¹
	アスペリティ1	アスペリティ1	アスペリティ6	アスペリティ6
面積(km ²)	1,400	1,423	1,300	1,308
地震モーメント (N・m)	5.14×10 ²⁰	5.40×10 ²⁰	4.31×10 ²⁰	4.26×10 ²⁰
すべり量 (m)	8.98	9.26	8.11	7.90
応力降下量(MPa)	23.9	24.5	22.4	21.9
	アスペリティ2	アスペリティ2	アスペリティ7	アスペリティ7
面積(km ²)	2,800	2,758	1,100	1,107
地震モーメント (N・m)	1.45×10^{21}	1.46×10^{21}	3.36×10 ²⁰	3.31×10 ²⁰
すべり量 (m)	12.70	12.00	7.46	7.30
応力降下量 (MPa)	23.9	24.5	22.4	21.9
	アスペリティ3	アスペリティ3	アスペリティ8	アスペリティ8
面積(km ²)	1,200	1,226	1,100	1,107
地震モーメント (N・m)	4.08×10^{20}	4.32×10^{20}	3.36×10 ²⁰	3.31×10 ²⁰
すべり量 (m)	8.31	8.60	7.46	7.30
応力降下量(MPa)	23.9	24.5	22.4	21.9
	アスペリティ4	アスペリティ4	アスペリティ9	アスペリティ9
面積(km ²)	3,000	2,963	400	402
地震モーメント (N・m)	1.61×10^{21}	1.62×10^{21}	7.36×10 ¹⁹	7.27×10 ¹⁹
すべり量 (m)	13.15	13.00	4.50	4.40
応力降下量(MPa)	23.9	24.5	22.4	21.9
	アスペリティ5	アスペリティ5		
面積(km ²)	700	715		
地震モーメント (N・m)	1.82×10^{20}	1.92×10^{20}		
すべり量 (m)	6.35	6.57		
応力降下量(MPa)	23.9	24.5		
背景領域				
面積(km ²)	27,400	約27,400	11,900	約10,600
地震モーメント (N・m)	4.20×10^{21}	4.09×10 ²¹	1.20×10^{21}	9.89×10 ²⁰
すべり量 (m)	3.75	3.65	2.48	2.28
応力降下量(MPa)	2.2	2.2	2.2	2.2

表-2 南海地震・東南海地震の微視的断層パラメータ

傾斜角を持つとした.その大きさは長さ・幅ともに調査会 とほぼ同じ 10km である.設定した断層位置を図-2に示 す.図中,空白の領域は断層破壊をしない領域である.ま た,各セグメントが重複する領域については、どちらかの セグメントのみが断層破壊するものとした.図中×印を示 した領域(A1~A9)がアスペリティであり、調査会の設 定したアスペリティ位置と概ね一致している.しかし、そ の深度については断層面を平面近似しているため、調査会 のそれとは厳密に対応していないものと思われる.破壊開 始点は調査会の設定に倣い、南海地震断層と東南海地震断 層の境界部(図-2中、★印)とし、破壊が同心円状に広 がるとした.

各アスペリティおよび背景領域の地震モーメントや応

力降下量といった微視的断層パラメータは調査会の設定 方法³に倣って与えた.設定した巨視的断層パラメータを **表-1**に示す.同表中,()内の数字は調査会の設定値 である.また,微視的断層パラメータを**表-2**に示す.同 表中にも調査会の設定値を示す.

なお, 応力降下量は地震モーメントおよびコーナー周波 数との関係式 [式(1)]^{9,10}により考慮した.

$$f_c = 4.9 \times 10^6 \times \beta \times \left(\frac{\Delta\sigma}{M_0}\right)^{1/3} \tag{1}$$

ここで、 f_c : コーナー周波数(Hz) β :媒質のせん断波速度(km/s)

(2) プレートの沈み込みを含めた深部構造

A' A L5 L6 L3 L7 L9 L7

(3) A-A'断面 [左記(2)参照]のイメージ

(1)大阪堆積盆地の3次元構造

図−3 解析に用いた地下構造モデル

 M_0 :地震モーメント(dyne・cm) [1(N・m)=1×10⁷(dyne・cm)] $\Delta \sigma$:応力降下量(bar) [1bar=0.1MPa] である.

(3) 長周期大地震動の計算に用いる地下構造

長周期大地震動は大阪堆積盆地の3次元不整形地下構 造 11)およびプレートの沈み込みを含む深部構造を考慮し た差分法⁸⁾により求めた、大阪堆積盆地の外側は露頭岩盤 と仮定し、水平構造モデルとした. 設定した地下構造モデ ルを図-3に、物性値を表-3に示す、図-3および表-3中、 L1~L3 が大阪堆積盆地構造, L4~L7 が深部構造, L8 お よびL9がフィリピン海プレートに相当する.L1~L3およ びL8 とL9 は水平成層構造ではなく、位置により下面深 度が異なるため、表-3中の下面深度の値は示していない. なお、趙・ほかは、このモデルを用いて 2000 年鳥取県西 部地震の地震動シミュレーションを行い、観測記録と整合 する結果を得ており¹²⁾, モデルの妥当性が確認されている. 深部構造の形状は Zhao et al.¹³⁾による形状とした.その P 波速度は京都大学鳥取地震観測所が震源決定に用いてい る値¹⁴とした. S 波速度は Love 波の分散曲線から推定し た値15)を参考に、その平均的な値とした.また、フィリピ ン海プレートの形状は荻原の成果10をスムースに繋ぎ,厚 さ 30km の層(L9) 上面には低速度の海洋性地殻(L8, 厚 さ5km)を置いてモデルに組み込んだ. その速度構造はレ シーバー関数から得られたモデル ¹⁷および人工地震探査 の結果18からその平均的な値とした.モデル化した領域は E132.0°, N31.8°から東へ580km, 北に380km, 深さ80km の領域である.また、大阪堆積盆地構造は約81km×81km の範囲であり、堆積層の厚さは最深部で約3km である. 解析のグリッド間隔は堆積盆地構造内では 220m, 盆地外 では震源要素のサイズおよび表層の S 波速度に応じて 440m~1,320m の間隔を採用した. また, O 値は文献 19 に示されている方法で考慮した.

通常,差分法による解析では震源時間関数としてベル型 関数を用いられることが多い.このベル型関数を用いて南

表-3 解析に用いた地下構造の物性値

	V_p	V _s	Density	Q	下面深度
	(km/s)	(km/s)	(kg/m ³)		(km)
L1	1.60	0.35	1.70	80	—
L2	1.80	0.55	1.80	100	—
L3	2.50	1.00	2.10	150	—
L4	5.40	3.20	2.60	300	4.0
L5	6.00	3.50	2.70	500	16.0
L6	6.60	3.82	2.85	1000	36.9
L7	8.10	4.50	3.29	2000	∞
L8	7.50	4.30	3.06	2000	_
L9	7.80	4.35	3.16	2000	_

海・東南海地震のような巨大地震をシミュレーションする 場合,周期2ないし3秒から10秒程度の周期帯域で過小 評価となることが指摘されている²⁰⁾.本研究ではベル型関 数ではなく,立ち上がり部が急峻な中村・宮武による震源 時間関数²¹⁾を用いることにより,理論計算の有効周期を2 秒程度にまで拡張するように工夫をした.

(4) 短周期大地震動の計算に用いる Q値

中央防災会議 東海地震に関する専門調査会においては Q 値に関する既往研究成果を整理し、せん断波速度が 3,000m/sec を越える地震基盤の <math>Q 値の平均的特性として $Q(f) = 100 \times f^{0.7}$ (2) を採用している²⁹.本検討においてもこの特性を用いるこ ととした.ここで、f は周波数(Hz)である.なお、調査会 の資料には採用した Q 値の特性は記述されていない.

(5)解析対象地点とそのサイト増幅特性

解析対象地点は関西地震観測研究協議会, 独立行政法人防 災科学技術研究所の強震観測網(K-NET)および基盤強震 観測網(KiK-net)の大阪府下の23観測点とした. 関西地 震観測研究協議会および K-NET 観測点におけるサイト増 幅特性は観測記録を用いた経験的手法で得られた特性²³⁾ を用いた. KiK-net 観測点におけるサイト増幅特性は今回 新たに評価した. その手法は文献 23 と同じ手法である. なお,この手法ではサイト増幅特性を基準観測点との相対 値ではなく,地震基盤に対する値として算出できる.

(6) 高域遮断フィルター

高周波数領域の地震動の振幅には高域遮断フィルター が大きな影響を及ぼす.調査会の資料²⁾には高域遮断周波 数 f_{max} の値が記載されているのみで,フィルター形状や高 周波数領域の減衰の程度を示す係数は不明である.そこで, 本研究では式(3)で示されるフィルター形状⁵⁾を用いた. ここで, f_{max} は調査会の設定に倣い 6Hz,減衰の程度を示 す係数sは1 とした.

$$P(f) = \frac{1}{\sqrt{1 + \left(\frac{f}{f_{\text{max}}}\right)^{2s}}}$$
(3)

(7) マッチング周波数

短周期大地震動と長周期大地震動の足し合わせの際の マッチング周波数は、差分法による限界周波数を考慮した うえで、両地震動のスペクトルがスムースにつながるよう に、スペクトルレベルがほぼ同じ周波数領域とした.対象 地点毎に若干異なるが、概ね0.5Hz 程度である.

3. 解析結果

(1)各成分波およびハイブリッド波

統計的グリーン関数法による短周期波および3次元差 分法による長周期波,およびそれらを足し合わせたハイブ リッド波を図-4および図-5に示す.示した結果は,南海 地震と東南海地震が同時発生した場合のABNおよびYAE の2地点のEW成分である.ここで,ABNは大阪府内を 南北に縦断する上町台地上,YAE は軟弱地盤が広がって いる東大阪の観測点であり,図-3中にその位置を示す. これより長周期波の継続時間が非常に長いことがわかる. この継続時間は,震源時間関数から想定されるものに比べ はるかに長いことから,堆積盆地構造により生成された表 面波の影響と考えられる.ハイブリッド波の最大速度は比

(YAE) では 70cm/s を越える大きな最大速度となった. なお, YAE 以外の解析対象地点では最大速度は概ね 10~ 40cm/s 程度である.

(2) 地盤種別による比較

地盤種別による地震動の違いを図-6および図-7に示 す.示した結果は、南海地震と東南海地震が同時発生した 場合の CHY, ABN および YAE の3地点におけるハイブ リッド波(EW 成分)である.ここで、CHY は大阪府南 東部の風化岩の観測点であり(位置は図-3参照)、ABN および YAE は前述の通り、それぞれ洪積層上および沖積 層上の観測点である.これより、堆積盆地構造の端部に位 置し、風化岩上の観測点である CHY に比べ、盆地構造内 の堆積層上の観測点である ABN や YAE では地震動の継 続時間が長く、また特に長周期領域で大きな増幅が見られ る.堆積盆地構造の影響が顕著に現れていると言える.

(3) 震度分布

本検討で得られた地震動から計算される計測震度の分 布を図-8に示す.示した結果は南海地震と東南海地震が 同時発生した場合のものである.

本検討で得られた計測震度は、風化岩上の観測点では 4.4 程度(震度 4),洪積層上の観測点のうち断層にやや 近い位置にある府南部では5.0 程度(震度 5 強),府中部 や北部では4.5~4.8(震度 5 弱),沖積層上の観測点では 4.7~5.6(震度 5 弱~6 弱)であった.一方,調査会による 震度分布²⁾では,府域の大部分が震度 5 強,一部で震度 6 弱や震度 5 弱が広がっている.本検討で得られた結果は、 大局的に見ればこの調査会の震度分布と顕著な差異がな いと言えるが,仔細に見た場合,調査会の震度分布とやや 異なっている.これは、地震動シミュレーション手法の違 い(本検討:ハイブリッド法,調査会:統計的グリーン関 数法)および表層地盤の扱いの違い(本検討:線形解,調 査会:せん断波速度 300m/sec 層以浅に対しては非線形解) に原因があるものと思われる.

(4) 同時に発生する場合と単独で発生する場合の比較

前節までの検討は南海地震と東南海地震が同時に発生 する場合を対象としたが、ここではそれぞれの地震が単独 で発生する場合の地震動シミュレーションを行い、結果を 比較する.南海地震が単独で発生する場合は、図-2中★ 印から破壊が始まり、南海地震東部断層と同西部断層が順 次破壊する、東南海地震が単独で発生する場合は、図-2 中★印から破壊が始まり、東南海地震西部断層と同東部断 層が順次破壊するとして解析した.

破壊領域の違いによる地震動の違いを図-9および図 -10 に示す.示した結果は YAE におけるハイブリッド波 (EW 成分)である.これより,南海地震や東南海地震が 単独で発生する場合には,同時に発生する場合の60~80% 程度の地震動となることがわかる.他地点についてもこれ とほぼ同様の結果が得られる.また,東南海地震が単独で

図-6 地盤種別による波形の比較 <上:CHY (風化岩),中:ABN (洪積層),下:YAE (沖積層)>

図-9 破壊領域の違いによる波形の比較 <YAE,上:同時発生,中:南海地震単独発生,下:東南海地震単独発生>

発生する場合,破壊開始点で破壊が始まった時刻(図-9 の時間軸0秒に相当)から120秒程度で振幅が小さくなる のに対して,南海地震が単独で発生した場合は,その後も 比較的振幅が大きいことがわかる.この要因として,南海 地震の断層が大きく断層面からの最短距離と最長距離の 差が東南海地震より大きいために,地震波が観測点に到達 するまでの時間差が大きくなること,および大阪府域から 遠方にある断層西部に大きなアスペリティ(A1 や A2)が あり,そこから比較的大きな地震動が生成されること,が 考えられる.

計測震度の比較を表-4に示す.これより、南海地震や

東南海地震が単独で発生する場合,震度は0.2~0.4程度小 さくなることがわかる.同表には関西地震観測協議会の観 測点のみを示したが, K-NET やKiK-net 観測点についても ほぼ同様の結果が得られる.

(5) 地震動の継続時間の延びを考慮した検討

伝播経路における地震波の散乱や堆積層による重複反 射などにより地震動の継続時間は長くなる.内陸活断層地 震に比べ震源距離が長い海溝型地震に対して,この傾向は より顕著に現れてくる.本検討ではハイブリッド法を採用

図-10 破壊領域の違いによる擬似速度応答スペクトルの比較 <減衰定数5%>

したが、その短周期地震波の継続時間は震源小断層における時間遅れが考慮されているのみで、伝播経路における地震波の散乱や堆積層による重複反射などにより継続時間が延びることは考慮されていない.

そこで、文献24および25に示す方法を用いて震源・伝 播経路・サイト特性によるエンベロープを評価し、これら をコンボリューションすることにより、継続時間の延びを 考慮したグリーン関数を得ることとした.このグリーン関 数を用いて短周期大地震動をシミュレートした後、長周期 大地震動とハイブリッド合成した.地震動の継続時間の延 びを考慮した場合としない場合の、ハイブリッド波の加速 度波形および擬似速度応答スペクトルの比較を図-11に示 す.示した結果はYAEにおける EW 成分である.継続時 間の延びを考慮しない場合は、例えば 90 秒程度の時刻に 振幅の小さいフェーズ(図-11 中、で示したフェーズ) が現れるのがわかる.破壊開始点において破壊が始まった 時刻(図-11 の時間軸 0 秒に相当)から約 65~70 秒後に アスペリティ4(図-2中A2)およびアスペリティ7(図- 2中A7)の破壊による地震波が到達し、また約100秒後 にアスペリティ8(図-2中A8)の破壊による地震波が到 達しており、この90秒程度の時刻における小振幅のフェ ーズは各アスペリティの破壊による地震波の狭間に相当 する.継続時間の延びを考慮するとこの小振幅のフェーズ が見られなくなり、より現実的な波形が得られることがわ かる.なお、継続時間の延びの影響は応答スペクトルには 顕著には見られないことが図-11(2)よりわかる.

(6) 2004 年9月5日の地震の観測記録との比較

2004 年 9 月 5 日紀伊半島沖および東海道沖を震源とす る比較的規模の大きな地震が発生し、大阪府内ではいずれ の地震ともに震度 4 のゆれを観測した.これらの地震は沈 み込むプレート内部で発生したいわゆるスラブ内地震で あり、南海・東南海地震とは震源メカニズムが異なる.し かし、その震央位置は図-2に示す通り、東南海地震の震 源域に比較的近いことから、南海・東南海地震の大阪府域

同時発生

4.8

4.4

5.2

5.5

5.0

5.0

5.1

5.1

4.5

5.6

対象地点

ABN

CHY

FKS

MRG

OCU

SKI

SRK

TDO

TYN

YAE

表-4 破壊領域の違いによる計測震度の比較

南海地震

単独発生

4.7

4.2

4.9

5.3

4.8

4.8

4.7

5.1

3.9

5.3

東南海地震

単独発生

4.5

4.2

4.8

5.2

4.6

4.5

4.8

4.7

4.2

5.5

上:シミュレーション結果,中:観測記録(19時7分の地震), 下:観測記録(23時57分の地震)

1000

○:シミュレーション結果

(1)加速度波形
 (2)擬似速度応答スペクトル<減衰定数5%>
 図-12 シミュレーション結果の定性的特徴に関する検証

での地震動を考えるうえで、その継続時間や周波数特性な どについて共通点が多いものと考えられる.そこで、ここ では本検討で得られた南海・東南海地震のシミュレーショ ン波とこれらの地震の観測波との比較を行なう.これらの 地震の諸元²⁰を以下に示す.

- [2004年9月5日19時7分の地震]
 - ・震央緯度,経度: 33.028°, 136.800°
 - ・震源深さ:38km
 - ・気象庁マグニチュード:6.9

[2004年9月5日23時57分の地震]

- ・震央緯度,経度: 33.143°, 137.142°
- ・震源深さ:44km
- ・気象庁マグニチュード:7.4

ABN におけるシミュレーション波と観測波の比較を図 -12 に示す. これらの地震の震央位置が東南海地震の震源 域と比較的近いことから,東南海地震が単独で発生した場 合のシミュレーション結果と比較している. これより, 2004 年 9 月 5 日の地震の規模が東南海地震のそれよりマ グニチュードで 1.3 および 0.8 小さいことや震源が深いこ とにより振幅はかなり異なるが,地震動の継続時間が長い ことや長周期領域が卓越すること,といった特徴は両波に 共通して見られることがわかる. これは,本検討で得られ た予測結果の特徴の妥当性を定性的に示すものであると 言えよう.

4. おわりに

大阪堆積盆地を考慮した南海・東南海地震の強震動シミ ュレーションを行い、大阪府域における地震動を試算した. 計算にあたっては、3次元的に複雑な曲面構造を持つ断層 面を4つの矩形セグメントに近似する、ハイブリッド法を 用いる,経験的サイト増幅特性を考慮する,といった工夫 を行った.また,長周期地震動の計算にあたっては,大阪 堆積盆地の3次元地下構造およびプレートの沈み込みを 含む深部構造を考慮した.

その結果,継続時間が非常に長い,かつ周期1秒程度以 上の長周期領域が卓越した地震動が得られた.これは震源 時間関数から考えられる継続時間よりもはるかに長いこ とから,盆地生成表面波の影響によるものと考えられる. 特に東大阪では70cm/sを越える大きな最大速度が予想さ れることが明らかとなった.また,得られた計測震度は 4.3 (震度4)~5.6 (震度6弱)となり,その分布は調査会 による分布と大局的に見れば顕著な差異がない結果であ った.仔細に見た場合,調査会による分布とやや異なるが, これは地震動シミュレーション方法の違いおよび表層地 盤の取り扱いの違いによるものと思われる.

続いて、南海地震と東南海地震が同時に発生する場合と それぞれが単独で発生する場合の地震動予測結果の比較 を行った.その結果、南海地震や東南海地震が単独で発生 する場合には、同時に発生する場合の60~80%程度の地震 動となり、震度は0.2~0.4 程度小さくなると予想された. また、南海地震が単独で発生する場合は東南海地震が単独 で発生する場合に比べ、後続波の振幅が大きくなることが 予想された.

さらに、伝播経路における地震波の散乱や堆積層による 重複反射などにより地震動の継続時間が延びることを短 周期領域でも考慮したシミュレーションを行った.その結 果、より現実的な波形が得られた.

最後に、本検討で得られたシミュレーション波と 2004 年9月5日に発生した紀伊半島沖および東海道沖を震源と する地震の観測記録との比較を行った.その結果、地震動 の継続時間が長いことや長周期領域が卓越すること、とい った特徴は共通して見られることが明らかとなった.これ

k-2モデルによる東海地震を想定した 入力地震動の策定例

久田 嘉章1

工学院大学教授 工学部建築学科(〒163-8677 新宿区西新宿1-24-2) E-mail: hisada@cc.kogakuin.ac.jp

静岡県長泉町に建設された免震建築である静岡県立静岡がんセンターの耐震設計に用いるため、東海地 震を想定した入力地震動の策定を行った。建設地における地震基盤までの地盤構造モデルは微動アレイに よる地盤構造探査で行い、地震動の策定手法は経験的手法(小林・翠川法)、半経験的手法(入倉法)、 および理論的手法(ハイブリッド手法)を用い、最悪条件や結果のばらつきを考慮して行った。特に理論 的手法では震源近傍の強震動特性を考慮し、既存の巨大地震の震源パラメータを用いて周期1秒までの地 震動計算を行うため、k-2モデル(k-squared model^{1),2)}を使用した。計算の結果、断層破壊が当該地に近 づくことで生成するdirectivity pulse波が、免震構造に最も大きく影響することを確認した。

Key Words : The Tokai earthquake, K-squared source model, input ground motion, aseismic design

1. はじめに

長周期構造物の耐震設計で考慮すべき長周期地震動に は大きく分けて、堆積盆地で励起する表面波などサイト 特性に起因するものと、directivity pulse波(指向性パルス 波)やfling stepなど震源特性に起因するものがある。前 者の例として2003年十勝沖地震による勇払平野で励起し た長周期地震動があり、苫小牧市の石油タンクの火災事 故を契機に、関東平野や大阪盆地などの堆積盆地の長周 期地震動と、それによる長周期構造物(石油タンク、超 高層建築、免震建築など)への影響が懸念されている。 しかしながら表面波の加速度は小さく、また卓越周期は 地盤構造で決まるため、減衰を付与したり、地盤との共 振を避けるなどで比較的対処は容易であると思われる。

一方、震源近傍の地震動特性であるdirectivity pulse波や fling stepは、これまで長周期構造物の被害例が無いこと もあり、耐震設計上、考慮されることは殆ど無いのが現 状である³。directivity pulse波は1995年兵庫県南部地震の際、 神戸市の大被害をもたらした大きな要因の一つとして注 目され、近年では強震動予測地図など震源近傍の地震動 評価では広く採りいれられている。一方、fling stepは地 表断層のごく近傍での断層すべりに起因する永久変位を 伴うステップ関数上の長周期が卓越する変位波であり、 1999年台湾・集集地震などで大きく注目をされるように なった。directivity pulse波やfling stepは、理論・観測面から その成因が解明されており、現在では耐震設計の入力地 震波として取り入れることが可能となっている⁹。

本報告では震源近傍の強震動特性を考慮した入力地震 動の策定例として、平成14年9月に開院した静岡県立 静岡がんセンター・病院本棟における入力地震動策定を 紹介する(平成11年日本建築センター評定)。サイト での深層地盤は微動のアレー観測で調査し、その結果を もとに強震動評価を行い、手法は経験的手法(小林・翠 川法)、経験的グリーン関数法(半経験的手法)、理論 的手法(ハイブリッド手法)を全て使用している。本報 告では著者の担当したk-2モデル(k-squared model)に よる理論的手法を中心に紹介する(詳細は文献⁵⁾)。

2. 想定する地震と構造計画概要

静岡がんセンターは、図1、2に示すように富士山麓 の愛鷹火山南東部に位置し、静岡県の地震地域係数は 1.1以上のB地域に相当する。当サイトで考慮すべき震 源モデルとして、図2に示すように仮想東海地震、仮想 神奈川県西部地震、さらに富士川河口断層帯、及び神 縄・国府津-松田断層帯による地震などが考えられる。 この中で建設サイトに最も大きな影響を及ぼす地震とし て、仮想東海地震(M8)を対象とした入力地震動策定 が行われた。仮想東海地震は、平成13年に中央防災会議 から新しい想定震源域が公表されているが、ここでは建 建設サイトに近く、より影響のより大きいと考えられる 石橋モデル(1976)を用いている。表1に使用した震源 パラメータを示す。

当センターの病院本棟は、地震時の災害拠点として病院 機能を維持させるため免震構造として計画されている。

病院本棟は鉄骨鉄筋コンクリート・一部鉄骨造で、地下 1階、地上11階、軒高53.45m、建築面積・延べ床面 積はそれぞれ約14,763 m2、64,155 m2である。架構はブレ ース付きラーメン構造(一部耐震壁)、基礎は杭基礎で ある。免震部材は1階床下及び地下1階床下に設置し、 一部は1階と地下1階の中間に設置した。免震部材は積 層ゴムとすべり支承を併用し、減衰機構は鋼棒ダンパー と鉛プラグを用いている。基礎固定での設計用1次固有

周期は短辺で0.91秒、長辺で0.86秒であり、免震層を含めた等価線形モデルによる1次固有周期は、免震層変位

の1 cmレベルで1.42秒、10 cmレベル(レベル1)で2.42 秒、20 cmレベル(レベル2)で2.90秒、40 cmレベル (余裕度検討レベル)で3.33秒である。

表1 仮想東海地震の震源パラメータ(石橋モデル)

緒元	設定値
地震規模	M 8
断層北東端位置(°)	(35.14 N, 138.73 E)
断層の最浅端深さ (km)	2
走行(゜)	N198E
傾斜角(゜)	34
長さ (km)	115
幅(km)	70
平均すべり量 (m)	4
平均すべり角(°)	71

図1 静岡県立静岡がんセンターの遠景(左)とサイト位置(右)

図2 建設サイト、及び入力地震動策定の祭に参考にした想定震源

層 密度 Vp Vs 層厚 Qp Qs (g/cm^3) (km/s) (km/s) (km) 1 2.0 1.7 0.6 0.043 100 50 0.17 80 2 2.1 2.3 0.91 160 3 2.2 2.9 1.55 1.14 300 150 4 2.4 5.5 3.0 2.00 400 200 5 2.8 6.5 3.8 400 200

表2 使用した地盤モデル

本サイトでの地盤情報は以下の通りである。当該地で は多くのボーリング調査や深さ60mまでのPS検層な どが行われており、それらによると当地では愛鷹火山の 噴出によるローム層が地表より約20mまで堆積し、以深 は凝灰角礫岩層で構成されている。一方、長周期強震動 の特性を調べる上で重要な工学的基盤から地震基盤まで の地盤構造は殆ど知られていない。このため微動のアレ イ観測を実施し、S波速度3km/s程度の地震基盤までの S波速度構造を推定した(表2)。

3. k-2 model を利用した理論的手法と統計的グリ ーン関数法による入力地震動策定

入力地震動の策定法は経験的手法(小林・翠川法)と 経験的グリーン関数法(半経験的手法)に加え、 directivity pulse 波や fling step など様々な震源近傍 の強震動特性を考慮するため、理論的手法(ハイブリッ ド手法)も用いている。理論的手法では、長周期強震動 (周期約1秒以上)の作成に k-2 モデルによる理論的手 法を、短周期強震動(周期約1秒以下)には統計的グリ ーン関数法を用いたたハイブリッド手法を使用した。M 8クラスの海洋型地震を対象とした場合、震源逆解析に よる使用できるの震源パラメータは長周期の記録(通常、 周期3~4秒以上)であるため、工学的に必要な短周期 ではそのままでは適用はできない。そこで、震源近傍で 強震記録が得られ、東海地震と同じM8クラスの海洋型 逆断層タイプの地震である 1985 年メキシコ地震と 1985 年チリ地震を用い、k-2 モデルによって短周期まで適用 可能な震源パラメータを構築し、仮想東海地震に適用し た。

k-2 モデル (k-square model) ^{1),2}は、断層面にでのす べり分布などが短波長で空間波数 (k) の 2 乗に逆比例 すると仮定することで、短周期の地震動が経験的震源も モデルである ω 2 モデル (omega-squared model) に整合 するように構築する震源モデルである。オリジナルの k-2 モデル⁶⁾では断層面のすべり分布のみに k-2 分布を 仮定していたが、著者はすべり分布に加え、破壊開始時 間の分布にも k-2 を導入し、破壊伝播のフロントで揺ら ぎを導入することで、加速度波形でのランダムさが表現 でき、さらに、すべり関数に source-controlled fmax を 持つ Kostrov 型のすべり速度関数を用いる。その結果、 短周期でω2 モデルと整合する震源スペクトルとなる。 長周期(長波長)では既存の結果のすべり分布を用い、 小断層サイズ以下の短波長で k-2 モデルを導入すれば長 周期での directivity pulse 波や fling step などの震源 近傍の強震動特性と、短周期でのランダムな地震動特性 とを同時に評価することが可能となる^{1),2)}。但し、ここ で用いた震源モデルでは、すべり分布には震源インバー ジョンによるすべり分布をそのまま使用し、さらにすべ り速度関数として単純な継続時間が1秒の三角形関数で 代用している。

一方、周期1秒以下の短周期成分には統計的グリーン 関数法を用いる⁷。これは Boore の点震源モデルを断層 面の小断層に分布させ⁸、Irikura (1986)の方法で重ね 合わせる手法である⁹。

上記の手法を 1985 年メキシコ地震と 1985 年チリ地震 に適用し、震源近傍で観測された強震記録を再現する震 源パラメータを構築した。図3は1985年メキシコ地震 の断層モデルと強震観測点(4地点)とすべり分布モデ ルである。断層モデルは Somerville 他¹⁰、及び Mendoza and Hartzell¹¹⁾を参考に構築し、理論的手法のための破 壊開始時間の分布には、図4に示すような k2 分布を用 いた。k2分布は、断層面を 8.3 km x 6.7 km の小断層に 分割し、各小断層で平均破壊伝播速度に1 σ が 1 km/s の正規分布を持つランダムな破壊伝播速度を与えること で生成した。一方、図4には参考のため一定の破壊伝播 速度(Vr = 3 km/s)による破壊開始時間の分布も示し ている。地盤モデルは Somerville 他¹⁰による構造を用 い、グリーン関数は、観測点が断層直上にあることから 最下層の構造による全無限体のグリーン関数を計算し、 重複反射理論による増幅率を乗じて地表での波形を合成 した。理論的手法は周期1秒以上、統計的グリーン関数 法には周期2秒以下で計算し、周期1~2秒で交差する フィルターをかけて両者を加え合わせた。図5に一例と して観測点 CAL における理論速度波形と観測波形、およ び加速度フーリエスペクトルの比較を示す。理論波形に は図4で示した2つの破壊開始時間のモデルによる計算 結果を示している。滑らかな破壊開始時間分布を用いる と周期1秒以上の長周期強震動の励起が不足するが、k2 分布モデルではメキシコ地震で顕著に見られた周期2秒 前後で卓越する長周期強震動が再現されている。

全く同様に図6は1985年チリ地震の断層モデルと観 測点位置(4地点)とすべり分布モデル、図7は破壊開 始時間の分布である。この場合、断層面を1.4 km x 1.2 kmの小断層に分割し、各小断層で平均破壊伝播速度に1

図4 1985年メキシコ地震の破壊開始時間分布(左:破壊伝播速度が一定の場合、右:k2分布の場合)

図5 CAL における理論・観測速度波形(上、NS成分)とそのフーリエ振幅スペクトル(下)

図6 1985年チリ地震の断層モデルとすべり分布モデル強震観測点の位置

図7 1985 年チリ地震で用いた破壊開始時間分布

図8 RPLにおける理論速度波形(上) と観測波形(下、NS成分)

図9 RPL における理論的手法による加速度フーリエスペクトル(左:破壊伝播速度が一定の場合、中:k2分布の場合)と観測波形のフーリエスペクトル(右)

σが1 km/s の正規分布を持つランダムな破壊伝播速震 源度を与え、k2 分布の破壊開始時間を生成した。地盤 モデルは Somerville 他¹⁰ による構造を用い、生成した 理論速度波形と観測波形の比較を図8に、スペクトルの 比較を図9に示す。観測波形は広い周期帯域で良く再現 されている。パラメータを長泉町の静岡がんセンターに おける理論地震動に適用した。図10と表3に使用した 2種の断層モデルとすべり分布を示す。破壊開始点は断 層面の下端部とし、破壊が観測点に近づく場合(破壊開 始点1)と離れる場合(破壊開始点2)の2ケースを考 慮した。地盤構造は微動観測をもとにした表2の成層地 盤を用い、半無限成層地盤モデルのグリーン関数を使用 した¹²⁰。

図 11 に計算した速度波形 (NS 成分)を示す。Forward と backward の directivity 効果により、理論波形の性状 は大きく異なっている。すなわち破壊フロントが観測点 に近づく場合(破壊開始点1)、継続時間が短いものの、 大きな振幅となっているのに対し、破壊フロントが離れ る場合(破壊開始点2)、継続時間は長いものの、短周 期の卓越する小さな振幅の波形となる。

3手法、すなわち経験的手法(小林-翠川手法)、半 経験的手法、理論的手法(理論手法と統計的グリーン関 数法)で得られた地震動を比較検討する。図 12 に3手 法による速度応答スペクトル(h=5%)を示す。理論的 手法による結果は震源のパラメータの値で大きく変動す るが、経験的手法と半経験的手法の結果は比較的安定し、 理論的手法によるばらつきに対して中間程度の値を示し ている。特に免震構造の応答に影響する長周期成分に着 目すると、最も大きな値は、理論的手法を用い forward directivity 効果が現れているメキシコ型地震によるも のであり(MEX1)、逆に最も小さな値は backward directivity 効果によるメキシコ型地震によるものであ った(MEX2)。従って、経験的手法や半経験的手法によ り経験的な地震動特性を把握し、理論的手法により最悪 条件や結果のばらつきを評価できたことは有効であった。

表3 使用した仮想東海の震源パラメータ

A3 使用した[仮芯束]毎の長原パーク				
断層モデル	石橋モデル	メキシコ型モデル	チリ型モデル	
断層長さ(km)	115	125	120	
断層幅(km)	70	80	75	
走向角(°)	N198E	N198E	N198E	
傾斜角(°)	34	34	34	
断層すべり (m)	4.0	0.7~4.2	0.7~4.2	
断層面下端深さ(km)	41	45	45	
断層面上端深さ(km)	1.9	0.3	3.1	
すべり角(゜)	71	70	70	
破壊開始点深さ (km)	41	45	45	
破壊伝播速度(km/s)	3.0 (一定)	3.0 (ばらつき考慮)	3.0(ばらつき考慮)	
k2分布を生じさせる小断層サイズ	_	8.3 x 6.7 km ²	1.4 x 1.2 km ²	

図 10 仮想東海地震に適用したメキシコ地震モデル(左)とチリ地震モデル(右)

図 11 東海地震を想定したメキシコ型モデル(上)とチリ型モデルに(下)よる長泉町での速度 波形(NS成分、左:破壊開始点1、右:破壊開始点2)

図 12 仮想東海地震による各種法(半経験的手法、経験的手法、理論手法)による 速度応答スペクトル(5%減衰)の比較

5. おわりに

静岡県長泉町に建設された静岡県立静岡がんセンター の設計にあたり、地域における地震動特性を評価するた め東海地震を想定した地震動予測を行った。まず微動ア レイによる地盤構造探査を行い、建設地における地震基 盤までの地盤構造モデルを構築した。地震動策定は、経 験的手法・半経験的手法・理論的手法を用い、最悪条件 や結果のばらつきを考慮して行った。その結果、 forward directivity 効果による長周期パルス波が当病 院の免震構造に最も大きく影響することを確認した。最 後に計算した全ての地震動を用い、静岡がんセンターの 構造的・機能的安全性の確認を行った(詳細は文献⁵⁾ を参照されたい)。

一方、2000年台湾集集地震の後、大規模な地表断層 運動による大変位・大速度の波形が注目され、免震建築 の安全性が危惧されている(例えば、文献³⁾)。当病 院の場合、対象とした地震は伏在(地中)の逆断層地震 の下盤側に位置し、さらに断層から10数km離れてい るため、断層運動による永久変位の影響は大きくはなか った。もし当病院が上盤側の地表断層の近傍で建設され ていたら、想定される最悪の地震動(台湾地震の石岡 TQU068 など)では免震建築は成り立たなかった可能性 が大きい。今後は巨大地震の震源近傍、特に地表断層が 現れた場合の強震動特性の解明が急がれる。同時に、そ れに対応できる耐震(免震・制振)構造の開発も望まれ る。

謝辞

本サイトの地震動策定に際して、微動による地盤探査 には東京工業大学の山中浩明氏が、経験的・半径経験的 手法による地震動策定には東京工業大学の翠川三郎氏氏 が、静岡癌センターの構造設計は株式会社 横河建築設 計事務所が。それぞれ実施しました。その際、静岡県都 市住宅部営繕課、静岡県健康福祉部県立病院課がんセン ター準備室の皆様のご協力を頂きました。本研究は文部 科学による大都市大震災軽減化特別プロジェクト、およ び学術フロンティア・工学院大学による助成を頂いてい ます。

参考文献

- Hisada Y.: A theoretical omega-square model considering the spatial variation in slip and rupture velocity, Bull. Seism. Soc. Am., Vol.90, No.2, pp.387-400, 2001
- 2) 久田嘉章、k-2 モデルによる強震動評価、月間地球/号外、 No.37, pp.179-186, 2002、 pp99-110, 2002
- 3) 久田嘉章、震源近傍の強震動 改正基準法の設計用入力 地震動は妥当か? –、第 29 回地盤震動シンポジウム、日本 建築学会、pp99-110,2001

- 4) Hisada, Y, and J. Bielak, A Theoretical Method for Computing Near-Fault Strong Motions in Layered Half-Space Considering Static Offset due to Surface Faulting, with a Physical Interpretation of Fling Step and Rupture Directivity, Bull. of the Seism. Soc.of America, Vol.93, No.3, pp.1154-1168, June., 2003
- 5) 久田嘉章、翠川三郎、山中浩明、鱒沢 曜、免震病院を対象 とした入力地震動の策定例 — 震源近傍の強震動、及び、深 部地盤構造を考慮した入力地震動策定 —, 第 30 回地盤震動シ ンポジウム、日本建築学会、Sept, 2002
- Herrero, A. and P. Bernard (1994). A kinematic self-similar rupture process for earthquake, Bull. Seism. Soc. Am., 84, 1216-1228.
- 7) Kamae, K., K. Irikura, and A. Pitarka (1998), "A Technique for Simulating Strong Ground Motion using Hybrid Green's Function", Bull. Seismo. Soc. Am., Vol.88, No.2, pp.357-367.
- Boore, D.M., Stochastic simulation of High-frequency ground motions based on seimological models of radiated spectra, Bull. Seism. Soc. Am., Vol. 73, pp.1865-1894, 1983
- Irikura, K., Prediction of Strong Acceleration Motion using Empirical Green s Function, Proc. 7th Japan Earthq. Engng. Sym., pp.151-156, 1986
- Somerville, P.G., M. Sen, and B. Cohee, Simulation of Strong Ground Motions Recorded during the 1985 Michoacan, Mexico and Valparaiso, Chile Earthquakes, Bull. Seismo. Soc. Am., Vol.81, pp.1-27. 1991
- Mendoza, C. and S. H. Hartzell (1989), "Slip Distribution of the 19 September 1985 Michoacan, Mexico, earthquake: Near-Source and Teleseismic Constraints", Bull. Seismo. Soc. Am., Vol.79, pp.655-669.
- (12) 久田嘉章, 成層地盤における正規モード解及びグリーン関数の効率的な計算法, 日本建築学会構造系論文集 第 501 号、 pp.49-56、Nov.1997

東海、東南海地震による強震動 シミュレーションと耐震検討事例

杉戸 真太1・久世 益充2

¹正会員 岐阜大学教授 流域圏科学研究センター (〒501-1193 岐阜市柳戸1-1) sugito@cc.gifu-u..ac.jp

²正会員 岐阜大学非常勤研究員 流域圏科学研究センター (〒501-1193 岐阜市柳戸1-1) kuse@cive.gifu-u.ac.jp

東南海地震と東海地震が連動して発生すると仮定した複合型東海地震を対象とした強震動のシミュレーション、ならびにそれらを用いた耐震検討事例、自治体のメッシュ地盤データベースを用いた広域震度分 布推定事例を紹介する.震源断層パラメータは、中央防災会議ならびに地震調査研究推進本部により推定 されたものを参考に、非定常スペクトル合成法による工学的基盤での強震動シミュレーション法 (EMPR) に適用できるモデルを設定した.

Key Words: Tokai-Tonankai Earthquake, Strong Motion Simulation, Seismic Resistant Design

1. はじめに

東海地域では、100~150 年周期で海溝型巨大地震が 何度も来襲し、そのたびに大きな被害を被ってきた.ま た、1892 年濃尾地震や 1945 年三河地震のように、内陸 活断層による直下地震の経験もあり、わが国においても 地震の危険度が最も高い地域である.数千年の周期で発 生を繰り返す内陸活断層地震と比べ、海溝型地震の発生 周期は極端に短く、このような地震に対しては、万全の 準備をしておくことが望まれている.

本報告は、近い将来における発生確率がきわめて高い とされている東海、東南海、ならびにそれらが連動する 複合型東海地震の中で、もっとも広い地域での強い地震 動が予測される複合型東海地震を想定して、当該地域で の構造物の耐震検討のための強震動算定を行った事例を 紹介する.

2. 想定断層モデル

断層モデルは、中央防災会議¹⁾、地震調査研究推進本 部²³発表の資料を基に設定した.発表された各地震の主 要な断層パラメータを基に、東南海と東海地震が連動す る複合型東海地震の断層パラメータを表-1 に示す.表 中*は想定震源域をほぼ包含する長方形で表した場合の 値、**は断層の破壊領域の面積である.図-1 には、こ れらの断層パラメータと想定震源域を参考にして、本報 告で扱う強震動シミュレーション法(非定常スペクトル の重ね合わせによる地震動予測法 EMPR³に適用するため に設定された断層モデルを示す.設定した長方形の断層 面を複数の小断層に分割し、斜線部の断層破壊領域を設 定することで複雑な形状を有する想定震源域をモデル化 した.なお、太線で表されている小断層はアスペリティ のより大きな位置を示している.東南海地震の断層モデ

表-1 複合型東海地震の断層パラメータ

		想定複合型東海地震		
		想定東海地震	想定東南海地震	
震	緯度	34° 11′ 19″	33° 36′ 00″	
源	経度	137° 39′ 14″	136° 07′ 12″	
位 置	深さ (km)	21.53	21.25	
	長さ(km)	145*	200*	
bler	幅(km)	70*	100*	
断	面積(km ²)	21912**		
厝	走向(度)	207.0	232.0	
	傾斜角(度)	16.40	11.54	
地震モーメント(dyne・cm)		1.10×10 ²⁸	2.15×10 ²⁸	
		3.25×10 ²⁸		
モーメントマグニチュード		8	3	
破壊伝播速度(km/sec)		2.70		
t	地震波伝播速度(km/sec) 3.80		80	

*断層長さ、幅は想定断層面を長方形で現した大きさ.

**断層面積は想定した断層面で破壊した部分の面積.

図-1 複合型東海地震の断層位置図

ルにおけるアスペリティ分布は地震調査研究推進本部、 東海地震のそれは中央防災会議よりそれぞれ発表された ものに基づいている.

震源は、1944 年東南海地震のときの震源位置とし、 断層破壊が東海地震の震源域に達した後に、あらたに断 層破壊が第2震源からスタートすると仮定している.な お、図中の地点名(名古屋港地点と御前崎市地点)は、 後に工学的基盤での地震動を算出する地点を表している.

3. 工学的基盤での強震動シミュレーション

想定された震源断層による強震動の予測法については、 これまで様々な手法が提案されてきている。断層から着 目点までの構造をすべてモデル化して力学的に地震動を 算定する方法、過去の強震記録を基にした地震動の統計 的性質を取り入れた方法、さらにこれらを組み合わせた 方法まで多くの手法が発表され、設計・防災実務におい て用いられてきた. 断層パラメータや着目点に関する情 報のレベルに応じて、それぞれ適切な手法があることは 言うまでもない. 想定東海地震 "、東南海地震 2のよう に震源パラメータがある程度予測されており、地震動の パワー放出が顕著となるアスペリティ分布も推定されて いるケースでは、これらが着目地点での強震動に与える 影響を考慮できる予測手法を使うべきであろう.本報告 では、このような手法の一つである非定常スペクトル合 成法 EMPR³ を用いたシミュレーションにより検討を進 める.

EMPR では、周波数ごとに算出される非定常パワー スペクトルを 1/2 乗した時系列(周波数ごとの包洛線) を小断層毎に与え、時間軸上で重ね合わせることで加速 度時刻歴を算定する.この時、アスペリティ分布の情報 を反映させるために以下の検討を行っている.

アスペリティは一般にすべり量分布で与えられ、断層 面の剛性が一定とすればアスペリティは各小断層の地震 モーメントの比を表すと見なせる. EMPR は、M=6 クラス の地震による、非定常パワースペクトルの重ね合わせ数 N[®]を断層全体の地震モーメント M₀(N・m)より規定して いる. N[®]は、周波数ごとに異なる非定常パワースペク トルの重ね合わせ個数を全周波数の平均的な代表値とし て統計的に定めた値(非整数)であり、次式に示すように 地震モーメントの関数で与えられる.

$$N_{C} = 6.35 \times 10^{-8} \times M_{0}^{0.409} \tag{1}$$

一方、地震モーメントは次式で定義される.

$$M_0 = \mu \cdot D \cdot S \tag{2}$$

ここで、 μ は剛性率(N/m²)、Dは断層面の平均すべり量(m)、Sは断層面積(m²)である.

今回想定される震源断層のように断層面のアスペリティ分布が与えられている場合には、その情報を以下の考えにより EMPR に取り入れる.

EMPR における非定常パワースペクトルの重ね合わせ 数 N_c は地震モーメント M_oの 関数として式(1)で与えら れている.大規模断層を N_c に近い整数値の小規模断層 に等分割し、非定常パワースペクトルを重ね合わせる時 に個々の小規模断層からのパワーの寄与率を補正する. すなわちアスペリティの位置や大きさの情報を、個々の 小規模断層のパワーの寄与率を変えることで取り入れる. 対象とする断層の面積 S及び剛性率 μ が等しい場合には、 式(1)、(2)より重ね合わせ数 N_c は次式のようなすべり 量 Dとの関係が成立する.

$$N_G \propto D^{0.409} \tag{3}$$

そこで、アスペリティ分布が着目する断層面上でのす べり量分布として与えられている今回のような場合には、 断層面上の個々の小規模断層についてすべり量の相対比 率を算出する.算出した相対比率を式(3)により 0.409 乗することにより、アスペリティと等価なパラメータと して非定常パワースペクトルの重ね合わせにおけるパワ ーの相対比率を求めることとした.すなわち、断層全体 からの重ね合わせ数は一定で、上記で得られた各小断層 の相対比率により、アスペリティ分布に相当する調整を 行っている. 想定東海地震、想定東南海地震におけるこのようなパワーの相対比率の算出結果の詳細は、文献 4)を参照されたい.

4. シミュレーション波形の例

先に示した複合型東海地震を対象として、強震動シミ ュレーションにより得られた波形の例を示す.図-2 に、 名古屋港地点ならびに静岡県御前崎市地点の工学的基盤 でのシミュレーション地震動を示した.同図には、1995 年兵庫県南部地震における関西電力新神戸変電所地点の 地表で得られた記録から、同地点での工学的基盤相当の 地震動にFDEL⁵を用いて変換した波形も示されている.

図-2(a)の新神戸変電所での工学的基盤の波形は、内陸直下地震の断層近傍における典型的な強震動の例である.断層規模が 40km に満たないため、強震部継続時間は非常に短いが、最大振幅が大きい.一方、名古屋港地点でのシミュレーション地震動は、断層からやや離れていることから最大加速度は 190gal 程度であるが、強震部継続時間がたいへん長い.東海地震の震源断層直上にあたる御前崎市地点では、東南海、東海地震の破壊伝播が近づく方向にあることからディレクティビティ効果により最大加速度も大きく、さらに強震部継続時間も内陸直下地震の(a)に比べてずいぶん長い.

このように、複合型東海地震における断層近傍地点で は、大きな振幅の地震動が長く継続し、結果として強大 な破壊力の地震動となることが容易に推察される.

における強震動との比較(工学的基盤)

5. 耐震検討事例

当該地域での様々な構造物の耐震性評価や地域の地震 被害想定においてシミュレーション地震動が検討に用い られた.その事例の概要と、二、三のシミュレーション 地震動の例を紹介する.

(1)木曽三川下流部地震防災検討

国交省中部地方整備局木曽川下流事務所では、平成 15 年度より、「木曽三川下流部地震防災検討委員会」 を設置し、東海地震、東南海地震に対する堤防・河川管 理施設の耐震性評価と耐震補強対策等について、三川下 流域の自然・社会特性を踏まえた検討を行っている.具 体的には、複合型東海地震を対象として、強震継続時間 が長い地震動による液状化被害の増大の影響度等につい て詳細な検討を実施している.

(2)名古屋高速道路軟弱地盤基礎構造検討

名古屋高速道路公社では、名古屋港地域の南陽層に代 表される非常に軟弱な砂及び粘土層が堆積している地盤 での高架橋橋脚の耐震検討を平成14年度より実施して いる.具体的には、複合型東海地震を対象として、当該 地点での強震動を算出し、地盤〜基礎の相互作用を考慮 した詳細応答解析ならびに簡便な応答解析を実施し、実 務者のための耐震性検討手順を作成している.

(3) 自治体の地震被害想定のための震度マップ作成

当該地域での県、市町村では、海溝型巨大地震を対象 とした震度分布・液状化危険度分布推定、ならびにそれ らに基づく地震被害想定調査が行われている.東海地震、 東南海地震に加え、ほとんどの自治体は複合型東海地震 をも対象として検討している.この地域では、中央防災 会議から、大まかな(1km メッシュレベル)推定震度分 布が公表されているが、各自治体は独自の表層地盤モデ ルや推定手法によりより詳細な検討を行っている.

本報告で示した手法による検討事例としては、岐阜県、 岐阜市、豊橋市、刈谷市、碧南市、尾張旭市、鈴鹿市等 がある.

(4)広域震度分布図の作成事例

地震動がごく表層近くの地盤特性に大きく依存すする ことは過去の多くの事例に見られるとおりである.これ まで、各自治体では想定地震による独自の被害想定調査 をおこなってきており、そこでは、1/2 標準地域メッシ ュ(500m×500m 程度)ごとに割り当てた表層地盤モデル を用いている.筆者らは東海6県の協力を得てメッシュ 地盤データを統合し各県共通に使えるデータベースとし て取り纏めた.これらのメッシュ地盤データは、約18万のメッシュに表層地盤モデルを振り分けられたものとなる.

ここでは、上記のメッシュ地盤データを活用した広域 震度分布図の作成事例を紹介する. 複合型東海地震によ る東海6県域での工学的基盤における強震動を算出し、 さらに表層地盤モデルに入力して表層地盤での地震動を 算出した. 地盤応答解析には FDEL⁵を用いた. 図-3 に、 複合型東海地震による推定震度分布を示した. EMPR、 FDEL を用いた強震動シミュレーションでは、水平1成 分の地震動が算出される.気象庁計測震度は、水平2、 上下1の3成分波形から算出されるものであるため、3 成分相当の震度に変換する必要がある. ここでは、1999 年台湾集集地震における多くの強震記録の検討に基づき、 水平1成分波形から求まる計測震度に 0.25 を加えるこ とにより3成分相当としている⁴. 図-3の震度分布図よ り、震源近傍における高い震度、各地域での表層地盤の 軟弱さに影響を受けた震度の増減、等の現象を見ること ができる.

図-3 複合型東海地震による推定震度分布

5. まとめ

複合型東海地震を対象として、非定常スペクトル合成 法(EMPR)による強震動シミュレーション波形の算出事 例、ならびにそれらによる耐震検討事例の概要を述べた. 言うまでもなく、強震動予測には大きな不確定性が含ま れていることが知られている.大まかな断層パラメータ や表層地盤に関する詳細な情報が得られていても、予測 される短周期地震動の強度のばらつきは、変動係数で少 なくとも 25%程度以上あることが指摘されている[®]. 詳 細な断層パラメータの調査や、当該地域での多数の強震 記録の蓄積は、強震動の予測精度向上に不可欠であるが、 依然として残るおおきな不確定性を耐震検討、設計地震 荷重評価で的確に考慮することが重要であろう.

参考文献

- 1) 中央防災会議. 東海地震に関する専門調査会. http://www.bousai.go.jp/jisin/chuou/tokai/index.h tml
- 2) 地震調査研究推進本部. 南海トラフの地震を想定 した地震動評価手法について(中間報告). http://www.

jishin.go.jp/main/kyoshindo/01b/hyoka.pdf

- M. Sugito; Y. Furumoto; and T. Sugiyama. Strong Motion Prediction on Rock Surface by Superposed Evolutionary Spectra Proc. of the 12th WCEE. CD-ROM, Oakland, New Zealand, 2000.
- 久世益充;杉戸真太;能島暢呂.南海トラフの巨 大地震を想定した広域震度予測.自然災害科学. Vol. 22, No. 1, 2003, p. 87-99.
- 5) 杉戸真太; 合田尚義; 増田民夫. 周波数特性を考 慮した等価ひずみによる地盤震動解析法に関する ー考察. 土木学会論文集. №.493/Ⅲ-27, 1994, p.49-58.
- 6) H. Kameda, M. Sugito, H. Goto : Microzonation and Simulation of Spatially Correlated Earthquake Motions, Third International Earthquake Microzonation Conference, Seattle, Vol. III, pp. 1463-1474, 1982.

東海地震による発電所地点の 地震動評価事例

久野 通也1 立花 篤史1

1中部電力株式会社 発電本部 土木建築部 (〒461-8680 愛知県名古屋市東区東新町1) E-mail:Kuno.Michiya@chuden.co.jp Tachibana.Atsushi @chuden.co.jp

中央防災会議により想定東海地震の震源域が見直され、地震動の計算条件および加速度波形が公開され ている、本稿では、この公開された断層諸元に基づき、発電所敷地において観測された地震動を要素地震 とした経験的グリーン関数法により岩盤上における地震動の試算を行った.

Key Words: expected Tokai earthquake, strong ground motion, asperity, empirical Green's function method

1. はじめに

平成13年に中央防災会議の下に設置された「東海 地震に関する専門調査会」¹⁾(以下、「専門調査 会」という.)において、想定東海地震の震源の見 直し、ならびに新しい震源に基づく地震動・津波の 評価がなされ、評価条件や工学的基盤(せん断波速 度Vs=0.7km/s)における地震動(加速度波形)が公 開されている.

一方,想定震源域内に位置する静岡県御前崎市の 発電所地点では、岩盤中を含め高密度の地震観測を 行っており、この地震観測装置で地震動レベルは小 さいもののプレート境界地震の地震観測記録が得ら れている. そこで、観測記録を用いた経験的グリー ン関数法^{2),3)}により想定東海地震による発電所地点 の地震動を試算した.経験的グリーン関数法ではグ リーン関数として観測記録を用いるため、観測地点 の深部地盤構造や浅部地盤構造の影響は、既に記録 に含まれている.これに対して,専門調査会で採用 されている統計的グリーン関数法は、適切な観測記 録が得られない場合に有効な手法である¹⁾.

2. 想定東海地震の断層諸元

専門調査会による想定東海地震の震源断層を図-1 に、主要な断層パラメータを表-1に示す.

震源断層は約350枚の小断層から成り、3つに分 けたセグメント毎に陸側、海側それぞれにアスペリ ティを配置している.破壊開始点は、震源の深い部 分とし、2ケース設定している.

専門調査会では, 断層パラメータを, 応力降下量 一定モデル(各アスペリティの応力降下量を一定と

するモデル),変位量一定モデル(各アスペリティ の変位量を一定とするモデル)の2種類設定し、そ れぞれ地震動を計算しているが,本稿では応力降下 量一定モデルに基づき地震動を計算した.

図-1 想定東海地震の震源断層,および要素地震 の震央位置と震源メカニズム

表-1 想定東海地震の断層パラメータ

	単位	諸元
断層面積	km^2	9408
地震モーメント	N•m	1.10E+21
モーメントマグニチュード		7.96
平均密度	g/cm^3	2.8
S波速度	km/s	3.82
剛性率	N/m^2	4.10E+10
破壊伝播速度	km/s	2.7
平均応力降下量	MPa	3.0
アスペリティの平均すべり量	cm	525
アスペリティの応力降下量	MPa	21.6
背景領域の応力降下量	MPa	2.3

3. 地震動の試算

(1) 検討手法

本検討においては,発電所周辺で発生するプレー ト境界型地震の震源特性や波動伝播経路特性および 発電所敷地の地盤震動特性を忠実に再現した計算を 行うため,敷地内において実際に観測されたプレー ト境界型地震の地震動観測記録を用いて,経験的グ リーン関数法により発電所敷地の解放基盤表面にお ける地震動を推定した.

検討に用いたのは、対象地震と同じプレート境界 型地震である1995年4月18日の駿河湾北部の地震に よる地震動観測記録である.この地震の諸元を表-2 に示す.また、図-1にはこの地震の震央位置と震源 メカニズムも示した.

図-2に発電所敷地における鉛直アレー地震観測の 概要を示す.本検討では、本発電所の解放基盤表面 と同等の地盤物性(Vs=0.7km/s)を有するGL-25mで の観測記録から表層地盤の影響を解析的に除去して 解放基盤表面における地震動(はぎとり波)を求め、 これを経験的グリーン関数として用いた.その加速 度波形及び速度応答スペクトルを、それぞれ図-3、 図-4に示す.

なお,経験的グリーン関数法による計算に際して は,基本的にIrikura(1986)²⁾および三宅・他 (1999)³⁾の方法に基づいたが,幾何減衰効果につい ては,専門調査会と同様に,震源近傍での振幅を適 切に評価するため,1/(R+C)(Rは断層最短距離,C は一定値2.9km)と仮定した¹⁾.

図-2 地震観測地点

表−2	要素地震の諸元

パラメータ	諸元	出典
年月日	1995年4月18日	
震源時	20時26分	
北緯 (度)	35.0617	与免亡
東経 (度)	138.5890	X(3K)]
深さ (km)	24.13	
マグニチュード	4.9	
地震モーメント(N・m)	3.7E+16	菊地・他(1995) ⁴⁾
応力降下量(MPa)	23.3	に基づき設定

図-3 解放基盤表面における地震動の加速度波形

(2) 検討結果

発電所敷地の解放基盤表面における地震動の計算 結果について、加速度波形を図-5に、その速度応答 スペクトルを図-6に示す.

4. 専門調査会による結果との比較

専門調査会では、仮定した地盤構造に基づいて統

計的グリーン関数法を適用し,東海地域における工 学的基盤(Vs=0.7km/s相当層)での強震動の計算を 行っている.また,それらの検討結果をもとに,各 地の波形データを試行的に公開している.

それらの波形データのうち,発電所敷地内の地点 (メッシュコード51387141,図-2参照)における加 速度波形を図-7に示す.また,図-7の波の速度応答 スペクトルと本稿における計算結果(図-6)を比較 して図-8に示す.なお,両者の検討地点の地盤物性 (せん断波速度)は同等である.

両者の加速度波形を比較すると、強震部分の継続 時間は同等であるが、実体波のみを想定した統計的 グリーン関数法の結果に比べ、敷地における現実の 観測記録を用いた経験的グリーン関数法の結果は地 震波の初動部および減衰部(後続波)がごく自然に 表されている.

また、応答スペクトルを比較すると、周期0.5~ 2.0秒では専門調査会の結果が本検討の結果に比べ てやや大きい傾向にあるが、周期約0.3秒以下の短 周期領域においては、両者の周波数特性がほぼ対応 していることがわかる.

図-8 本稿の計算結果と専門調査会の結果の比較

5. あとがき

静岡県御前崎市に位置する発電所敷地の岩盤上 (解放基盤表面)における想定東海地震の地震動を 経験的グリーン関数法を用いて試算した.試算した 地震動と専門調査会が統計的グリーン関数法により 求めた地震動は周期約0.3秒以下の短周期領域にお いてほぼ対応していることを確認した.

謝辞:地震動の計算に際して,入倉・京都大学副学 長に技術的指導を受けました.記して感謝いたしま す.

参考文献

1) 内閣府ホームページ

(http://www.bousai.go.jp/jishin/chubou/tokai/index .html)

(http://www.bousai.go.jp/jishin/chubou/tokai/data _koukai.pdf)

- Irikura, K. (1986) : Prediction of strong acceleration motions using empirical Green's function, Proceedings of the Seventh Japan Engineering Symposium, pp. 151-156
- 3) 三宅・他(1999):経験的グリーン関数法を用いた 1997年3月26日(M_{JMA}6.5)及び5月13日(M_{JMA}6.3) 鹿児 島県北西部地震の強震動シミュレーションと震源モデ ル,地震2,51, pp.431-442
- 4) 菊地・他(1995): 1995年4月18日駿河湾北部の地震の 震源過程,日本地震学会講演予稿集1995年度秋期大会

EVALUATION OF GROUND MOTION AT A POWER PLANT SITE DURING THE EXPECTED TOKAI EARTHQUAKE

Michiya KUNO and Atsushi TACHIBANA

The source region of the expected Tokai earthquake was modifed by Central Disaster Management Council ,and its fault parameters and evaluated storng ground motions are opened to the public.

In this paper, we evaluated strong ground motions on a rock site by empirical Green's function method on the basis of publicized fault parameters, using the ground motion records observed at a power plant site as an element earthquake.

経験的サイト増幅・位相特性を用いた東海地方 における強震動評価事例

野津 厚1

¹正会員 独立行政法人港湾空港技術研究所(〒239-0826 横須賀市長瀬3-1-1) E-mail:nozu@pari.go.jp

想定東海地震のような、陸地の極近傍で発生する海溝型の巨大地震による震源近傍の強震動については、 強震記録が存在しないため、不明な点が多い.本研究では、経験的サイト増幅・位相特性を考慮した統計 的グリーン関数法により、想定東海地震の震源近傍における強震動の評価を実施している.強震動の評価 に必要なサイト増幅特性はスペクトルインバージョンにより推定し、2001年4月3日静岡県中部の地震 (M5.3)の強震記録を利用して強震動評価手法の妥当性を検証した上で、想定東海地震に対する強震動評 価を実施している.その結果、震源近傍における地震動はサイト特性に大きく依存し、サイト特性の特に 大きい場所では、1995年兵庫県南部地震の観測波を上回る地震動も想定されることがわかった.

Key Words : *subduction-zone earthquake, strong ground motion, stochastic Green's function method, site amplification factor, group delay time*

1. はじめに

想定東海地震のような、陸地の極近傍で発生する海 溝型の巨大地震による震源近傍の強震動については, 強震記録が存在しないため,不明な点が多い. 土木学 会の提言¹⁾においても、この型の地震による震源近傍 の地震動を解明することが重要な課題として位置づけ られている. 2003年十勝沖地震は、我が国にK-NET²⁾を はじめとする密度の高い強震観測網が整備されて以来 始めて発生した海溝型の巨大地震であり、多数の貴重 な強震記録が得られている.しかしながら、この地震 の震源断層の深さ3)を考慮すると、震源断層から陸地 までの最短距離は30km以上であり、最も震源に近い記 録でも、断層面最短距離は30km以上である(プレート が陸からやや離れた場所で潜り込んでいるため、陸地 の直下ではプレート境界が深いところに位置してい る). 一方, 想定東海地震の場合, 中央防災会議の想 定による震源断層⁴⁾から陸地までの最短距離は10km程 度である.従って、2003年十勝沖地震が発生した現在 においても、海溝型地震の震源断層から極めて近い場 所での揺れを想定する上で,直接参考になるような強 震記録は、依然として存在していないと言える.

そこで、本研究では、統計的グリーン関数法⁵⁾を想 定東海地震に適用することにより、その震源近傍にお ける強震動の評価を行い、得られた結果に基づき、海 溝型地震の震源近傍における地震動の特性について考 察を行うものである.

ただし、統計的グリーン関数法にはサイト特性の考 慮の仕方等に応じて様々なバリエーションがあり、い ずれの方法を採用するかによって、地震動の評価結果 は大きく異なるものとなる.従って、現地での強震記 録等に基づいて十分に検証された方法を用いることが 重要である.古和田他⁶は、統計的グリーン関数法の バリエーションの一つとして、2.で述べるように、経験 的サイト増幅・位相特性を考慮できる手法を提案して いる.この方法は、サイト特性が地震動の振幅および 位相の双方に及ぼす影響を考慮できるという特徴を有 している.本研究では、古和田他の方法を2001年4月3 日静岡県中部の地震(M5.3)に適用し、その精度につ いて検証を行った上で、同様の手法を想定東海地震に 適用する.

2. 経験的サイト増幅・位相特性を考慮した統計 的グリーン関数法

古和田他⁶の提案する統計的グリーン関数法は,サ イト特性が地震動の振幅および位相の双方に及ぼす影 響を考慮できる方法である.本章ではその概要につい て述べる.

一般に地震動の振幅は震源特性・伝播経路特性・サ イト特性の積で与えられる.

(1) $A^{O}(f) = A^{S}(f) A^{P}(f) A^{G}(f)$ 一方、地震動の群遅延時間は震源特性・伝播経路特 性・サイト特性の和で与えられる⁷.

 $t_{or}^{O}(f) = t_{or}^{S}(f) + t_{or}^{P}(f) + t_{or}^{G}(f)$ (2)式(1)および(2)において添え字のは観測点において 実際に観測される地震動を、添え字Sは震源特性を、添 え字Pは伝播経路特性を、添え字Gはサイト特性を示す。 古和田他は、規模と震源距離の十分に小さな地震が対 象サイトで観測されている場合、その記録の群遅延時 間は、時間軸上での平行移動の分を除けば、ほぼ式

(2) の右辺第三項すなわちサイト特性を表現している と考え、このことを利用した手法を考案している. す なわち, 先ず, 想定地震による地震基盤での統計的グ リーン関数をBoore⁸の方法で計算し、これにサイト特 性を加味して地表での統計的グリーン関数を求める. 具体的には、地震基盤での統計的グリーン関数をいっ たんフーリエ変換し、振幅を $A^{G}(f)$ 倍し、さらに、上記 の条件を満足する記録を周波数領域で振幅1に調整して 乗じ、フーリエ逆変換する.本研究では、上で述べた 条件に加え、サイト近傍の堆積層への入射角ができる だけ大地震と共通となるような小地震を選択すること を念頭においた.

以上の方法で地震動を評価する場合,あらかじめ経 験的サイト増幅特性 $A^{G}(f)$ を評価しておく必要がある. 経験的サイト増幅特性を求めるにあたって主に二つの 考え方がある、一つは観測された地震動から何らかの 方法で「S波部分」を抜き出し、その増幅特性を求める 考え方である^{例えば)}.もう一つは、S波だけでなく表面 波も解析対象として,波形後半まで含めたフーリエス ペクトルの増幅特性を求める考え方である^{例えば10)}.い ずれの立場をとるかは目的にもよるが、S波のみならず 表面波の寄与も考慮して強震動予測を行う場合には後 者の立場をとる必要がある.特に、古和田他の方法を 用いることを前提に考えると, 現地で取得された中小 地震記録の群遅延時間にはS波の寄与と表面波の寄与が 渾然一体となっていることから, 振幅についても両者 の寄与を考えることが必要となる.

3. 2001年4月3日静岡県中部の地震(M5.3)の強震 動シミュレーション

2. で述べた手法の東海地域への適用性を検証するた め,実際に東海地方に発生した地震による強震動のシ ミュレーションを実施する. この検証の客観性を保

つためには、既往の研究により震源モデルが提案され ている地震を選択して用いることが望ましい。2001年4 月3日23:57に発生した静岡県中部の地震(北緯34.996°, 東経138.109°, 深さ33.2km, M5.3) については, 森川他 11)により、経験的グリーン関数法を用いて震源モデル が構築されている. そこで、この地震を対象として強 震動シミュレーションを実施することとした. 対象サ イトとしては、想定東海地震の震源域に近い図-1の12 地点を選定した.

森川他¹¹⁾ はこの地震に対して1個のアスペリティから なる震源モデルを提案しており、そのアスペリティの パラメタは、走向341°,傾斜36°,地震モーメント8.2 ×10¹⁶Nm, アスペリティ長さ1.8km, アスペリティ幅 1.8km, アスペリティの応力降下量34MPa, ライズタイ ム0.15sとなっている. 破壊開始点はアスペリティの中 央である.

ここでは、アスペリティの分割数を4×4とし、アス ペリティの地震モーメントを43で除すことにより、小地 震の地震モーメントM&を算定した.次に、2.の考え方に 従って、小地震による地震基盤での波形(すなわち統 計的グリーン関数)を算定した.その際,媒質の物性 は $\rho = 2.8 \text{g/cm}^3$, $V_s = 3.82 \text{km/s}$ とした⁴⁾. 媒質のQ値は佐 藤・巽¹²⁾のもの(東日本海溝型,Q=114×f⁹²)を用い た. さらにサイト増幅特性と位相に関する補正を行う ことにより地表での統計的グリーン関数を求め、これ を重ね合わせることにより地表での波形を求めた.こ のとき、サイト増幅特性としてはスペクトルインバー ジョンの結果を用いた. 位相の補正に用いる中小地震 記録としては、マグニチュードがあまり大きくないが、 低周波側でのSN比が低下するほど小さくはないこと, 対象サイトからの距離があまり大きくないことを考慮 して、「清水日の出-U」以外の地点については2001年4

図-3 速度波形 (0.2-2.0Hz, EW成分) の比較

月4日0:04の地震(北緯34.992°, 東経138.102°, 深さ 32.8km, M4.1)の記録を用いることとした. 「清水日 の出-U」については, 上記地震の記録が得られていな いため, マグニチュードはやや大きいが, 2001年6月1 日0:41の地震(北緯34.973°, 東経138.120°, 深さ 32.0km, M5.0)の記録を用いることとした.

観測波と合成波の比較を図-2および図-3に示す(0.2-2.0Hzの速度波形). ここで、観測波(実線)と合成波 (破線)の比較の方法について詳述する.本手法にお いては、地震基盤での統計的グリーン関数を作成する 際に乱数を利用するが⁸⁾,その乱数に初期値に応じて, 地震波の極性は変化しうる. つまり, 本手法は, 地震 波の正負までは制御できない手法であるといえる. ま た、地震波の絶対時刻についても、本手法により厳密 な制御を行うことできない. そこで, 図-2および図-3 において観測波と合成波の比較を行う際には, S波第一 波の到来時刻が一致するように合成波を時間軸上で移 動させ、なおかつ、必要に応じて波形全体に(-1)を乗 じることにより、最も観測波と一致する状態で比較を 行っている. さて, 図-2および図-3を見ると, 全体と して、観測波の振幅の大小は概ね再現されている. SZ0013(清水),清水日の出-U,SZ0016(焼津)および SZ0018(榛原)では、観測波に顕著な後続の波群が含 まれているが、これらの観測点では、合成波にも後続 の波群が顕著に含まれており、また、その一波一波の 到来時刻についても、比較的良く一致している.一方, SZ0014(静岡), SZ0019(掛川)等では、観測波の継続 時間は短くインパルシブな波になっているが、これら の観測点では、合成波の継続時間も短い、

SZ0013, 清水日の出-U, SZ0016, SZ0018に含まれる顕 著な後続位相は、その継続時間の長さを考えると、盆 地生成表面波¹³⁾ など、2次元~3次元の地下構造の地下 構造の影響を受けたものである可能性が高い. このよ うな後続位相については、従来、地下構造探査の結果 に基づき,有限差分法^{例えば14),15),16)}やハイブリッド法^例 ^{えばIT)}など,数値シミュレーションによる再現が試みら れている.しかしながら、地下構造探査の結果に基づ く数値シミュレーションは、地下構造情報の多寡に応 じて、適用できる地域や周波数が限定される性質があ る. 例えば、本研究で対象としているような、想定東 海地震の震源近傍の地域を例にとると、防災上重要な 地域であるにも関わらず,数値シミュレーションに必 要な地下構造の情報には恵まれていない、従って、仮 に対象地域に有限差分法やハイブリッド法を適用した としても、図-2あるいは図-3に匹敵するような波形の 再現性を得ることは、現状では困難であると考えられ る. こうした中で, ここで用いている古和田他⁶の提 案による統計的グリーン関数法は、後続位相まで含め た強震動評価に適用可能な手法として、その有用性は 大きいものと考えられる.

次に、観測波と合成波から算定した計測震度の比較

表-1 計測震度の比較(水平2成分から算定)

	観測波	合成波
SZO011(富士宮)	2	2
SZO012(蒲原)	3	3
SZO013(清水)	4	4
清水日の出 U	4	4
SZO014(静岡)	4	3
SZO016(焼津)	4	3
SZO017(浜岡)	4	3
SZO018(榛原)	4	4
SZO019(掛川)	3	3
SZO023(天竜)	4	4
SZO024(浜松)	3	3
SZO025(湖西)	3	3

を表-1に示す. 合成波に関しては鉛直成分が得られて いないため、ここでは観測波、合成波とも水平2成分か ら計測震度を算定している. 表-1から、SZ0014(静岡), のように計測震度がやや小さめに算定されている観測 点もあるが、全体として、観測波と合成波の計測震度 は良く一致している.

なお、計測震度の算定において上下動を無視するこ との影響について検討するため、2003年十勝沖地震に よるK-NET358地点の強震記録について、上下動を考慮し て算定した計測震度と、上下動を考慮せずに算定した 計測震度との比較を実施した。その結果を図-4に示す が、プロットはほぼ1:1の直線上に載っている。このこ とから、計測震度の算定における上下動の影響はごく 小さいことがわかる。

図-2~図-3および表-1の結果から,2.で述べた手法お よびサイト増幅特性について、一応の検証ができたと 考えられるので、次章においては、同様の手法および サイト増幅特性を用いて、想定東海地震に対する強震 動シミュレーションを実施する.

4. 想定東海地震の強震動シミュレーション

ここでは、想定東海地震に対する震源モデルとして、 中央防災会議⁴⁾ により提案されている震源モデルを用 いる.これは、図-5に示すように、6つのアスペリティ と背景領域からなるモデルである.中央防災会議のモ デルには、各アスペリティの応力降下量を一定として いるモデルと、各アスペリティの変位量を一定として いるモデルがあるが、ここでは、地震調査研究推進本 部の最近の考え方^{I8)} に基づき、応力降下量を一定とし ているモデルを用いる.破壊開始点は、中央防災会議 による二通りの破壊開始点を考える(図-5).表-2に震 源モデルのパラメタ⁴を示す.

図-5 想定東海地震の震源モデル4 図-5および表-2の震源モデルに対し、3.と同様の手 法で、対象地点における地震動を算定する.ただし、 算定される地震動は振幅の大きな地震動となるため、 表層地盤の非線形挙動の影響を考慮することが必要と なる. そこで, 以下においては, いったん地表で合成 された波を、線形時の物性を用いて工学的基盤まで引 き戻し、等価線形化手法による1次元の地震応答計算 (FDEL¹⁹⁾)により、地表での波を再度計算する.ここ で対象としている観測点ではボーリングデータが公開 されているので、その情報に基づいて地盤モデルを作 成した. ただし、観測点によっては工学的基盤と見な すことのできる地層までボーリングが届いていないと ころもある. その場合には、調査のされている範囲で 最もS波速度の大きい地層まで波を引き戻し、その地層 より上の地層の非線形挙動だけを考慮して地表での波 を算定した. 各地点において, 引き戻し計算時の最下 端の地層のS波速度を表-3に示す.また、ここでは振幅 の大きな地震動を入力して地震応答計算を実施してい

るため、イタレーションの仮定で算定されるひずみが 3%を越える場合がある.その場合には、その時点で計 算を打ち切り、その時点での等価な剛性と減衰定数か ら地表での地震動を算定した.そのため、これらの観 測点では、地表での地震動の算定精度に問題点が残さ れているものと考えられる.計算の打ち切りを行った 観測点を表-3に示す.なおSZ0019(掛川)では、工学的 基盤と見なすことのできる地層が露頭しているため、 引き戻し計算は実施しなかった.

表-2 想定東海地震の震源モデ	ルのパラメタ4
巨視的断層パラメタ	
断層面積	約9400km ²
S波速度	3.82km/s
密度	2.8g/cm ³
平均応力降下量	3.0MPa
地震モーメント	1.10E+21Nm
平均滑り量	2.85m
微視的震源パラメタ	
アスペリティの数	6
アスペリティの総面積	約 2900 km ²
アスペリティの平均滑り量	5.25m
アスペリティでの総モーメント	6.27E+20Nm
応力降下量	22MPa
背景領域の面積	約6500km²
背景領域の平均滑り量	1.78m
背景領域のモーメント	5.01E+20Nm
背景領域の応力降下量	2.3MPa
その他のパラメタ	
破壞伝播速度	2.7km/s
ライズタイム	1.9-5.6s

表-3 表層地盤の地震応答計算(FDEL)の計算条件

	最下端の地層のS波速度	打ち切りの有無
SZO011(富士宮)	570m/s	-
SZO012(蒲原)	400m/s	-
SZO013(清水)	150m/s	有り
清水日の出 -U	450m/s	有り
SZO014(静岡)	400m/s	-
SZO016(焼津)	260m/s	-
SZO017(浜岡)	430m/s	-
SZO018(榛原)	470m/s	-
SZO019(掛川)	工学的基盤が露頭	-
SZO023(天竜)	250m/s	-
SZO024(浜松)	440m/s	-
SZO025(湖西)	290m/s	-

図-6に破壊開始点1を仮定した場合(ケース1とする)の地表における速度波形(0.2-10.0Hz, EW成分)を, 図-7に破壊開始点2を仮定した場合(ケース2とする)の地表における速度波形(0.2-10.0Hz, EW成分)をそれ ぞれ示す.各波形に添えられた数字は最大速度の値 (cm/s)を示す.最大速度の値は地点毎に大きく異な るものとなっている.旧清水市内の二カ所(SZ0013と 清水日の出-U) とSZ0018 (榛原) では,200cm/sを越え る非常に強い地震動が算定されている.それに対して, 最大速度が小さい観測点もある.サイト増幅特性の大 きくないSZ0011 (富士宮),SZ0012 (蒲原),SZ0014 (静岡),SZ0019 (掛川) では,最大速度の値は70cm/s 以下となっている.

地震動の継続時間にも、地点毎に大きな違いが見られる.振幅の特に大きい3地点では、後続位相が発達しており、継続時間も長くなっている.この結果を図-2および図-3と比較すると、中小地震に対して継続時間の長い観測点では、想定東海地震に対しても継続時間の長い結果となっていることがわかる.

表-4には水平2成分から求まる計測震度を示す. SZ0013(清水),清水日の出-U,SSZ0018(榛原)では, ケース1,ケース2とも震度7と算定されている.一方, サイト増幅特性の大きくないSZ0011(富士宮),SZ0012 (蒲原),SZ0014(静岡),SZ0019(掛川)では,ケー ス1,ケース2とも震度6強以下となっている.ケース1 とケース2を比較すると,破壊伝播方向の影響で異なる 震度が算定されている観測点も一部見られるが,大半 の観測点では,ケース1とケース2の震度は等しい.な お,計測震度の算定において上下動を考慮しないこと の影響は,3.で述べたように大きくないものと考えら れる.

清水市内の二カ所 (SZ0013と清水日の出-U) とSZ0018 (榛原) において特に強い地震動が算定されている理 由について考察を行う. 今回対象とした12の地点の断 層面およびアスペリティからの最短距離は表4にまとめ られる通りである. 想定東海地震の断層面は西に向か って傾斜しているため、全体的な傾向としては、震源 域の東側に位置する観測点の方が断層面およびアスペ リティからの距離は小さくなる傾向にある. また, 破 壊開始点が震源域の西寄りに想定されているため,震 源域の東側に位置する観測点では、フォワードディレ クティヴィティの影響も多少受けることになる.清水 市内の二カ所とSZ0018(榛原)で大きな地震動が算定 された要因には、このような震源に関する要因もある ものと考えられる.しかしながら,SZ0013(清水)と SZ0018(榛原)の間に位置するSZ0014(静岡)で比較的 小さい地震動が算定されているように、震源に関する 要因に注目するだけでは、地震動の大小を十分に説明 することはできなず、サイト増幅特性が地震動の大小 を決める重要な要因となってるものと考えられる.

海溝型地震による強震動の評価を実施する場合,過 去に同一地域で発生した海溝型地震の震度データにより,強震動評価結果の検証を行うことが望ましいとさ れている¹⁸.そこで,**表**-4では,計算された震度を,

図-6 ケース1の速度波形 (0.2-10.0Hz, EW成分)

56

37 ~

218-

272

55

111

109

217

59

43

76

74

図-7 ケース2の速度波形(0.2-10.0Hz, EW成分)

表-4	宝永地震および安政東海地震の震度分布との比較

観測地点	断層面 最短距離 (km)	アスペリティ 最短距離 (km)	ケース	1ケース:	2宝永地震	安政東海地震
SZO011(富士宮)	15.1	17.7	6強	6強	6(大宮)	6-7(精進川)
SZO012(蒲原)	14.3	14.3	6弱	6強	5-6(蒲原)	7(蒲原)
SZO013(清水)	11.7	12.4	7	7	7(清水)	7(清水)
清水日の出 -U	11.7	14.3	7	7	7(清水)	7(清水)
SZO014(静岡)	16.1	20.5	6強	6強	6(駿府)	7(静岡)
SZO016(焼津)	17.3	17.3	6強	6強	-	6-7(焼津)
SZO017(浜岡)	19.5	28.5	6強	6強	-	5-6(佐倉)
SZO018(榛原)	18.8	19.9	7	7	-	7(相良)
SZO019(掛川)	24.0	25.5	6強	6強	6-7(掛川)	7(掛川)
SZO023(天竜)	23.9	23.9	6強	6弱	-	7(浜北)
SZO024(浜松)	24.5	25.5	7	6強	6-7(浜松)	5-6(浜松)
SZO025(湖西)	29.1	31.1	6強	6強	6-7(新居)·7(白須賀)	7(新居)

過去に駿河トラフで発生した海溝型地震である宝永 地震と安政東海地震の震度分布¹⁹⁾と比較している. 宝 永地震と安政東海地震の両者に対して, 文献19) に震 度の記されている地点の中で, できるだけ強震観測地 点に近い場所を選び、そこでの震度の値を示している. 対象としている観測点は、SZ0012(蒲原)とSZ0013(清 水)を除いては、古くからの市街地に設置されている 例が多く、文献19)において震度が推定されている地 点との対応は比較的良好であると考えられる.ただし, SZ0018 (K-NET榛原) には相良を対応させているが、両 者は6km程度離れている. またSZ0023 (K-NET天竜) には 浜北を対応させているが、両者は10km程度隔たってい

る.SZ0025 (K-NET湖西)の周辺では、宝永地震の震度 が新居と白須賀について示されているが、両者は SZ0025(湖西)からほぼ等距離にあるため(5km程度), 両者の震度を示している.

表-4によると、ケース1、ケース2とも震度7と算定さ れた算定されたSZ0013(清水),清水日の出-U, SZ0018 (榛原)では、対応する歴史地震の震度はすべて7とな っており、良い対応が見られる.SZ0013(清水)に比 べ、隣接するSZ0014(静岡)では小さめの震度が算定 されているが、宝永地震の震度は清水より静岡の方が 小さめである. また, SZ0018 (榛原) に比べ, 隣接す るSZ0016 (焼津) とSZ0017 (浜岡) では小さめの震度が 算定されているが、この結果は安政東海地震の震度分 布と調和的である.SZ0023 (天竜)の周辺では、安政 東海地震の際の震度が7 (浜北)とされている点が計算 では再現できていないが、前述のように計算を行った 地点と震度データが得られている地点は10km程度離れ ているため、この不一致は地盤条件の違いによるもの である可能性が高い.全体として、ここでのシミュレ ーション結果は、ケース1、ケース2とも、宝永地震お よび安政東海地震の震度分布を概ね再現していると言 える.

5. 考察

以上の結果に基づいて、ここでは次の二点について 考察を行う.一点目は、複数の地点で200cm/sを越える 非常に強い地震動が算定されていることの妥当性につ いて、二点目は、算定された地震動に地点間の差異が 大きいことの有する意義についてである.

まず、一点目の考察を行う、上記のシミュレーショ ンでは、SZ0013(清水),清水日の出-U,SZ0018(榛 原)の3地点において、最大速度は200cm/s以上と算定さ れている、この値は、兵庫県南部地震の震源近傍にお ける強震記録と比較しても、かなり大きい. 例えば、 兵庫県南部地震で記録された最も大きい最大速度はIR 鷹取の123cm/s (0.2-10.0Hz) である(計測震度は6強). また、強震記録の取得されなかった震度7の「震災の 帯」の中での地震動について、経験的グリーン関数法 による推定値は約130cm/sとなっている²⁰⁾.ここで算定 された地震動の最大速度はそのいずれをも上回ってい る. 台湾集集地震では石岡において最大速度約400cm/s の地震動が記録されているが21,これは震源断層の動 きそのものを反映したfling stepであると考えられてお り²¹⁾,震源断層から10km以上隔たった清水や榛原にお ける地震動とは、その生成メカニズムが異なっている ため, 直接比較の対象とすることは難しいと考えられ る.

海溝型地震の震源断層に比較的近い位置での強震記録としては、2003年十勝沖地震の震源付近の強震記録がある.そのうち,最大速度の比較的大きかったHKD086(K-NET直別)とHKD098(K-NET大樹)での速度波形を図-8に示す.同図に示すように、これらの地点での最大速度は、積分の方法にもよるが、100cm/sをやや越える程度である.前記の三地点で算定された地震動は、これらの記録と比較しても、かなり大きいことがわかる.最近、2003年十勝沖地震の震源域付近では、プレート境界面の深度の推定精度の向上が図られてい

るが、その結果³⁾によると、HKD086(直別)および HKD098(大樹)からプレート境界面までの最短距離は 約60kmおよび約40kmと推定される.それに対して前記の 三地点はいずれも想定東海地震の震源断層から20km以 内に位置している.したがって、前記三地点とHKD086 (直別)およびHKD098(大樹)における最大速度の違 いは、距離の違いによるものとして、十分に説明可能 である.

図-8 2003年十勝沖地震の速度波形のうち比較的震源 に近いものの例

次に、算定された地震動に地点間の差異が大きいこ との意義について考察を行う.図-6~7および表-4に示 すように、想定東海地震の震源近傍といえども、あら ゆる場所で強い地震動が想定されるわけではない.地 震動の評価を行った12地点のうち、100cm/sを越える地 震動が算定されたのは5地点のみである.いくつかの地 点ではピンポイント的に200cm/sを越える極めて強い地 震動が算定される結果となったが、それらの地点は、 サイト増幅特性の大きい場所である.このことは、当 該地域における地震対策を効果的に推進する上で重要 な意義を有するものと考えられる.

例えば、防災上重要な機能を有する施設を建設する 際に、特に強い揺れの想定されるエリアをさけて設置 することが考えられる.また、重要なライフラインに ついては、特に強い揺れの想定されるエリアを迂回さ せることにより、大きな効果を得ることができるもの と考えられる.さらに、人的被害軽減のために既存不 適格建物の耐震補強すすめることは重要な課題である が、その際、対策を効果的に進めるためには、特に強 い揺れの想定されるエリアを特定し、優先的に耐震補 強を進めることが必要である.兵庫県南部地震の際、 震度7の「震災の帯」に人的被害が集中したことは記憶 に新しいところである.

以上のことを実現するためには、当該地域における サイト増幅特性を詳細に把握して、きめ細かいゾーニ ングを行うことが急務である.すでに述べたように、 想定東海地震の震源近傍の地域は、防災上重要な地域 であるにも関わらず,強震動に影響を及ぼす地下構造 に関する情報の詳細さという点において,恵まれた地 域とは言えない.従って,地下構造の情報に基づいて 詳細なゾーニングを行うことには,現状では困難を伴 うものと考えられる.こうした中で,強震観測を実施 している地点では,良質の中小地震記録もしくは遠方 の大地震の記録に基づいて,サイト増幅特性を詳細に 把握することが可能である.従って,今後は強震観測 を最大限に活用するとともに,それによってもたらさ れる情報を他の情報,すなわち地形・地質や微動観測 結果と組み合わせることにより,詳細なゾーニングを 行うことが必要であるものと考えられる.

6. おわりに

本研究では,経験的サイト増幅・位相特性を考慮し た統計的グリーン関数法⁶⁾を東海地域に適用し,当該 地域で発生した中小地震のシミュレーションを通じて 手法の妥当性を確認した後,当該手法を想定東海地震 に適用し,海溝型地震の震源近傍における地震動の特 性について考察を行った.本研究の主な結論は以下の 通りまとめることができる.

- ①2001年4月3日静岡県中部の地震(M5.3)の強震動シミ ュレーションを実施したところ、0.2-2Hzの帯域での 速度波形および計測震度を概ね再現でき、当該手法 の適用性を確認することができた。
- ②同様の手法により想定東海地震に対する強震動シミュレーションを実施したところ、対象地域における各地の震度は宝永地震および安政東海地震の震度分布を概ね再現するものとなった。算定された地震動は地点依存性が大きく、100cm/sを下まわる地点も半分以上存在する一方で、サイト増幅特性の大きいいくつかの地点では200cm/sを上回る強い地震動が想定される結果となった。

今後,当該地域での地震災害対策を進めるにあたり, 地震動の地点依存性を十分に考慮することが必要であ ると考えられる.

謝辞:本研究では独立行政法人防災科学技術研究所の K-NET, KIK-NETのデータを利用させていただきました. ここに記して謝意を表します.

参考文献

1) 土木学会:土木学会耐震基準等に関する提言集, 1996.

- Kinoshita, S.: Kyoshin Net (K-NET), Seim. Res. Lett., Vol. 69, pp.309-332, 1998.
- 3) 地震調査研究推進本部地震調査委員会:千島海溝沿いの地 震活動の長期評価(第二版) について, 2004.
- 4) 中央防災会議: 東海地震に関する専門調査会報告, 2001.
- 5) 釜江克宏,入倉孝次郎,福知保長:地震のスケーリング則 に基づいた大地震時の強震動予測,日本建築学会構造系論 文報告集,第430号, pp.1-9, 1991.
- 6) 古和田明,田居優,岩崎好規,入倉孝次郎:経験的サイト増幅・位相特性を用いた水平動および上下動の強震動評価,日本建築学会構造系論文集,第514号,pp.97-104,1998.
- 7) 澤田純男,盛川 仁,土岐憲三,横山圭樹:強震動の位相 スペクトルにおける伝播経路・サイト特性の分離,第10回 日本地震工学シンポジウム, pp.915-920, 1998.
- 8) Boore, D.M.: Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, *Bulletin of the Seismological Society of America*, Vol.73, pp.1865-1894, 1983.
- 9) 岩田知孝,入倉孝次郎:観測された地震波から震源特性, 伝播経路特性及び観測点近傍の地盤特性を分離する試み, 地震2,第39巻, pp.579-593, 1986.
- 10) 鶴来雅人,田居 優,入倉孝次郎,古和田明:経験的サイ ト増幅特性評価手法に関する検討,地震 2,第 50 卷, pp.215-227, 1997.
- 11) 森川信之, 笹谷 努, 藤原広行:経験的グリーン関数法に よるスラブ内地震の震源モデルの構築, 日本地震工学シン ポジウム (CD-ROM), 2002.
- 12) 佐藤智美, 巽 誉樹: 全国の強震記録に基づく内陸地震と 海溝性地震の震源・伝播・サイト特性, 日本建築学会構造 系論文集, 第556号, pp.15-24, 2002.
- 川瀬 博:表層地質による地震波の増幅とそのシミュレーション,地震2,第46卷, pp.171-190, 1993.
- 14) Frankel, A : Three-dimensional simulation of ground motions in the San Bernardino Valley, California, for hypothetical earthquakes on the San Andreas Fault, Bull. Seism. Soc. Am., Vol.83, pp.1020-1041, 1993.
- Wald, D.J. and Graves, R.W.: The seismic response of the Los Angeles Basin, California, *Bull. Seism. Soc. Am.*, Vol.88, pp.337-356, 1998.
- 16) Sato, T., Graves, R.W. and Somerville, P.G. : Three dimensional finite difference simulation of long period strong motions in the Tokyo metropolitan area during the 1990 Odawara earthquake and the great 1923 Kanto earthquake in Japan, Bull. Seism. Soc. Am., Vol.89, pp.579-607, 1999.
- 17) Kamae, K., Irikura, K. and Pitarka, A. : A technique for simulating string ground motion using hybrid Green's function, Bull. Seism. Soc. Am., Vol.88, pp.357-367, 1998.
- 18) 地震調査研究推進本部地震調査委員会:海溝型地震の強震 動評価のレシピ, 2004.
- 19) 杉戸真太,合田尚義,増田民夫:周波数依存性を考慮した 等価ひずみによる地盤の地震応答解析法に関する一考察, 土木学会論文集,493/II-27, pp.49-58, 1994.
- 19)宇佐美龍夫:[最新版]日本被害地震総覧[416]-2001, 東京大 学出版会, 2003.
- 20) 釜江克宏・入倉孝次郎: 1995 年兵庫県南部地震の断層モデ ルと震源近傍における強震動シミュレーション,日本建築 学会論文報告集,第500号, pp.29-36, 1997.
- (北海道)振動部門 PD 資料,2004

土木学会·日本建築学会巨大地震災害対応共同研究連絡会·地震動部会 議事録

(1) 準備会	(2004.3.10	土木学会	出席者 18名)
(2) 第1回	(2004.4.14	土木学会	出席者 17名)
(3) 第2回	(2004.5.14	建築会館	出席者 18名)
(4) 第3回	(2004.7.2	土木学会	出席者 20名)
(5) 第4回	(2004.8.23	土木学会	出席者 19名)
(6)第5回	(2004.9.25	土木学会	出席者 13名)
(7)第6回	(2004.11.25	土木学会	出席者 17名)
(8)第7回	(2005.1.26	土木学会	出席者 14名)

土木学会・日本建築学会巨大地震災害対応共同研究連絡会・地震動部会準備会 日時:2004年3月10日 場所:土木学会

出席者:濱田政則(早大),堀宗朗(東大),入倉孝次郎(京大),杉戸真太(岐阜大),川瀬博(九大),岩田知 孝(京大),青井真(防災科研),纐纈一起(東大),関口春子(産総研),片岡正次郎(国総研),野津厚(港湾技研), 市村強(東北大),源栄正人(東北大),大川出(建築研究所),武村雅之(鹿島建設),増田徹(応用地質),佐藤 俊明(大崎総研),香川敬生(地域地盤環境研)

議事次第

資料1 巨大地震災害への対応検討特別委員会・地震動部会 委員構成

資料2-1巨大地震災害への対応検討特別委員会

- 資料2-2巨大地震災害への対応特別委員会 土木学会・日本建築学会の共同研究について
- 資料3 土木学会·日本建築学会巨大地震災害対応共同研究連絡会:地震動部会

資料4 長周期地震動の評価手法の検討メモ

1. 趣旨説明

- · 濱田先生挨拶
- · 入倉先生(地震動部会部会長挨拶)
- 2. 委員挨拶
- 3. 趣意説明

濱田特別委員会委員長から資料2-1に従って特別委員会(巨大地震災害への対応検討特別委員会)の設立 経緯、主要検討項目について説明があった。続いて、内閣府との打合せ(長周期地震動、構造物の予測、補 強方法に焦点)を受けて具体的な検討項目、検討の流れ、共同研究の枠組みについて説明があった(資料2 -2)

- 質疑:構造物の選定は(後で公開されるものなので)どうするのか?土木はできるが建築は可能か? ⇒公共性のある建物を選定することになろうが、建築構造物部会において議論される.
- 4. 地震動部会

堀特別委員会副幹事より資料3を用いて地震動部会の検討項目内容およびスケジュール(案)について説明が なされた.

質疑:

- ・ 地区サイズ 数百m⇒数km程度が現実的ではないか
- ・ 構造物によって多点ターゲットもある。その意味での地区サイズである。
- ・ モデルの検証のため広域評価も必要

⇒予測手法の検討に 十勝沖地震記録などの検証が必要ではないか.

⇒手法検討とそれに基づいた予測は手法検証があって成り立つものだから,(本来検証が先だけど)予 測と検証は平行して行われるべき。それによって検討期限が延びる、もしくは随時アップデートできるもの であるべき。

・ 標準地震動の策定を目指すことはできるのか?

⇒長周期地震動は地域特性があるので従来の「標準地震動」の考え方では無理。

⇒標準地震動の策定が地域特性を反映させるべきというものでもかまわない.

○青井委員から資料4により長周期地震動を含めた広帯域の地震動評価手法について説明がなされた.

質疑:

- ・統計的グリーン関数法の特性は実際的には逆ではないか?
 ⇒長周期側の継続時間の取り扱いが十分でなく、
- ・特性化震源モデルでそのままM8クラスに使ってよいか ⇒アスペリティスケーリングも十分にはないので、既往のデータ等によって検証されるべき
- 2003 年十勝沖地震の検証について

(推本)発生確率が高いために強震動評価を行う予定であった.そのため地下構造モデルの構築は始まっていた。

既往地震記録による地下構造モデルの検証も必要 北海道開発土木研究所による資料を学会から依頼するようにしてほしい ⇒2003 年十勝沖地震について解析されている方からの報告をお願いしたい(入倉部会長)

・結果が内閣府との整合性が必要か? 必要ない.

次回:4月14日(水)17時から19時 十勝沖地震の話題提供。各自で話題提供がある場合は事務局まで。 (文責:岩田知孝)

日時: 2004年4月14日17時00分~19時30分 場所: 土木学会

出席者:入倉孝次郎(京大),杉戸真太(岐阜大),青井真(防災科研),市村強(東北大),大川出(建研), 香川敬生(地盤研),片岡正次郎(国総研),纐纈一起(東大),佐藤俊明(清水建設),関口春子(産総研), 武村雅之(鹿島建設),年縄巧(明星大),野津厚(港湾空港技研),畑山健(消防研),増田徹(応用地質), 源栄正人(東北大),岩田知孝(京大防災研)

資料:

- 1-0 第1回議事次第
- 1-1 土木学会·日本建築学会巨大地震災害対応共同研究連絡会·地震動部会準備会 議事録(案)
- 1-2 2003年十勝沖地震による長周期地震動による被害(畑山委員提出)
- 1-3 2003年十勝沖地震に関する緊急調査研究の調査報告(纐纈委員提出)
- 1-4 2003年の強震動に関する検討(その1)(杉戸委員提出)
- 1-5 十勝沖地震の震度インバージョン解析(武村委員提出)

議事:

(1)合同連絡会からの報告(土木学会黒木さん):
 地震動部会が土木・建築合同連絡会下にできていることを確認.
 本委員会の委嘱状は土木・建築学会長から再委嘱する.
 本委員会の事務局は,平成16年度は土木学会、平成17年度は建築学会の予定

(2) 議事録確認省略

(3)話題提供:

以下の各委員から資料及び PPT を用いて十勝沖地震についての話題提供及び質疑応答を行った.

- ・畑山委員から「苫小牧石油タンク被害」(資料1-2)について説明.
- ・纐纈委員から「緊急調査研究の報告」(資料1-3)について説明.
- ・青井委員から「2003年十勝沖地震の検証」について説明
- ・杉戸委員から「2003年の強震動に関する検討(その1)」(資料1-4)について説明
- ・武村委員から「十勝沖地震の震度インバージョン解析」(資料1-5)について説明

(4)討議:

- ・2003年十勝沖地震の検証をすすめる.
- ・今年度末を目処に照査用地震動を提示する.

次回話題提供

2003年十勝沖地震の話題提供として、年縄委員、杉戸委員を予定.

次回5月14日(金)17時から

(文責:岩田知孝)

第2回議事録

日時:2004年5月14日17時30分~20時00分 場所:建築会館

出席者:

入倉孝次郎(京大),杉戸真太(岐阜大),川瀬 博(九大),青井真(防災科研),市村強(東北大),小山信 (大川委員代理)(建研),香川敬生(地盤研),片岡正次郎(国総研),纐纈一起(東大),佐藤俊明(清水建 設),関口春子(産総研),年縄巧(明星大),野津厚(港湾空港技研),畑山健(消防研),増田徹(応用地質), 源栄正人(東北大),久野通也(中部電力),岩田知孝(京大防災研)

資料:

- 第2回議事次第
- 2-1 土木学会・日本建築学会巨大地震災害対応共同研究連絡会・地震動部会第1回 議事録(案)
- 2-2 2003 年十勝沖地震において表面波が卓越する地域の分布特性について一分散性に着目した検討-(杉戸副主査)
- 2-3 2003年十勝沖地震の震源過程—周期 1-10 秒の waveform に着目して— (野津委員提出)

(1)部会長挨拶

(2) 議事録確認省略

(3)部会委員の追加

久野通也さん(中部電力)を追加

(3)話題提供:

- 以下の各委員から資料及び PPT を用いて十勝沖地震についての話題提供及び質疑応答を行った.
- ・杉戸副主査から「2003年十勝沖地震において表面波が卓越する地域の分布特性について一分散性に着目した検討一」(資料2-2)について説明.

各観測点の実記録における長周期成分の強弱を推定.長周期地震動評価の重要性を指摘した.

・市村委員から「有限要素法による波動場計算へのモデル感度の一例」について説明.

モデル作成方法による評価地震動の違いについて報告し、与えられた問題においてのモデル化時の問題を 指摘した.

・野津委員から「2003 年十勝沖地震の震源過程—周期 1-10 秒の waveform に着目して—」(資料2-3) に ついて説明

経験的グリーン関数法によりすべり分布を推定した.余震と本震での表面波生成について議論した.

・岩田から 2003 年十勝沖地震記録に対する既往の経験式(震度,最大速度)の評価についての話題提供を行った.

(4)討議:

各話題提供時に当該及び関連課題について議論を行った. 年度の行程を策定することについての議論を行った.

次回

+勝沖地震に関して 古村孝志さん(地震研),青井委員 巨大地震シミュレーションに関して 香川委員,佐藤委員に話題提供をいただく. 年度の行程について,次回委員会後に副主査で討議,

次回7月1日または2日の都合のよい日(事務局よりアンケート)

第3回議事録

日時: 2004 年 7 月 2 日 17 時 00 分~20 時 00 分 場所: 土木学会

出席者:入倉孝次郎(京大),濱田政則(早稲田大),杉戸真太(岐阜大),川瀬 博(九大),青井真(防災 科研),市村強(東北大),小山信(大川委員代理)(建研),香川敬生(地盤研),片岡正次郎(国総研),纐纈 一起(東大),佐藤俊明(清水建設),関口春子(産総研),年縄巧(明星大),野津厚(港湾空港技研),畑山 健(消防研),増田徹(応用地質),久野通也(中部電力),古村孝志(東大),岩田知孝(京大防災研) 森川信之(防災科研),

資料:

第3回議事次第

- 3-1 土木学会·日本建築学会巨大地震災害対応共同研究連絡会・地震動部会第2回 議事録(案)
- 3-2 巨大地震の長周期地震動予測のための広帯域ハイブリッド法(佐藤委員提出)
- 3-3 +勝沖地震と想定当会地震の強震動:大規模数値シミュレーションによる広帯域地震動の計算(古 村)

(1)式次第

(2) 議事録確認省略

(3)部会委員の追加

森川信之さん(防災科研)

(4)話題提供:

・古村孝志先生から「十勝沖地震と想定当会地震の強震動:大規模数値シミュレーションによる広帯域地震動の計算」(資料3-2)について説明.

既往の震源モデル・地下構造モデルにそれぞれ揺らぎを与えたモデル化方法とそれに基づくシミュレーション法について報告.

・青井委員から、「2003年十勝沖地震の地震動評価の検証」について説明.

強震動記録による震源インバージョン,地下構造モデルを用いた長周期地震動シミュレーション,経験的 グリーン関数法,ハイブリッド法による強震動評価の結果を紹介.

・佐藤委員から、「巨大地震の長周期地震動予測のための広帯域ハイブリッド法」について説明. 巨大地震の場合の強震動波形合成法

(5)討議

・事務局:平成16年度の企画提案型公募があるので(7月)それに応募する.企画提案書作成.報告書締切は3月10日.

・企画提案書の内容.

日本建築学会:特定の場所 シナリオ予測 標準 告示波のうち2秒より長周期部分がない 土木学会:東海・東南海・南海設計用入力地震動(標準波)

面的な計算をすることで説明をしてはどうか. サイトスペシフィック いくつかのパラメターの中の最悪 短周期考えてほしい(土木) 標準波はありがたい 地域波もあるとよい 設計基準からも最悪だけではいけない.

次 回8月23日17時30分から

日時:2004年8月23日(月)17時30分~20時10分 場所:土木学会

出席者:

入倉孝次郎(京大),杉戸真太(岐阜大),川瀬博(九大),青井真(防災科研),市村強(東北大),大川出(建研),香川敬生(地盤研),片岡正次郎(国総研),久野通也(中部電力),纐纈一起(東大),佐藤俊明(清水建設),関口春子(産総研),武村雅之(鹿島),野津厚(港湾空港技研),畑山健(消防研),増田徹(応用地質),翠川三郎(東工大)、源栄正人(東北大),岩田知孝(京大防災研)

資料:

第4回議事次第

- 4-1 土木学会・日本建築学会巨大地震災害対応共同研究連絡会・地震動部会第3回 議事録(案)
- 4-2-1 地震動部会これまでの報告一覧
- 4-2-2 2003 年十勝沖地震緊急研究等に関連した地震学的な研究成果について(纐纈)
- 4-2-3 2003 年十勝沖地震の震源過程 経験的グリーン関数を用いた波形インバージョン(野津)
- 4-2-4 長周期地震動の評価のありかた(畑山)
- 4-3-1 企画案(幹事団)
- 4-3-2 プレート境界巨大地震による長周期地震動(岩田)
- 4-4-1 地震動小委員会の活動計画(案)(川瀬)
- 4-4-2 成果のイメージ
- 4-4-3 構造物評価委員会の進め方
- 4-4-4 設置趣旨
- 4-4-5 土木構造物の安全評価のための地震動の問題点(杉戸)

(1) 式次第 入倉主査から議事次第と NHK 室蘭の委員会取材について説明があった.

(2) 議事録確認 事務局から前回議事録確認がなされた.当会地震→東海地震(誤植)を訂正

(3) 話題提供:

・香川委員より「大阪盆地域をターゲットとした東南海・南海地震の強震動シミュレーション」について紹介。ハイブリッドの遷移周期と長周期構造物の検討周期との関係について質疑応答がなされた.

・野津委員より資料 4-2-3 に従って説明を行った。 仮定している破壊速度が他の研究に比して小さいこ となどについて質疑応答がなされた

(4) 2003 年十勝沖地震の総括

・纐纈委員から資料 4-2-2 に従い、緊急調査の成果が報告された。 従来の研究に比して 10km 程度浅いプレート境界深度,繰り返すアスペリティ,予効変動位置との相補性,津波波源域の違いについて説明された.

- ・入倉主査から 2003 年十勝沖地震の調査研究のまとめを中心に、話題提供内容の報告がなされた(4-2-1)
- ・畑山委員から資料 4-2-4 に従い、長周期地震動の評価のありかたについて説明があった.

(5)討議

- 平成16年度の企画提案型公募について
 事務局から、内閣府(項)災害対策総合推進調整費(目)災害対策関連調査費 に対し、「長周期地震動 対策の必要性の検討に係る調査」についての契約書の報告が行われた。
 - ・作業項目として以下の4つが要求されている。
 大規模地震に関する資料の収集・整理、再精査数値計算手法に係る資料の収集・整理
 長周期地震動推計に用いる数値計算手法の構築報告書等の作成

- ・最終報告書の著作権が内閣府に帰属する
- ・強震動予測に必要な内閣府保有のデータは事後交渉
- ・作業期間9月1日より

岩田より資料 3-1(幹事団の今年度企画案)について説明。契約書の内容について討議され,幹事団にて文 言・内容についての意見をまとめ、問い合わせることとした。同時に,地震動部会の今年度の活動報告とし て,年度内に報告会(ワークショップ)を開き、プロシーティングスを作成することを合意した.

今年度の強震動部会への要求

〇土木学会(杉戸副主査)

- ・ 強震動予測手法の提案
- ・ 東南海・南海の名古屋・大阪地点の予測波(構造物の応答検討のため)

○建築学会地震動 WG (川瀬副主査)

関東地震の東京・横浜、東南海地震の名古屋・大阪、南海地震の大阪の予測波の提示

これまでの研究成果を提示する予定

(6)その他

岩田から土木学会研究討論会(資料 3-2)への投稿原稿について説明

川瀬から建築学会 PD について報告があった。

次 回

9月下旬を予定

第5回議事録

日時: 2004年9月25日(土)10時00分~12時30分 場所: 土木学会

出席者:

入倉孝次郎(京大),杉戸真太(岐阜大),市村強(東北大),香川敬生(地盤研),片岡正次郎(国総研),久野 通也(中部電力),纐纈一起(東大),佐藤俊明(清水建設),関口春子(産総研),野津厚(港湾空港技研), 畑山健(消防研),増田徹(応用地質),岩田知孝(京大防災研)

資料:

第5回議事次第

5-1 土木学会・日本建築学会巨大地震災害対応共同研究連絡会・地震動部会第4回 議事録(案)

5-2 長周期地震動対策の必要性の検討に係る調査仕様書

5-3-1 企画案 プレート境界巨大地震の高精度地震動予測に関する調査研究

5-3-2 プレート境界巨大地震による長周期地震動

5-4 建築物部会から地震動部会への要望

5-5 地震動部会への要望

・耐震診断及び耐震対策部会(西村主査)からの要望事項について(野津委員提出)

・2004 年 9 月 5 日紀伊半島東南沖地震による港湾・空港での強震記録(野津委員提出)

・2003年十勝沖地震において表面波が卓越する地域の分布特性について(杉戸副主査提出)

・シンポアンケートとフォーマット

・土木学会研究討論会研-01 資料

・日本建築学会構造部門 PD 資料

(1) 式次第

(2) 野津委員から資料に従って9月5日の紀伊半島東南沖地震記録の紹介があった.

(3) 事務局から資料 5-2 に従って仕様書の説明がなされた.

(4) 野津委員から耐震診断・耐震対策部会からの要望事項,及び資料 5-5 の説明があった.

(5)入倉主査から資料 5-4 に従い建築物部会(建築学会)から地震動部会への要望の説明があった.

首都直下強震動予測(11 月 12 日内閣府 WG)

東海地震の東京(内閣府は10秒で基準を超える波形となった) 古村波(新宿と千葉)がある.

建築学会地震動 WG ではメンバーに波形アンケートをする(佐藤)

構造物部会からは長周期地震動→巨大地震災害

広帯域ならば短周期だけもやったほうがよいのではないか? 整合性のある波形に

東海地震・関東の長周期地震動(纐纈)

釜江波(南海・東南海の大阪), 久田波(東海 震源近傍)

佐藤波(1923 関東地震 長周期)

アンケートをとる

古村, 久田, 佐藤俊明, 纐纈, 杉戸, 釜江

(6) シンポジウム 2月19日(土)に仮置き
 10月末 シンポタイトルと要旨
 +勝沖地震の検証
 方法論紹介と設定

合成波形の紹介

次 回 11月下旬を予定

第6回議事録

日時:2004年11月25日(金)18時00分~20時20分 場所:建築会館

出席者:

入倉孝次郎(京大),杉戸真太(岐阜大),川瀬 博(九大),青井 真(防災科研),市村 強(東北大),大 川 出(建築研),香川敬生(地盤研),片岡正次郎(国総研),久野通也(中部電力),纐纈一起(東大),関 口春子(産総研),野津 厚(港湾空港技研),増田 徹(応用地質),翠川三郎(東工大),釜江克宏(京大), 久田嘉章(工学院大学),岩田知孝(京大防災研)

資料:

第6回議事次第

- 6-1 震源域の強震動と被害(久田先生資料)
- 6-2 免震病院を対象とした入力地震動の策定例(久田先生資料)
- 6-3 Damaging Long-Period Ground Motions from the 2003 Mw8.3 Tokachi-Oki, Japan, earthquake (纐纈委員)

(3) 入倉主査から、釜江・久田先生の紹介と予測波策定についての趣旨説明が行われた.

(2-1) 釜江先生から「南海地震・東南海地震時の地震動予測」についての話題紹介をいただいた.

(2-2) 久田先生から「震源近傍の地震動特性と理論的地震動策定」についての話題紹介をいただいた(6-1, 6-2) (2-3) 杉戸幹事から「東海地域のシミュレーション例とそれを使った耐震検討事例」についての話題紹介をい ただいた.

(3) 川瀬幹事からプレート境界巨大地震による地震動予測に関するアンケート案及び配布先案が紹介された. 地震動部会メンバー,メンバーが推薦する方にメールで送付する.

シンポジウム 2月19日(土)10時から

場所候補 土木学会(講堂110名)など.シンポタイトル杉戸幹事と事務局で決める.

次 回

1月26日(水)時間帯アンケートをする.

第7回議事録(案)

日時:2005年1月26日(水)17時30分~19時50分 場所:土木学会

出席者:

入倉孝次郎(京大),杉戸真太(岐阜大),青井 真(防災科研),市村 強(東北大),香川敬生(地盤研),松 本俊輔(国総研・片岡委員代理),久野通也(中部電力),纐纈一起(東大),佐藤俊明(清水建設),関口春 子(産総研),武村雅之(鹿島),畑山 健(消防研),増田 徹(応用地質),岩田知孝(京大防災研)

資料:

- 第7回議事次第
- 7-0 第5回·第6回議事録(案)
- 7-1 東海地震による発電所地点の地震動評価事例(久野委員)
- 7-2 東海地震の関東平野における長周期地震動予測(佐藤委員)
- 7-3 地震動予測アンケートについて(佐藤委員)
- 7-4 シンポジウム資料(杉戸委員)
- 7-5 内閣府中間報告書仕様について(抜粋)
- (4) 久野委員から資料 7-1 に従って「東海地震による発電所地点の地震動評価事例」の話題提供をいただいた.
- (5) 佐藤委員から資料 7-2 に従って「東海地震の関東平野における長周期地震動予測」の話題提供をいただいた.
- (6) 佐藤委員から資料 7-3 に従って地震動予測アンケートの状況が報告された. 36 名へのアンケートに対し て、20 組の回答があり、16 組が何らかの形で公開可能という回答を得た.

議論

・何に使うのかによって使用に注意が必要.ひとつの模擬波にはさまざまな要因からの限界が当然ある.

・ 注意書きについては杉戸幹事を中心に検討する.

また主査に照会のあった内閣府(日本海溝巨大地震)委員会へは十勝沖・三陸沖北部・宮城県沖地震の評価 チームがあることを報告する。

- (7) 杉戸幹事からシンポジウムプログラム(案)が紹介され、承認された.
- (8) 内閣府への報告書は岩田がアンカー役をする.
- (9) 来年度の活動について シンポジウム後に次回委員会を開き、検討する。

次 回

2月下旬から3月上旬