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1. Introduction 

 

The environment surrounding Japan's 

construction industry is changing 

dramatically due to advances in IT. The 

main change is due to the advancement of 

artificial intelligence technology such as 

deep learning. On the other hand, the 

process of concrete construction has 

remained almost unchanged for over 30 

years. 

The pouring of concrete often depends on 

the know-how of the workers, and the 

concrete filling in the formwork is generally 

good, but in rare cases, problems, such as 

bean shingles, may occur. Once a problem 

occurs, countermeasures must be considered 

in consultation with the client, and repair 

and reinforcement work, for example, may be 

required. In the worst case, the structure will 

have to be demolished and rebuilt, which will 

require a large amount of time and cost. In 

this context, when focusing on the 

compaction work in concrete construction, 

the cause of problems is often insufficient 

compaction of the concrete. Therefore, the 

solution to the problem is to recognize the 

compaction points in on-site work in real 

time, detect the insufficiently compacted 

points before the concrete sets, and re-

compact the relevant points. 

In a previous study, Sunaga et al.1) 

compared the compaction actions of 

experienced and junior technicians using a 

wearable camera and found that the 

experienced technicians were more effective 

at compacting. However, the insertion 

position, time, and depth of the vibrator 

inserted by the experienced technicians were 

not measured. Therefore, the authors focused 

on compaction in concrete work and 

developed technology2) that enables reliable 

compaction management by quantitatively 

recognizing the compaction points, shifting 

from conventional qualitative management 

that relied on the individual know-how of 

workers based on their experience to 

quantitative management. The artificial 

intelligence (AI) model of the video images 

uses a convolutional neural network (CNN), 

a type of deep learning, to set the optimal 

number of repetitions, achieving high-

precision and high-speed analysis. 

This report introduces the developed 

technology and describes the results of its 

application at an actual site.  

 

2. Overview of compaction management 

technology 

 

2.1 Overview of compaction position 

identification 

As shown in Figure 1, the method for 

identifying the compaction position is 

fundamentally based on one devised by Imai 

et al.3),4), with improvements and new 

functions added to ensure real-time display 

of the analysis results. Specifically, the site 

conditions are photographed with a wearable 

camera attached to the helmet of the 

compaction worker (Figure 2). The video 

images are analyzed using an AI model to 

detect the AR marker, the tip of the vibrator, 

and the coloring of the vibrator hose, and the 

compaction position is identified from the 

relative position to the AR marker, and the 

depth is identified from the coloring of the 

vibrator hose (Figures 3 and 4). ＊1  Masatoshi Uno／Shimizu Corporation 

＊2  Jin Chujo／Create-C Corporation 

＊3  Ryuichi Imai／HOSEI University 
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Figure 1  System overview 

 

Figure 2  Installation of the wearable camera 

 

 

 

 

 

 

 

 

Figure 3  Positioning of AR markers showing planar 

coordinates 

 

 

 

 

 

 

 

 

 

Figure4  Vibrator hose coloring 

 

 

Figure 5  System configuration 

 

2.2 System Overview 

 

One of the goals of this system is to realize 

real-time processing from shooting to 

analysis and display the results, so a cloud-

based system was constructed (Figure 5). The 

shaded area is configured within the cloud 

server. The video images captured by the 

wearable camera are uploaded and saved to 

Server 1, which triggers the subsequent 

automatic processing. The data pass through 

the analysis processing server on Server 2, 

and the automatic processing ends in the 

database that stores the analysis results on 

Server 3. Cloud computing makes it easier to 

upgrade the machine specifications of the 

analysis processing server, and can speed up 

processing. In addition, the analysis results 

can be checked anywhere, so there is also the 

advantage that they can be checked on-site, 

in the office, or at a remote location. In a 

system that visualizes the calculated 

compaction position through video image 

analysis using artificial intelligence (AI), the 

compaction position and depth caused by one 

insertion of the vibrator are expressed as one 

cylinder (Figure 6). The size of the cylinder is 

considered to be the range of influence of 

appropriate compaction, and specifically, it is 

set to about 10 times the vibrator diameter, 

which is the manufacturer's recommended 

value5). If it is possible to analyze all the 

insertion points made by multiple workers, 
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the formwork will be filled with cylinders one 

by one as the cylinders are filled in. On the 

other hand, if compaction is missed, there 

will be spaces that are not filled in by the 

cylinders. 

 

 

 

 

 

 

 

 

 

 

Figure 6  Compaction position visualization 3D system 

 

2.3 Algorithm for determining compaction 

position using AI 

 

(1) Overall data processing flow 

Figure 7 shows the processing flow from 

the step of acquiring and transmitting video 

images using a camera attached to the 

helmet of the compaction worker to the step 

of outputting the analysis results. In the 

processing flow, step (1) is performed by the 

shooting app, and steps (2) to (12) are 

performed by the data analysis server on the 

cloud. The video image transmission in step 

(1) is used as a trigger to automate all 

subsequent processes.  

(2) Application of artificial intelligence model 

One of the artificial intelligence models for 

image detection is the convolutional neural 

network (CNN), a type of deep learning6)-13). 

CNN models the receptive field in the visual 

cortex of the brain and is known to have high 

performance in the field of image recognition. 

Among deep learning, CNN has a structure 

with a network that has a convolutional layer, 

a pooling layer, and a fully connected layer 

(Figure 8). 

 

 

Figure 7  Processing flow for compaction location analysis 

 

Figure 8  Example of a CNN network structure 

 

Figure 9  Portions of a typical CNN network and ResNet  
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In recent years, it has been thought that 

performance can be improved by making the 

layers deeper in CNN research, but it has 

been reported that simply making the layers 

deeper can actually worsen performance14). 

The degradation problem is a phenomenon in 

which the improvement of training error in 

learning a model with deep layers plateaus 

at an earlier stage than in models with 

shallow layers. Focusing on this problem, 

ResNet (Residual Network) has been devised 

as a network architecture that can learn even 

in deep layers. 

 

The difference between ResNet and normal 

CNN is that it learns a residual function that 

references the input of the layer. Figure 9 

shows a general network and a part of 

ResNet. Consider the case where the function 

to be learned is H(x). In ResNet, in two 

consecutive convolutional layers, the input x 

is connected by skipping to the output of the 

next layer. At this time, the difference F(x) 

with respect to the input x is expressed as 

Equation (1), which is transformed and 

redefined to learn Equation (2). 

 

𝐹(𝑥)≔𝐻(𝑥)−𝑥     (1) 

𝐻(𝑥)≔𝐹(𝑥)+𝑥     (2) 

 

This replaces the problem of estimating 

the optimal function H with the problem of 

estimating the optimal residual function F. 

Even if the identity mapping H(z) = z is 

optimal, it can be easily approximated by 

setting F(z) = 0. The shortcut connection acts 

as a detour to add the input value of the layer 

to the output of the network before the 

activation function. Since the shortcut 

connection passes the input information as is, 

it passes the gradient as is during 

backpropagation. Therefore, there is no need 

to worry about the gradient becoming too 

small or too large, and a significant gradient 

is maintained. 

A block consisting of such a shortcut 

connection and several convolutional layers 

is called a residual block, and a network 

consisting of multiple stacked shortcut 

connections, called ResNet, is a network 

model that adds an input layer and an output 

layer to this. Five types of ResNet have been 

proposed: ResNet 18, ResNet 34, ResNet 50, 

ResNet 101, and ResNet 152, which differ in 

the number of layers and the number of 

learnable parameters6). 

In this system, the ResNet50 model and 

ResNet 34 are used to detect vibrators. 

RetinaNet is used to detect AR markers. 

RetinaNet is an object detection model 

proposed in the paper "Focal Loss for Dense 

Object Detection" published by Facebook AI 

Research (FAIR) in August 2017. As pointed 

out in the motivation for developing the 

paper, many of the highly accurate object 

detection models prior to RetinaNet were 

configured as an R-CNN-based twostage 

object detector, but RetinaNet was improved 

to achieve faster speeds. 

 

(3) Construction of artificial intelligence models 

 

In the processing flow of Figure 7, artificial 

intelligence models were constructed for 

three cases: (4) Vibrator hose color marker 

detection model processing, (5) Classification 

model processing of detected color markers, 

and (6) AR marker detection model 

processing. In selecting the AI model, we 

considered models with as short an inference 

time as possible, since this system needs to 

output the analysis results before the 

concrete sets, while ensuring analysis 

accuracy. For vibrator color marker detection, 

the ResNet 50 model was adopted, although 

it is difficult and requires inference time 

because the vibrator is detected from a wide 

variety of objects that appear in the video. 

For color marker classification, ResNet 34, 

which has a fast inference time, was adopted 

because the video image after the vibrator is 

detected by the aforementioned model is the 

subject of analysis. For AR marker detection, 

we adopted the RetinaNet model, which is 

characterized by high-speed processing, 

because it was confirmed at the 

consideration stage that detection accuracy 

could be ensured. 
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For (4) Vibrator hose color marker 

detection, the ResNet 50 model is used to 

return a bounding box for the location of the 

color marker. The color marker classification 

model (5) determines the three colors of the 

outer color, inner color, and boundary color 

for the image inside the bounding box 

extracted in (4) above. This model used a 

custom classification model of ResNet 34. For 

AR marker detection (6), a RetinaNet model 

was used to return a bounding box for the 

location of the AR marker. 

 

To build these artificial intelligence models, 

training data were acquired, and the 

analysis results were verified at an actual 

concrete construction site on the dates shown 

in Table 1 for concrete pouring days from 

June to December 2020. Note that all work 

days were for actual construction work, and 

the system was characterized by the fact that 

various training data were acquired at the 

actual construction site and models were 

built. 

 

The number of training data values for the 

artificial intelligence model is shown in Table 

2. Learning was performed using a total of 

more than 20,000 training data images. The 

reason why the color marker classification 

model has a large amount of training data is 

that there were 12 types of color markers and 

6 intermediate colors, and training was 

performed to make them classifiable. 

 

Table 1 Teacher Data Acquisition and Data Validation Dates 

Date Location data Content 

6/4 3SP Bottom plate teacher data image 

6/18 3SP Outside wall, Inside 

wall 

teacher data image 

6/25 1SP Exterior wall teacher data image 

7/2 4SP Interior wall teacher data image 

7/9 2SP interior wall teacher data image 

8/4 Top plate teacher data image 

9/18 1SP column model validation 

10/8 Color top model validation 

11/9 Back wing wall Real-time 

verification 

12/2 Wing wall bottom plate Real-time 

verification 

12/10 Wing wall bottom plate Real-time 

verification 

12/18 Front wing wall Real-time 

verification 

Table 2  Number of images of teacher data 

 Model 

Type 

Number 

of teacher 

data 

Number of 

evaluation 

data values 

Color marker detection 

of vibrator hose 

ResNet50 1,025 264 

Color marker 

classification of 

vibrator hose 

ResNet34 19,348 4,849 

AR Marker Detection RetinaNet 798 198 

Total   21,171 5,311 

Table 3  Determination accuracy of hose color marker 
detection and AR marker detection models 

 Model 
Type 

Fit 
ratio

（％

） 

Reprodu
cibility

（％） 

F-Value 

Color marker detection 

of vibrator hose 

ResNe

t50 

83 96 0.89 

AR Marker Detection Retina

-Net 

86 70 0.77 

Table 4  Judgment accuracy of color marker discrimination 
model 

 Model 

type 

Outside 

color 

Inside 

color 

Fit 

ratio

（％） 

Reprodu-

cibility

（％） 

F-

Value 

Classifi-  ResNet34 Red Yellow 98 98 0.98 

cation    Purple Red 97 96 0.96 

of color   Green Purple 98 95 0.96 

markers   Blue White 98 97 0.97 

   Red Blue 95 96 0.95 

   Purple Green 93 96 0.94 

   Green Yellow 97 99 0.98 

   Blue Red 99 96 0.97 

   Red Purple 94 95 0.94 

   Purple White 96 93 0.94 

   Green Blue 94 92 0.93 

    Blue Green 94 97 0.95 

 

 

(4) Accuracy of the AI model 

The accuracy of the AI model developed in 

this study is shown in Tables 3 and 4. The 

accuracy and recall of the vibrator color 

marker detection was high, and it can be said 

to have high evaluation performance. 

 

 

3. Application to a new site 

 

3.1 Construction site in an area where mobile 

phone service is unavailable 

This time, the compaction management 

system was applied to a part of the "Asuwa 

River Dam Replacement Prefectural Road No. 

4 Bridge and Other Works," a prefectural 

road replacement project associated with the 

Asuwa River Dam construction work, which 

is a project under the jurisdiction of the 

Kinki Regional Development Bureau (Figure. 



 

-6- 

10). This bridge is approximately 44 m long, 

6 m wide, and 3 m deep, and is located in an 

area where mobile phone service is 

unavailable, including the surrounding area. 

It was confirmed that the system worked 

reliably on the wall side of the bridge (Figure. 

11). 

 

 

 

 

 

 

 

 

 

 Figure 10  Location of target construction 

 

 

 

 

 

 

 

 

 

 

Figure 11  System application location 

 

3.2 Ingenuity when applying the system 

(1) Use of satellite communication equipment  

Since the target construction work was in 

an area where mobile phone service is 

unavailable, it was decided to use satellite 

communication equipment to apply the 

system. The satellite communication 

equipment used was "Starlink," developed by 

SpaceX, which is provided by several 

thousand low-earth orbit satellites and 

achieves data communication with 

significantly higher speeds and lower latency 

than conventional satellite communication 

services. 

(2) Communication performance of satellite 

communication equipment: 

 When the equipment was installed at the 

actual site and the data communication 

status was confirmed, a good communication 

environment was ensured, with download 

speeds of 30.4 to 50.2 Mbps and upload 

speeds of 6.25 to 12.4 Mbps (Figure 12). This 

system uploads video images taken with a 

smartphone to a server in 1-minute intervals 

(Figure 13). It was confirmed that the images 

were saved to the server with a time lag of 

about 1.2 minutes, and that there was almost 

no time lag due to the communication 

environment. 

 

 

 

 

 

 

 

 

 

 Figure 12  Equipment installation status at an actual 

site 

 

 

 

 

 

 

 

Figure 13  Time from data acquisition to server storage 

 

3.3 System application results 

As a result of the demonstration, this 

system displayed the results of compaction 

visualization in about 3 minutes and made it 

possible to recognize the compacted areas 

with an error of less than 10 cm. Therefore, 

it was confirmed that reliable compaction can 

be performed on structures (Figure 14). 

 

 

 

 

 

 

 

Figure 14  Compaction visualization results 
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4. Technical improvements for on-site 

application 

 

4.1 Building a website to check the shooting 

conditions 

In order to check and determine the 

appropriateness of the shooting conditions 

using the wearable camera, we built a 

website where the captured video can be 

viewed (Figure 15). On this site, when you 

select the construction location, date, and 

worker ID, a list of videos is displayed by 

time, and you can play and view the video by 

clicking the time you want to check. The 

video is the data captured by the wearable 

camera before it is sent to the cloud and 

processed by AI, so it can be viewed 1 to 5 

minutes after shooting (depending on the 

communication environment). Furthermore, 

since it is created in a web environment, the 

wearable camera video for each worker can 

be viewed on a tablet at the casting site, and 

the worker can check the current shooting 

conditions, and if an abnormality in the angle 

of view occurs, the camera angle can be 

corrected, etc. 

 

  

 

 

 

 

業員動画像ビューワー 

 

Figure 15  Worker video viewer 

 

4.2 Improvement of the visualization system 

(1) Improvement of the registration method for 

various structures 

In order to be able to handle not only 

general rectangular parallelepiped 

structures but also structures of various 

shapes, a mechanism was introduced that 

automatically generates a 3D model by 

importing consecutive coordinate points. 

Table 5 shows an example of input coordinate 

points when the structure is a cylinder. When 

the data are read, a structure model is 

automatically generated (Figure 16). Even if 

the shape is not a cylinder, a 3D model can be 

easily generated by creating the data of the 

outer coordinates. 

(2) Improvement of the method for checking 

areas where compaction is insufficient 

In this system, AR markers for analyzing 

the compaction position are registered at the 

same time as the 3D model is registered 

(Table 6). By making the AR marker number 

appear on the 3D model at the time of 

registration, it is possible to immediately 

determine where the compaction is 

insufficient during construction. As a result, 

we believe that reliable compaction can be 

achieved. 

 

 

 

 

 

 

 

 

Figure 16  Example of cylindrical structure 3D model and 

AR marker display 

Table 5  Example of coordinate point input values 

 

 

 

 

 

 

 

 

 

Table 6  AR marker registration 

 

 

 

 

 

 

 

 

 

 

  

連番 X Y Z

1 1000 500 2000

2 962 309 2000

3 854 146 2000

4 691 38 2000

5 500 0 2000

6 309 38 2000

7 146 146 2000

8 38 309 2000

9 0 500 2000

10 38 691 2000

… … … …

マーカーID マーカー名 X Y

1 1 980 500

2 2 943 684

3 3 839 839

4 4 684 943

5 5 500 980

6 6 316 943

7 7 161 839

8 8 57 684

9 9 20 500

10 10 57 316
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5. Conclusion 

 

We developed a system that quantitatively 

recognizes the compaction points in concrete 

work and visualizes the results in real time, 

and applied it to various sites. For example, 

for the quality control of concrete, it is 

extremely important to put into practical use 

real-time analysis of the concrete compaction 

position, and the authors have been working 

on its development. However, in order to put 

it into practical use, it is necessary to solve 

the following issues: 1) communication 

environment issues in areas where mobile 

phones are not available, and 2) visualization 

system issues. We devised solutions to these 

issues and demonstrated them on site, and 

found that they are practical. 

The main feature of this technology is the 

use of CNN, a type of deep learning artificial 

intelligence model (AI), from video images of 

the compaction work. At this stage, we 

believe that this is the optimal method for 

obtaining accurate information on the 

compaction position before the concrete sets. 

In the future, if more optimal analysis 

methods become available due to advances in 

AI technology, we believe that it will be 

necessary to immediately proceed with 

application and improve the system. 

Approaching real time is the need in the field, 

and it is necessary to be able to take 

measures such as reliable re-compaction. 

This technology won the Excellent 

Technology Award at the 2022 Infrastructure 

DX Competition hosted by the Kinki 

Regional Development Bureau of the 

Ministry of Land, Infrastructure, Transport 

and Tourism15). As a result, it was 

demonstrated and evaluated at the Asuwa 

River Dam Replacement Prefectural Road No. 

4 Bridge and other construction sites. We 

believe this shows the great expectations for 

this technology. In the future, we aim to 

apply and deploy this technology to a variety 

of sites, not only to confirm the validity and 

effectiveness of this technology, but also to 

improve its operability and feasibility. In 

addition, our immediate goal is to add a 

function to automatically determine areas 

where compaction is insufficient. If we can 

automatically determine areas where 

compaction is insufficient, we can also 

consider building a function to notify of areas 

that require re-compaction and a function to 

guide workers. Based on this, it will be 

possible to use it for education and guidance 

for inexperienced workers. 
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