土木学会基礎水理シンポジウム(於土木学会)

運動量の定理に基づく 堰実験データの再整理

(国法)山口大学 羽田野袈裟義 (株)建設技術研究所 多田羅謙治

平成22年12月6日

1. 序論 2. 堰水理の現状と課題 ■潜り堰の従来公式(刃形堰、台形堰、Ogee堰) ■潜り堰水理の課題 3. 無次元パラメータの検討 ■堰上流水位:h₁/h ■フルード数: h_c/h_d 4. 既往の実験データによる検証 ■刃型堰:Glen Cox、Schoder&Tuener ほか ■台形堰:本間、鍋岡 Micheal W.S. & Walker

<u>5. 結語(まとめ)</u>

2. 堰水理の現状と課題 2-1. 堰水理の課題(1/2) ■課題1:エネルギーー定の原理に基づき、 流量係数の議論に終始 ■課題2:相似則の議論が殆んど皆無 ・洪水時の実河川の堰への適用可能性が不明。 ・堰高の効果、堰上下流で河床高が異なる場合の対応。 Ⅰ課題3:潜り度

- ・流量係数m~h2/h1の関係は、正当性に疑問。
- ・h2/h1≒1での適用性の評価が困難。

<u>2-1. 堰水理の課題(2/2)</u>

<u> ■課題4:固定観念</u>

- 本来は流量と水位差は対等の依存関係ながら、
 堰公式の計算は専ら 水位差 ⇒ 流量
- ・数式上の従属変数と物理的に従属とは別問題。

■課題5:制約上の課題

・速度が水位差の平方根に比例すると仮定した流量公式。
・流量係数に代わるものは?

<u>2-2. 潜り堰の従来公式(1/7)</u>

■記号の説明

図2-1 もぐり堰状態の堰模式図

- Q :流量
- B:越流幅
- W :水路幅(W≧B)
- h_{d1}:上流側堰高
- h_{d2} :下流側堰高
- h : 越流水深
- h₁,h₂:堰頂から測った上流水位、下流水位(もぐり度)

図2-2 Cd~h/Pの関係

図2-3 流量誤差(ε~h/P)

図2-2, 2-3の出典:中川・中川 (関西支部pp79-80, 1966)より

(※上図のC_d:流量係数、P:堰高)

2-2. 潜り堰の従来公式(3/7) (1) 刃形堰(2/2) ②潜り堰 し板谷・竹中の式 $Q = CBh_1(h_1 - h_2)^{1/2}$ $C = 1.403 + \frac{0.841}{1.6 - (h_2/h_1)}$

適用:B>0.5m、0.3m $\leq h_d \leq 1.8m$ 、0.1m $\leq h_1 \leq 0.8m$ 、 (h_1 - h_2) $\leq B/4$

⇒(考察):適用性は後ほど示す。

図2-4 刃形堰のもぐり越流

出典:水理公式集(S46年版)より

<u>2-2. 潜り堰の従来公式(6/7)</u>

$m=q/[h_1(2gh_1)^{1/2}]$

(a)本間のデータⅣ, V, VI

図2-7 m~h₁/h₂の関係 データは、本間仁:低越流堰堤の流量計算(第2編), 土木学会論説報告第26巻第9号より

⇒(考察): $h_2/h_1 = 1$ における適用性の判定が不能。

■Coxの式(不完全越流、潜り堰;ft-sec単位) Q=CBh₁ⁿ

■本間の整理:

 $Q = mBh_1\sqrt{2gh_1}$

図2-8 Coxの実験結果(4タイプ) Q/b~h₂/h_dの関係

出典:本間仁:低越流堰堤の流量計算(第1編),土木学会論説報告第26巻第6号より

、流量係数m~ h_2/h_1 (=S)

(前項2-1の再掲)

<u>2-3. 堰水理の課題整理(1/2)</u>

■課題1:エネルギーー定の原理に基づき、

<u>流量係数の議論に終始</u>

■課題2:相似則の議論が殆んど皆無

- ・洪水時の実河川の堰への適用可能性が不明。
- ・堰高の効果、堰上下流で河床高が異なる場合の対応。

■課題3:潜り度

- 流量係数m~h2/h1の関係は、正当性に疑問。
- ・h2/h1≒1での適用性の評価が困難。

(前項2-1の再掲)

<u>2-3. 堰水理の課題整理(2/2)</u>

<u> ■課題4:固定観念</u>

- 本来は流量と水位差は対等の依存関係ながら、
 堰公式の計算は専ら 水位差 ⇒ 流量
- ・数式上の従属変数と物理的に従属とは別問題。

■課題5:制約上の課題

・速度が水位差の平方根に比例すると仮定した流量公式。
 ・流量係数に代わるものは?

■無次元パラメータの選択肢 事例:密度ρ、動粘性係数ν、一様流速U、直径dの円柱 単位長さあたりの作用力D

$$\frac{\mathrm{D}}{\rho \mathrm{U}^2 \mathrm{d}} = \mathrm{F}\left(\frac{\mathrm{U}\mathrm{d}}{\nu}\right) = \mathrm{F}(\mathrm{Re})$$

$$\frac{D \rho}{\nu U} = G\left(\frac{Ud}{\nu}\right) = G(Re)$$

・FとGの概念について

<u> 3-2. 無次元諸量間の関係式</u>

完全越流時の堰上流水位(越流水深)をhとして、 $h_1/h=F_1(h_1/h_{d1}, h_{d2}/h_{d1}, h_2/h_{d2}, h_c/h_{d1})$ ····(3) ↓ $h_1/h=F_2(h_2/h_c, h_c/h_{d1}, h_c/h_{d2}, h_{d2}/h_{d1})$ ····(4)

h:流量から完全越流の公式により計算 h_c/h_{d1}, h_c/h_{d2}はフルード数の類

堰上下流で河床高が等しい場合には、 $h_d = h_{d1} = h_{d2}$ として、 $h_1/h = F_3(h_2/h_c, h_c/h_d)$ ···· (5) 完全越流では式(3)で h_2 と h_{d2} が関与しないから $h_1/h_{d1} = F(h_c/h_{d1})$ ···· (6)

■Kpの式

⇒完全越流を潜り堰の特別なケースとして扱える。 模型実験の条件:模型と原型が幾何学的かつ力学的に相似

 \Rightarrow

幾何学的に相似な模型を製作し、式(4)~(6)の右辺の無次元 パラメータを変えて実験を行えばよい。 式(4)~(6):模型実験の条件設定方法を提供。

4. 既往の実験データによる検証 <u>4-1. 刃型堰</u> (1)潜り堰GlenCoxのデータ

表4-1 潜り堰実験条件

No	<i>h_d</i> (m)	q (m²/s)	h _c ∕h _d
18	0.347	0.049~0.348	0.184~0.665
19	0.610	0.112~0.451	0.041~0.450
20	0.991	0.026~0.208	0.042~0.165
21	1.087	0.027~0.654	0.023~0.172

表4-1 h₁/h~h₂/h_cの関係 表4-2 h₁/h~h₂/h₁の関係

 ⇒(結果): 刃形堰ではh₁/h~h₂/h_cの関係が一義的 (刃形堰はどの実験もほぼ同じ形状)
 □h₁/h~h₂/h_cの回帰式: h₁/h=0.135(h₂/h_c)²+0.047(h₂/h_c)+1 ;0≦h₂/h_c≦1.5 h₁/h=0.131(h₂/h_c)²+0.006(h₂/h_c)+1.072 ;1.5≦h₂/h_c≦2.5 h₁/h=0.014(h₂/h_c)²+0.542(h₂/h_c)+0.460 ;2.5≦h₂/h_c≦5.5

■完全潜り堰GlenCoxのデータ

□h₁/h~h₂/h_cの回帰式: 既往の実験データより決定

Schoder & Turner、Dawson、Martin、Meyer & See、Jonesの実験 hd=0.060~2.286m、B=0.616&1.286m、 h_1 =0.004~1.680m

前ページ(図4-3)の定式化:流量から越流水深hを求める式 X=ln(hc/hd)とし、Re=q/ ν に係わる係数Rhを用いて h/hd=Rh·exp(-0.006Y2+0.966Y+0.302):0.005≦hc/hd≦0.1 h/hd=Rh·exp(-0.014Y2+0.931Y+0.263):0.1≦hc/hd≦1.0 h/hd=Rh·exp(-0.039Y2+0.915Y+0.263):1.0≦hc/hd≦4.0

Rh=1 for Re \geq 2000 Rh=1+0.267[ln(Re/2000)]² for Re \geq 2000

■h/hd~hc/hdの回帰式の適用性

■刃型潜り堰の堰上流水位の計算式の適用性の検討 式(7)と(8)、(9)の組合せ

図4-6 潜り越流の上流水位の計算結果(G.CoxのNo8(h_d=0.347m))

- ・次元の問題をクリア。
- ・台形堰、Ogee堰では、堰の幾何形状の効果が出る。
- • $h_1/h \sim h_2/h_c$ の回帰式を求めるには容易ではない。

4-2. 台形堰

(a) $h_1/h \sim h_2/h_c の関係$

(a)h₁/h~h₂/h_cの関係

(b)m~h₁/h₂ 図4−8 本間のデータ(IV,V,VI)

(a) $h_1/h \sim h_2/h_c の関係$

(b)m~h₁/h₂ 図4-11 鍋岡のデータ(X, X II, X VII)

⇒ (結果) : 潜り度は h_1/h_2 より h_2/h_c の方が合理的

(検

 Glen Cox
 Micheal W.S. & Walker R.Y(1948): Boulder Canyon Project Final Report

(1)G. Coxのデータ

証データ)

(1)G. Coxのデータ

図4-13 h₁/h~h₂/h_cの関係

(2) Micheal W.S. & Walker R.Y(1948): Boulder Canyon Project Final Report)のデータ

■実験条件(堰高) 堰A: h_{d1} =1.049m、0.077m h_{d2} =0.007~1.048m q=0.063~0.268m²/s 堰B: h_{d1} =1.079m h_{d2} =0.007~1.079m q=0.077~0.399m²/s

図4-14 堰形状

□流れのタイプ
 タイプ1:射流
 タイプ2:跳水のある流れ
 タイプ3:drowned jump(射流が起こる前に跳水が起こる不完全な跳水)
 タイプ4:完全な潜りに近い流れ

<u>3-2.</u> (結果) $h_1/h \sim h_2/h_c$ の関係

■流れのタイプ別に分類

図4-15 h₁/h~h₂/h_cの関係(流れの状態で分類)

⇒ $h_1/ho値lth_2/h_cの増加とともに増大$ ⇒ 同一の h_2/h_c に対して、 $h_1/hltprot h_2/h_c$ に対して、

■下流側堰高h_{d2}をパラメータにh₁/h~h₂/h_cの関係

図4-16 $h_1/h \sim h_2/h_o$ の関係(下流側堰高さで分類)

⇒ 前図と共通して、h₁/hの値はh₂/h_cの増加と共に増大
 ⇒ hc/hd1による系統的な変化はみられない。

\squareh_c/h_{d2} をパラメータに $h_1/h \sim h_2/h_c$ の関係

図4-17 $h_1/h \sim h_2/h_o$ の関係(h_c/h_{d2} で分類)

⇒ (考察): $h_1/h \sim h_2/h_c$ の関係が h_c/h_{d1} でなく h_c/h_{d2} により系統的に整理される。

4. 結語(まとめ) 1. 運動量の定理から堰水理に関与する無次元パラメーターを導出。 2. Kpの式

3.完全越流と潜り堰を同じ土俵で取り扱える。
4.相似則として堰の模型実験の条件設定方法を与えた。
5.堰の直上流水位 h₁の決定要因

完全越流(h):h_{d1}, h_c/h_{d1}
一般の堰
h, h₂/h_c, h_c/h_{d1}, h_c/h_{d2}, h_{d2}/h_{d1}

・堰上下流で同じ河床高:h, h₂/h_c, h_c/h_d (以上)