Ecocement

New recycling resources reborn for an affluent future

What is Ecocement?

Ecocement, a coinage associated with Ecology and Cement, is a new type of cement produced from municipal incineration ash, sewage sludge and additional limestone and clay.

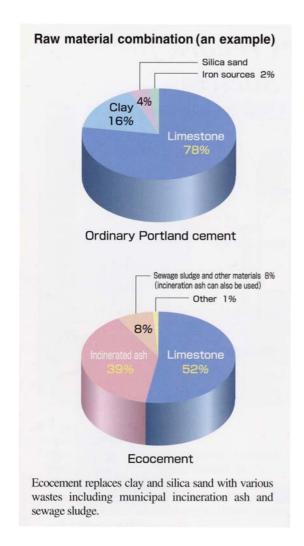
There are two types of Ecocement, Ordinary type and Rapid hardening type.

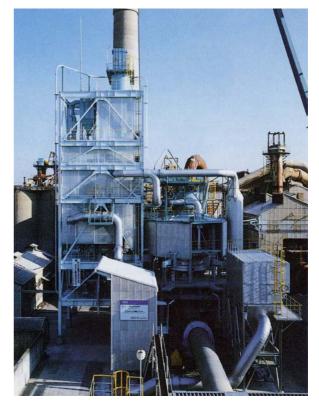
Ordinary type Ecocement

Ordinary type Ecocement, having virtually the same performance as Ordinary Portland cement, can be applied to reinforced concrete structures or a variety of other uses including as soil stabilizer or solidifying agent for sewage sludge.

Rapid hardening type Ecocement

Rapid hardening type Ecocement can be used in the non reinforcing concrete market, taking advantage of its rapid hardening property, which strengthens quicker than high early strength Portland cement.

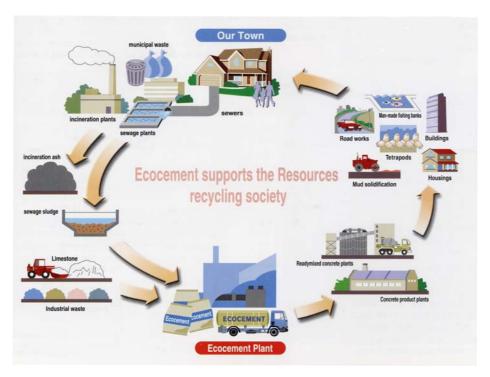

Municipal incineration ash contains minerals that are all essential for producing Portland cement. (See Table 1) However, its high chlorine content makes it an obstacle to use it as a raw material in Portland cement. We have found an effective way of removing the chlorine together with accompanying heavy metals, thereby developing Ordinary type Ecocement whose chemical composition is similar to that of Ordinary Portland cement.

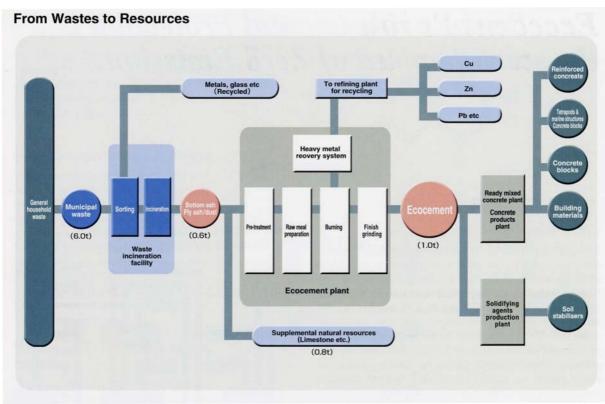

Rapid hardening type Ecocement, on the other hand, turns the chlorine into a useful component of a special cement clinker mineral(C₁₁A₇CaCl₂) which has a very fast hardening property being a match for Jet Cement.

History of Eco cement

The research project on Ecocement started in 1994, the Ecocement manufacturing technology was established in 1997. The first and second Ecocement plants started operation in 2001 and 2004, respectively.

Chemical composition material Ordinary Portland cement Incineration ash				SiO ₂	Ala	Al₂O₃ 3~5			SO₃ 2~3	
				20~25	3-					
				23~46	13~29		4~7		1~4	
	Limestone	47~!	55							
	Clay			45~78	10~26		3~9			
raw aterial	Silica sand			77~96						
io(5) (d	Iron						40~9	0		
	Gybsum	28~4	41					3	37~59	
material		ig.loss	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	SO ₃	R ₂ O	CI	
Chemical composition material		ig.loss	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	SO ₃	R ₂ O	CI	
Ordinary type Ecocement		1.1	17.0	8.0	4.4	61.0	3.7	0.26	0.04	
Rapid hardening type Ecocement		0.8	15.3	10.0	2.5	57.3	9.2	0.50	0.90	
Ordinary Portland cement		1.5	21.2	5.2	2.8	64.2	2.0	0.63	0.01	
									(9	
Physical properties material		C₃S	C ₂ S C ₃		C11A7 · CaCl2		Cl2	C ₄ AF	CaSO ₄	
Ordinary type Ecocement		49	12	14		0		13	6.3	
	hardening type Ecocement	44	10	0		17		8	16.0	
Rapid										



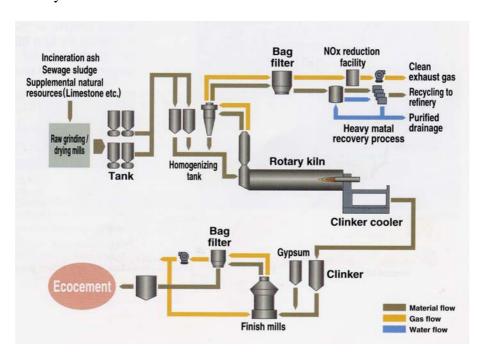


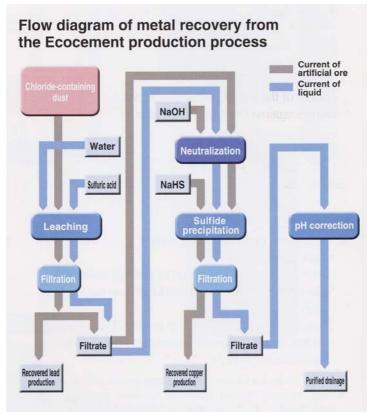
Ecocement experimental plant

Ecocement process:

- produces cement appropriate for a variety of uses due to its stable quality,
- makes contaminants in municipal waste harmless,
- is an excellent Zero-Emission production process.
- is equipped with a perfect environmental protection system including heavy metal recovery and flue gas purification.
- prolongs the life of precious landfill sites and greatly contributes to the Resources Recycling Society.

- Typical raw material combination

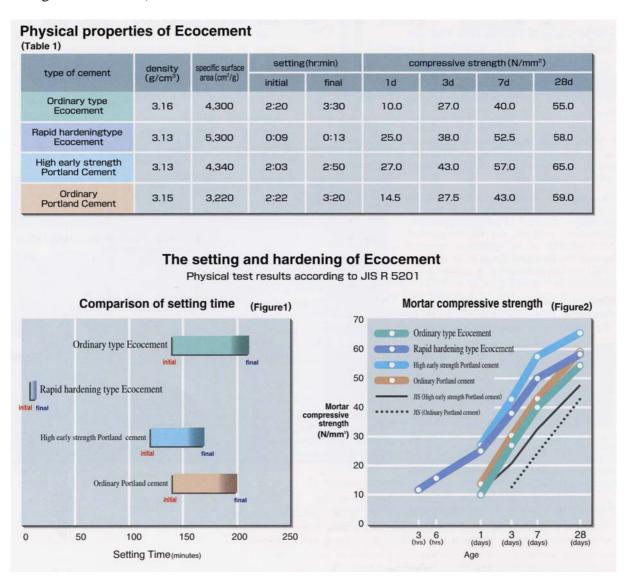

 Municipal incineration ash: 0.6ton (generated from 6.0 tons of garbage and trash)


 Supplemental natural resources (Limestone, etc): 0.8 tons

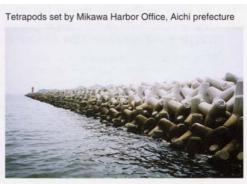
 These raw materials are used to produce Ecocement by grinding and subsequent burning and finish grinding with additional gypsum.
- Ecocement substitutes calcium oxide in incineration ash for a part of limestone (calcium carbonate) which is required for producing cement, thus reducing de-carbonation energy and CO₂ emission.

Process flow

To prevent cement clinker from heavy metal contamination, heavy metals contained in municipal incineration ash are maximally separated from the flue gas stream in the form of metal chloride. Separated metal chlorides are concentrated and purified to the extent that they can be reprocessed as useful metals in refineries. In this way, the Ecocement process saves precious metal resources and at the same time, realizes enhanced environmental protection. Traces of residual heavy metals are melted into clinker, but are harmless because they are all fixed in clinker crystals.



Property of Ecocement


Table 1, Figure 1 and 2 comparatively show the physical properties and the setting/hardening properties of Ecocement (Ordinary type and Rapid hardening type) and Ordinary Portland cement.

Ordinary type showed the setting time and strength development to be similar to Ordinary Portland cement. Rapid hardening type develops strength very fast. (3-hour compressive strength of 12N/mm²)

Examples of applications

from the pamphlet of Taiheiyo Cement Corporation