

研究歴と水質汚濁 1967 - 2007 現場調査の経験として	
<u> 衛生工学</u> 	
 石狩川の有機汚染・・公害問題 汚濁負荷減の特性解析 <u>L - Q式とその</u> 茨戸湖の富栄養化・・富栄養化	<u>応用</u>)寄与
 ・ 湿原変貌…広〈自然活動把握 ・ ダム湖の富栄養化と異味異臭 、漁川ダムにおける放線菌による着臭と防 <i>環境社会工学 </i>)影響 止対策
 海外調査・・広域的・海外環境保全 (環境科学・・人間社会・・途上国協力) 中国雲南省、広西荘族自治区 インドネシア・カリマンタン ペトナム・フエ 環境安全工学 	
	の安全

石狩川の汚満量調査に関する研究														
和 四 面 和ERI44和2														
	Act. Mith	SHE AT	anste la	(sta	1.0.1	-		-		1.1.1	1			L.
	1.1	-	** **	-	1.4		1			14. 4	and The	- Tere	10 Mar	1
北海市大学工学部原生工学科				1.9 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	****************	222222222222222222222222222222222222222	12223333333333333333333	**************************************			2 222222222222222222222222222222222222	12222222222222222222222222222222222222		
				1	·*******************	292822222222222222222222222222222222222	22222222222222222	11111111111111111111111111111111111111	ifidit seurariai.e	11-11-11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-	22 22 22 22 22 22 22 22 22 22 22 22 22	CECERCECECECC ² CC	322 3322222 22222 322 3222222 22222	and the second sec

	****		-	-	-	-	15			47	4	π	*	a.	68	-	-	4.45							
After ante Inter ante Inter ante Inter ante Inter ante	•••	111111	P 3333355	1 11 1	P 332833	F 222222		c2cc2c4	56cs\$2	225223	P 312222	2100 04	4	1111111	1 155555		- Alex	-							
ter sta		111	11.11	5.01 5.01	12.2.2	1.0	4.10	11.7.1	10.0	1111	1111	1.1		5553	0.01 0.01 0.08			MI-1	amore	NUCH	1) 10.850		-38543		
		in	1.10	8.01 8.01	1.0	8.85	8,65	**	14	5.0 5.0	54 54	1.7		14.5	0.01 9.01	-		1	3	41	5	61	18	81	13
-13		-	10	1.0	1			ä	10	11	53	11		11	5,64				Here	-	100.00		871L	1008	101
The Set Solution of the Set Set Set Set Set Set Set Set Set Se		11 111111	2222 2222222	1533 5535555	3353 53533355		1111 111111	2222 2322222	222152 532223	2222 22232222	1222 3522222	2222 33 ₂ 33 <u>3</u> 3		222228 6225		12 9751		10000000000000000000000000000000000000	11 18,0 116,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1					11.1 11.38 12.1 3.49 1.34 1.39 1.39 1.39 1.50 8.0 1.00 8.0 1.00 8.0 1.00 8.0 1.00 8.0 1.00 1.0	100000
tan ata ata ata ata ata ata ata ata ata	2.14		1111 1111111111111111111111111111111111	1111 1222123	1222 1222222	2222 22222222	2222 2222222	2222 2222222	9555 7793555	2322 2222223	1111 111111	2222 2222222	A STATE AND A STAT	222222 22222	1211 121111	Cond Cond Cashela	1 7:52 7:52 1 7:52 1 7:52 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				2000 2000 2000 2000 2000 2000 2000 200	THE PARTY AND IN THE PARTY AND INTERPARTY AND INTE		Stranding Curlin	1 1 1 1 1
																*834	A COMPANY AND A			LINE STREET			111111111111111111111111111111111111111		and a state
	東京	T	大	. 1	新日	明	;生	<mark>.</mark> の	時	代						DO Im/II	「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	Frederic Frederic	Personal and a second		11 19.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	Hold - Children		North Contraction	

石狩川を例に L-Qについて考えてみる。
<u> 5濁物質濃度の予測 た </u>
流量····降水量、蒸発量、地形、水質成分特性 時間···· 蓄積時間、浄化時間

河川での実証的研究	
・Smith et al. (1977) <i>Wat. Res.</i> ・Stevens et al. (1978) <i>Wat. Res.</i> - 6通りのC-Q,L-Q等近似 L=kQ ⁿ がべ - DN,PPは n>1 :土壌浸食 - DPは n<1 :希釈	スト
・和田 (1978) 用廃 BOD, COD, TN, TP, <u>SS</u> L=aQ+b - SSは非線形 - 地形等の環境要因 - 機構解明の必要性(係数 k, n)	田雄(山梨大学)第41 日本水環境学会年会ノン イント汚染研究委員会 2007/3/15)講演「ノンポイ ト研究の新しい試み」より

河川での実証 機構の理解	
・山口ら (1980) 土木論 ・戸原ら (1983) 佐賀大農 ・國松ら (1986) 水処技 ・橘ら (1973-93) ・奥川ら (1991) 水環誌 L-Q, C-Qパターンの整理 (係数k,nの	解釈)
山口高志らの整理と L = f (Q) :流送能力型 L = f (Q, S) :流送能力・供給関数型 見出された課題 1.空間的汎用性 2.時間解像度	n>1: 汚濁型 n<1: 希釈型 西田雄(山梨大学) 第41 回日本水環境学会年会ノン ポイント汚染研究委員会

			0	1 (0) - 0)			M 1 (0)	-	
		N	Osamuna	ai (St. 3)	C	N	Naie (St.	. 6)	C
	a 11								
22	Snow melting Flooding	15	0.92	1.86	313	15	0.95	2.07	1016
55	Annual	23	0.98	1.85	1220	21	0.97	1.68	810
		20	0.05	1.05	1220		0.77	1.00	010
	Snow melting	15	0.82	0.65	0.978	15	0.91	0.86	1.50
BOD	Flooding	7	0.97	1.02	3.85	7	0.96	1.31	6.94
	Annuai	23	0.79	0.57	0.85	21	0.94	0.87	1.90
	Snow melting	15	0.87	1.10	3.85	15	0.92	1.41	12.6
TOCT	Flooding	7	0.99	1.82	37.4	7	0.87	1.45	32.1
	Annual	23	0.80	0.66	2.19	21	0.90	1.04	10.4
	Snow melting	15	0.40	0.65	0.299	15	0.84	0.91	1.43
TOCE	Flooding	7	0.98	1.02	2.27	7	0.97	1.02	2.60
,	Annual	22	0.62	0.38	0.411	21	0.93	0.72	1.36
	0	10	0.02	1.40	6.01	15	0.74	1.02	10.0
TOC	Show melting	15	0.85	1.48	0.91	15	0.76	1.92	18.2
TOUSS	Flooding	22	0.99	2.22	45.2	21	0.85	1.55	12.0
	Annuar	22	0.85	1.10	3.74	21	0.85	1.29	12.0
	Snow melting	15	0.96	0.54	2.18	15	0.96	0.75	4.14
Cl-	Flooding	7	1.00	0.67	3.17	7	0.98	0.80	3.74
	Annual	23	0.91	0.49	1.13	21	0.96	0.76	4.03
	Snow melting	15	0.63	0.59	1.51	15	0.70	0.36	0.420
SO42-	Flooding	7	0.91	0.85	7.71	7	0.98	0.72	6.42
	Annual	23	0.89	0.48	2.24	21	0.95	0.62	4.91
	Snow malting	15	0.95	0.64	0.130	15	0.97	0.80	0.250
4 3Bx	Flooding	7	1.00	0.70	0.169	7	0.98	0.81	0.250
	Annual	23	0.96	0.72	0.122	21	0.98	0.78	0.239
	0		0.00	0.77	6.60		0.00	0.02	6.12
6100	Snow melting	15	0.98	0.77	5.58	15	0.99	0.82	5.13
5102	Flooding	22	1.00	0.78	10.2	21	0.96	0.85	9.50
	Annual	23	0.82	0.07	4.00	21	0.89	0.05	4.55
	Snow melting	15	0.49	0.43	0.041	15	0.72	0.87	0.099
NH4 ⁺ -N	Flooding	7	0.86	0.56	0.040	7	0.86	2.10	0.770
	Annual	23	0.50	0.64	0.050	21	0.55	0.66	0.088
	Snow melting	0.15	0.59	0.72	0.176	15	0.93	1.00	0.332
NO ₃ -N	Flooding	7	0.99	1.10	0.62	7	0.98	0.95	0.450
	Annual	23	0.90	1.11	0.538	21	0.95	1.23	0.800
	Snow malting	15	0.64	0.60	0.204	15	0.82	0.91	0.404
TIN	Flooding	7	0.04	1.01	0.650	7	0.82	1.03	0.404
1114	Annual	23	0.83	0.89	0.389	21	0.99	1.03	0.761
	, annual	23	0.05	0.09	0.507	21	0.90	1.01	0.701

=				Osamuna	ui (St. 3)			Naie (St.	6)	
_			Ν	R	п	С	Ν	R	n	С
		Snow melting	15	0.92	1.86	313	15	0.95	1.97	1016
	SS	Flooding	7	0.98	2.32	1830	7	0.90	2.07	3020
洪水時流出		Annual	23	0.89	1.85	1220	21	0.97	1.68	810
		Snow melting	15	0.82	0.65	0.978	15	0.91	0.86	1.50
	BOD	Flooding	7	0.97	1.02	3.85	7	0.96	1.31	6.94
		Annual	23	0.79	0.57	0.83	21	0.94	0.87	1.96
		Snow melting	15	0.87	1.10	3.85	15	0.92	1.41	12.6
	TOCT	Flooding	7	0.99	1.82	37.4	7	0.87	1.45	32.1
		Annual	23	0.80	0.66	2.19	21	0.90	1.04	10.4
パルプ排水の	D直接的影響	Snow melting	15	0.40	0.65	0.299	15	0.84	0.91	1.43
	TOC _F	Flooding	7	0.98	1.02	2.27	7	0.97	1.02	2.60
		Annual	22	0.62	0.38	0.411	21	0.93	0.72	1.36
パルプ排水の	の直接的影響	Snow melting	15	0.83	1.48	6.91	15	0.76	1.92	18.2
	TOCss	Flooding	7	0.99	2.22	45.2	7	0.85	1.53	27.9
		Annual	22	0.83	1.16	5.74	21	0.85	1.29	12.0
		Snow melting	15	0.96	0.54	2.18	15	0.96	0.75	4.14
	Cl-	Flooding	7	1.00	0.67	3.17	7	0.98	0.80	3.74
		Annual	23	0.91	0.49	1.13	21	0.96	0.76	4.03
		Snow melting	15	0.63	0.59	1.51	15	0.70	0.36	0.420
	SO_4^{2-}	Flooding	7	0.91	0.85	7.71	7	0.98	0.72	6.42
		Annual	23	0.89	0.48	2.24	21	0.95	0.62	4.91
		Snow melting	15	0.95	0.64	0.130	15	0.97	0.80	0.250

TOC _F	Flooding	7	0.98	1.02	2.27	7	0.97	1.02	2.60	
	Annual	22	0.62	0.38	0.411	21	0.93	0.72	1.36	
	Snow melting	15	0.83	1 / 8	6.91	15	0.76	1.92	18.2	
TOCss	Flooding	7	0.05	2 22	45.2	7	0.85	1.52	27.9	
10035	Annual	22	0.83	1 16	5 74	21	0.85	1.35	12.0	
	7 tiniuur	22	0.05	1.10	5.74	21	0.05	1.27	12.0	
	Snow melting	15	0.96	0.54	2.18	15	0.96	0.75	4.14	
Cl-	Flooding	7	1.00	0.67	3.17	7	0.98	0.80	3.74	
	Annual	23	0.91	0.49	1.13	21	0.96	0.76	4.03	
	Snow melting	15	0.63	0.59	1.51	15	0.70	0.36	0.420	
SO4 ²⁻	Flooding	7	0.91	0.85	7.71	7	0.98	0.72	6.42	
	Annual	23	0.89	0.48	2.24	21	0.95	0.62	4.91	
	Snow malting	15	0.05	0.64	0.130	15	0.97	0.80	0.250	
4 3 B v	Flooding	7	1.00	0.04	0.150	7	0.97	0.80	0.250	
4.50X	Appual	23	0.06	0.70	0.109	21	0.98	0.81	0.204	
	Annuai	23	0.90	0.72	0.122	21	0.98	0.78	0.239	
	Snow melting	15	0.98	0.77	5.58	15	0.99	0.82	5.13	
SiO2	Flooding	7	1.00	0.78	10.2	7	0.96	0.83	9.50	
	Annual	23	0.82	0.67	4.60	21	0.89	0.65	4.35	
	Snow melting	15	0.49	0.43	0.041	15	0.72	0.87	0.099	
NH_4^+-N	Flooding	7	0.86	0.56	0.040	7	0.86	2.10	0.770	
	Annual	23	0.50	0.64	0.050	21	0.55	0.66	0.088	
	a 1.:	0.15	0.50	0.72	0.154	1.5	0.02	1.00	0.000	
	Show melting	0.15	0.59	0.72	0.176	15	0.93	1.00	0.332	
$NO_3 - N$	Flooding	.7	0.99	1.10	0.62	1	0.98	0.95	0.450	
	Annual	23	0.90	1.11	0.538	21	0.95	1.23	0.800	
	Snow melting	15	0.64	0.60	0.204	15	0.82	0.91	0.404	
TIN	Flooding	7	0.99	1.01	0.650	7	0.99	1.03	0.660	
	Annual	23	0.83	0.89	0.389	21	0.90	1.01	0.761	

		Osamunai	(St. 3)		Naie (St.	6)
	Snow melting Period	Flooding period	Annual period	Snow melting Period	Flooding period	Annual period
	kg/km ² /day					
$Q (x10^3 m^3/km^2/day)$	6.9	19.5	3.9	6.7	13.6	3.2
SS BOD	276.8 16.3	20100 73.6	467 11.5	695 14.2	10125 60.6	386 9.2
TOC _T *	20.8	463.9	23.1	31.5	232.9	29.7
TOC _F *	4.90	44.30	10.4	12.1	34.9	10.4
TOC _{ss} *	15.2	509.6	14.3	13.9	181.5	16.7
NH4 ⁺ -N	1.19	1.29	0.562	0.93	2.47	0.801
NO ₃ -N	2.40	11.0	1.50	2.25	6.65	1.31
TIN DN	3.83 4.36	11.9	2.09	3.38 4.27	8.63	2.36
TN PN	0.58 5.00			0.81 5.23		
DRP DP	0.030 0.078			0.024 0.054		
PRP TP	0.203 0.385			0.456 0.687		
PP	0.475			0.752		
Cl	47.6	89.2	20.1	51.1	70.4	26.3
SO_4^{2-}	29.0	175	40.5	13.9	137	50.4
4.3Bx**	2.21	4.56	1.08	2.71	4.83	1.47
SiO_2	69.1	78.0	47.0	53.5	169	41.3

Table 4. Average concentration of loads of chemical components during three periods (snow melting period, flooding period and annual period) The values in that table are calculated by flow weighted method.

		Osamunai	(St. 3)		Naie (St. 6	5)
	Snow melting Period	Flooding period	Annual period	Snow melting Period	Flooding period	Annual period
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
$Q(m^3/s)$	274	771	152	684	1394	325
SS	39.9	1030	121	103.9	743	122
BOD	2.4	3.8	3	2.1	4.4	2.9
TOC _T *	3.0	23.8	6	4.7	17.1	5.3
TOC_F^*	0.7	2.30	2.7	1.8	2.6	3.3
TOC _{SS} *	2.20	26.1	3.7	2.1	13.4	5.3
NH_4^+-N	0.17	0.07	0.15	0.14	0.18	0.25
NO ₃ ⁻ -N	0.35	0.31	0.39	0.34	0.49	0.41
TIN	0.55	0.34	0.54	0.51	0.63	0.73
Cľ	6.9	4.6	5.2	7.6	5.2	8.3
SO_4^{2-}	4.2	9	10.5	2.1	10	15.9
4.3Bx**	0.319	0.234	0.281	0.404	0.335	0.463
SiO ₂	10.0	4.0	12.2	8.0	12.4	13.0

	変化バターン	水質項目	変化の特徴	
I	·····································	リグニン	<mark>ポイントソース</mark> ほとんど一定 濃度減少	パルプ排水 家庭 排水
п	·····································	SS, P-COD	土地洗い出し 流量の増加比率を上回る負荷量 の増加比率となる 濃度増加	降雨時 土砂流出
III	· 這一 一 流 量	SiO2	流量の増加に比例して負荷量も ^{増加} 濃度一定 土壤潤出	土壤
īv	調 し 流 量	D-COD, BOD Cl ⁻ , SO4 ²⁻	流量の増加に対して早い負荷量 の増加が見られ、ある濃度に達 した後比例的に減少する 蓄積9イブ	(広域的)人為 汚濁成分
v	海 深 浜 量	inorg. –N	流量の増加に対して負荷量が遅 れて増加する 地下か6の寄与	農地流出
<u>S</u>	32.2.9 増水時にま	おける水質濃度変化	パターン(石狩川:北海道) ¹⁹⁾	不再力
環境流	体污染 松梨順三郎	森北 1993	水質変化予測調查報告書	十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十

		· · ····	水質変化予測調査報告書	土木学会	昭和50年3月
	変化バターン	水質項目	変 化 の 特 徴		
Ι	·····································	リグニン	ほとんど一定 濃度減少	n 0 n<1	希釈型
п	画 流 量	SS, P-COD	流量の増加比率を上回る負荷量 の増加比率となる 濃度増加	n>1	洗い出し型
III	通复 流 量	SiO2	流量の増加に比例して負荷量も ^{増加} 濃度一定	n 1	濃度一定型
IV	調 运 流 量	D-COD, BOD Cl ⁻ , SO4 ²⁻	流量の増加に対して早い負荷量 の増加が見られ,ある濃度に達 した後比例的に減少する		ヒシテリシス
v	通知	inorgN	流量の増加に対して負荷量が遅 れて増加する ヒシテリシス型		<u></u>
[図2.2.9 増水時にま	おける水質濃度変化	パターン(石狩川:北海道)19)		

青天時平均水質(1991~1997.n=41)								
		漁川	モイチャン川					
SS	mg/l	2.2	2.0					
TOC	mg/l	0.8	1.3					
DOC	mg/l	0.7	0.9					
TN	mg/l	0.12	0.17					
DN	mg/l	0.10	0.14					
TP	mg/l	0.008	0.019					
DP	mg/l	0.004	0.013					

漁川			C. S. L.	モイチャン	Ш	12.00	1.1.1
1	n	R	С		n	R	С
TOC	1.3	0.82	0.55	TOC	1.3	0.76	0.90
DOC	1.1	0.91	0.70	DOC	1.3	0.74	0.56
POC	1.5	0.62	0.12	POC	1.1	0.34	0.27
SS	2.8	0.62	0.58	SS	1.8	0.40	2.2
SiO ₂	0.8	0.93	41	SIO,	0.8	0.90	49
4.3Bx	0.9	0.98	0.48	4.3Bx	1.0	0.98	0.40
CI-	0.9	0.93	5.0	CI-	0.9	0.90	5.6
TN	1.6	0.65	0.078	TN	1.2	0.63	0.151
DN	1.4	0.72	0.064	DN	1.2	0.64	0.102
PN	2.3	0.52	0.087	PN	1.4	0.35	0.027
NO ⁻ -N	1.9	0.83	0.009	NO ₃ -N	1.5	0.76	0.031
NO ₂ -N	0.7	0.46	0.039	NO ₂ ⁻ -N	0.3	0.11	0.008
$NH_4^+ - N$	0.9	0.35	0.015	NH ₄ ⁺ -N	1.0	0.27	0.013
TP	1.5	0.55	0.0058	TP	1.2	0.61	0.0170
DP	0.9	0.49	0.0046	DP	0.2	0.67	0.0084
PP	1.9	0.54	0.0019	PP	1.1	0.36	0.0076
DRP	1.1	0.55	0.0017	DRP	1.5	0.65	0.0031

	流出タイプ	n	C	R	流出の特徴	存在状態	成分
I	洗い出し型	>2	変動大	0	流量増加に 対応して著 しく流出	堆積量大	懸濁成分 (SS, PN, PP)
11	安定流出型 (貯留型)	2~1	変動大	0	流量増加に 対応して流出	蓄積量大 (速度)	NO, -N, DP, DOC等
III	安定流出型 (非貯留型)	≤1	変動小	0	流量との相関 がよい(濃度 変化が小さい)	広範囲に分布	 一般無機イオン(Na+, CI-,SO,²⁻等)
IV	非安定流出型	1前後	変動大	×	流量との相関 が低い(溶存 変動が大きい)	化学反応性 に富む	NH ₄ +-N. S:0 _e
v	濃度減少 希釈型) <n<1< td=""><td>-</td><td>1</td><td>-</td><td>-</td><td></td></n<1<>	-	1	-	-	
VI	希釈型	≑0	÷1	1	-	-	-

衣 2	森林からの全窒素	、全リン発生貝何重の比較
TN	TP	ци math
kg · km ⁻² · yr ⁻¹	kg · km ⁻² · yr ⁻¹	山東
694	18.4	土木学会(1970)3)
258	13.5	// (1975) 4)
405	13.5	// (1978) 5)
245	21.5	中西 他 (1973) 🕫
340	32.5	//
720		和田 (1978)"
360	12.0	渡辺 他 (1979) 🛚
445	9.5	国松 他 (1986) 9
358	11.3	//
86~/20		提 (1987)回
390	32.3	本報告(小川集水域)2)
520	11.5	// (試験地河川) ²⁾
353	23.0	// (漁川)
249	27.0	〃 (モイチャン川)

L = C · Q ª	$L = k \cdot Q^{n}$	$Q = Q / Q_0$	Q ₀ :最小	比流量		
表 6-1	1997年夏期降雨時調査 [*] における流域係数(k値)の平均 値および変化幅					
			モイチャ	<u>ン川</u>		
成分	log(k)値 平均	log(k)値 最大-最小	log(k)値 平均	log(k)値 最大-最小		
SS	-1.25	2.75	-1.19	2.51		
PN	-3.10	1.29	-2.73	0.81		
NO ₃ ⁻ -N	-2.46	1.18	-2.26	0.33		
NH4 ⁺ -N	-3.34	0.70	-3.20	0.67		
DON	-2.55	0.81	-2.52	0.54		
PP	-4.33	2.00	-3.92	1.30		
DP	-3.66	0.60	-3.11	0.15		
4.3Bx	-1.55	0.03	-1.67	0.06		
CI-	-0.59	0.11	-0.61	0.16		
S04 ²⁻	-0.01	0.04	-0.55	0.18		
SiO ₂	0.18	0.46	0.18	0.21		
Na⁺	-0.41	0.09	-0.43	0.14		
K ⁺	-1.16	0.11	-1.23	0.24		
Ca ²⁺	-0.21	0.16	-0.65	0.15		
	1997年夏期降雨時調	査および流域係数(k値	道)に関しては第4章参	照		

Ⅳ	lethods-Data Classificati load L by mo	on of the characteristics	aracteristic power nur	s of nutrients nber <i>n</i> in the L
		$= CQ^{n}$	and H	
		n<0.9	$0.9 \le n \le 1.1$	1.1< <i>n</i>
	0.25 <h< td=""><td>\mathbf{D}^{++}</td><td>C++</td><td>\mathbf{I}^{++}</td></h<>	\mathbf{D}^{++}	C++	\mathbf{I}^{++}
	$0.1 < H \le 0.25$	$\mathbf{D}^{\!+}$	C^{+}	\mathbf{I}^+
	$-0.1 \le H \le 0.1$	D	С	Ι
	$-0.25 < H \le -0.1$	D	С	1
	<i>H</i> <-0.25	D	C	Γ
			1)

H: Nutrient Load Hysteresis Coefficient, *n*: Power of the flow rate D: Dilution type, C: Constant type, I: Increasing type ++ to +: clockwise rotation type, none: little hysteresis, - to --: anticlockwise rotation type

Δ

Components -	n				Н				Classification
· · ·	Max.	Av.	Min.	S.D.	Max.	Av.	Min.	S.D.	
Turbidity	2.13	1.67	1.18	0.25	0.86	0.46	0.00	0.29	I++
SS	2.29	1.83	1.05	0.34	0.79	0.51	0.11	0.27	I^{++}
NH_4^+-N	1.33	1.05	1.00	0.10	0.61	-0.03	-0.38	0.28	С
NO ₂ ⁻ -N	1.61	1.16	1.00	0.22	0.27	-0.02	-0.66	0.28	Ι
NO ₃ ⁻ -N	1.37	1.04	0.88	0.21	0.13	-0.12	-0.30	0.15	C-
DN	1.33	1.04	0.87	0.18	0.14	-0.10	-0.28	0.14	С
TN	1.40	1.20	1.06	0.11	0.31	0.17	0.02	0.10	\mathbf{I}^+
PN	2.07	1.57	1.04	0.28	0.70	0.43	-0.01	0.27	I++
DRP	1.19	0.89	0.21	0.28	0.73	0.16	-0.05	0.25	\mathbf{D}^+
DP	1.38	0.91	0.35	0.30	0.96	0.33	-0.16	0.38	C^{++}
TP	1.91	1.51	0.91	0.26	0.77	0.51	0.07	0.26	\mathbf{I}^{++}
PP	1.94	1.59	0.92	0.30	0.77	0.50	-0.04	0.29	\mathbf{I}^{++}
TOC	2.04	1.62	1.04	0.29	0.81	0.34	-0.40	0.42	I^{++}
DOC	1.67	1.14	0.95	0.21	0.66	-0.01	-0.80	0.54	Ι
POC	2.24	1.75	1.06	0.32	0.84	0.39	-0.40	0.44	\mathbf{I}^{++}

Results- Classification of the characteristics of nutrients load *L* by modeling with power number *n* in the $L = CQ^n$ and *H*

		Average	C.V.
		mg/l	mg/l
a de la companya de la	Q	19.25	0.49
q	рН	3.84	0.03
E	EC	52.66	0.04
Т	ГОС	39.82	0.09
C	DOC	37.56	0.10
F	POC	2.26	0.36
Т	ΓN	0.77	0.14
C	DN	0.76	0.15
F	PN	0.01	1.11
Ν	NO3N	0.01	1.09
Ν	NH4+-N	0.06	0.44
г	TP	0.01	0.30
C	DP	0.00	0.35
C	DRP	0.00	0.13
N	Na+	0.79	0.38
C	CI-	0.71	0.23
s	SiO2	15.23	0.06
т	TN/TP	145.86	0.37
Т	TIN/DN	0.09	0.44

	S	ebangau	μ R.		Ishikari R.			
	Ν	R	n	C(=10^C)	Ν	R	n	С
EC	8	0.91	1.07	64.6				
SS	5	0.92	0.62	0.523	21	0.97	1.68	810
TOC	8	0.93	1.06	47.4	21	0.9	1.04	10.4
DOC	8	0.87	1.07	46.7	21	0.93	0.72	1.35
POC	8	0.60	1.01	1.746	21	0.85	1.29	12
TN	8	0.98	1.06	1.037				
DN	8	0.98	1.05	0.897				
PN	8	0.62	1.97	0.139				
NO3N	8	0.12	0.26	0.0002	21	0.95	1.23	0.80
NH4+-N	8	0.29	0.28	0.004	21	0.55	0.65	0.086
TP	8	0.65	0.52	0.0010				
DP	8	0.70	0.72	0.0009				
PP	8	0.10	0.26	0.0002				
DRP	8	0.98	1.18	0.006				
PP	8	0.31	0.2581	0.0002				
Na+	8	0.40	0.40	0.079				
CI-	8	0.78	0.87	0.415	21	0.96	0.76	4.03
SiO2	8	0.85	1.06	17.6	21	0.89	0.65	4.35

