トポロジー感度を欠陥検出指標に用いた 二次元動弾性時間反転解析とリニアアレイ探傷法への応用

2-D elastodynamic time-reversal analysis using topological sensitivity and its application to ultrasonic linear array testing

田代匡彦・斎藤隆泰(群馬大・理工学府)・木本和志(岡山大・環境生命科学研究科)

Masahiko TASHIRO and Takahiro SAITOH, Gunma University Kazushi Kimoto, Okayama University

FAX: 0277-30-1610 E-mail: t14303058@gunma-u.ac.jp

This study conducts 2-D elastodynamic time-reversal analysis using topological sensitivity. The time-reversal method is one of the effective inverse scattering technique to detect a defect in elastic solids. The topological sensitivity is utilized to determine the convergence area of time-reversed waves from a linear array transducer. The convolution quadrature time-domain boundary element method(CQBEM) for 2-D elastodynamics is used to obtain scattered and time-reversed wave fields. Some defect detection results obtained by using this approach are demonstrated to investigate the performance of the present method.

1. はじめに

構造物維持管理手法の一つである超音波非破壊評価法 では, 材料内部の欠陥の位置, 個数のみならず, 形状まで 正しく再構成することが最終目的である.そのため、こ れまで様々な逆解析手法が提案されてきたが, 例えば, 時 間反転法と呼ばれる手法は有力な逆解析手法の一つであ る.時間反転法は、計測した欠陥からの散乱波を試験体 内部に時間反転し,再入射させた波動の収束点を欠陥位 置と捉える手法であるが, 収束位置だけで欠陥の位置を 特定することは難しい.したがって,波動の収束に対す る何らかの評価指標を導入し、定量的に欠陥を特定する 必要がある. そこで, 本研究では, Bonnet が定式化した, 対象領域の微小なトポロジー変化に対する目的汎関数の 変化率で定義されるトポロジー感度1)を時間反転法の欠 陥検出指標として用いる.以下では,解くべき問題やト ポロジー感度の定式化を説明した後、内部に欠陥が複数 存在する場合における、欠陥形状再構成結果を示す.適 用の対象は、二次元弾性波動場での超音波リニアアレイ 探傷²⁾を想定し、欠陥からの散乱波の計算およびその時 間反転による波動場の計算には、演算子積分時間領域境 界要素法³⁾を用いる.

2. 解くべき問題

本研究で対象とする超音波の送受信概要を Fig.1(a) に 示す.また,境界 Γ を持つ欠陥が存在する領域を Ω_{Γ} と し,以下のような弾性波動場 u_{Γ} の初期値境界値問題 (順 問題) を考える.

$$\mu u_{\Gamma i,jj}(\boldsymbol{x},t) + (\lambda + \mu) u_{\Gamma j,ji}(\boldsymbol{x},t) = 0$$
(1)

$$(\boldsymbol{x} \in \Omega_{\Gamma}, 0 < t)$$

$$q_{\Gamma i}(\boldsymbol{x}, t) = 0 \quad (\boldsymbol{x} \in \Gamma, 0 < t) \tag{2}$$

$$u_{\Gamma i}(\boldsymbol{x},0) = \dot{u}_{\Gamma i}(\boldsymbol{x},0) = 0 \quad (\boldsymbol{x} \in \Omega_{\Gamma})$$
(3)

ここで、 μ , λ は Lamé 定数, t は時間,() は時間微分, q_{Γ} は変位 u_{Γ} に対応する表面力を表し,散乱波は放射条 件を満足するものとする.本研究では,解析対象領域 Ω_{Γ} 内部に入射波を送信し,欠陥からの散乱波を,Fig.1(a)の ような, M 個のアレイ素子 z^{m} (m = 1, 2, ..., M) で受信 し,受信した散乱波形から欠陥の位置,個数,形状を決定

Fig. 1 Problems (a) design domain (b) topological sensitivity.

する問題へと帰着させる. ここで, 欠陥が存在しないと 仮定した場合のアレイ探触子の表面境界 S^{obs} 上の受信 点 z^m における弾性波動場 $u_0(z^m, t)$ と実際の位置に欠 陥が存在する場合の計測データ $u_{\Gamma}^{\text{obs}}(z^m, t)$ の差である 以下の目的汎関数 $J(\Omega_0)$ を導入し, 次節で説明する目的 汎関数より導出されるトポロジー感度により, 欠陥の位 置, 個数, 形状を決定する.

$$J(\Omega_0) = \frac{1}{2} \sum_{m=1}^{M} \int_0^T \varphi(\boldsymbol{u}_0(\boldsymbol{z}^m, t), \boldsymbol{z}^m, t) dt \qquad (4)$$
$$(0 < t < T)$$

 $\varphi(\boldsymbol{u}_0(\boldsymbol{z}^m,t),\boldsymbol{z}^m,t) = |\boldsymbol{u}_0(\boldsymbol{z}^m,t) - \boldsymbol{u}_{\Gamma}^{\text{obs}}(\boldsymbol{z}^m,t)|^2 \quad (5)$

式 (4) の目的汎関数 J(Ω₀) を導入し, 次節で説明する目 的汎関数より導出されるトポロジー感度より, 最適な欠 陥の位置, 個数, 形状を決定する.

3. 時間反転法とトポロジー感度

Fig.1(b) のような, 欠陥が存在しない領域 Ω_0 内部の 内点 x に, 新たな無限小の空洞 (半径 ε) が発生した時の 目的汎関数を $J(\Omega_{\varepsilon})$ とすると, 一般的に, トポロジー感 度は, 空洞発生前後の目的汎関数の変化率を, 発生した空 洞の面積で除した形で定義され、以下の式で与えられる.

$$\mathcal{T}(\boldsymbol{x}) = \lim_{\varepsilon \to 0} \frac{J(\Omega_{\varepsilon}) - J(\Omega_{0})}{\pi \varepsilon^{2}}$$
(6)

式 (6) より, 実際の空洞位置 x のトポロジー感度 $\mathcal{T}(x)$ は、目的汎関数が減少する方向 $(J(\Omega_{\varepsilon}) < J(\Omega_{0}))$ より、 必ず負であり、大きな値をもつと考えられる. 式(4)-(6) より,本解析で用いるトポロジー感度 $\mathcal{T}(x)$ は以下の式 で与えられる.

$$\mathcal{T}(\boldsymbol{x}) = \left(\boldsymbol{\sigma}[\hat{\boldsymbol{u}}_0] * (\boldsymbol{A}:\boldsymbol{\sigma}[\boldsymbol{u}_0]) + \rho \dot{\boldsymbol{u}}_0 * \dot{\boldsymbol{u}}_0\right)(\boldsymbol{x},T) \quad (7)$$

$$A_{ijkl} = \frac{1-\nu}{\mu} \left[\left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right) - \frac{1}{2(1+\nu)} \delta_{ij} \delta_{kl} \right]$$
(8)

ここに, $\hat{\boldsymbol{u}}_0(\boldsymbol{x},t)$ はトポロジー感度 $\mathcal{T}(\boldsymbol{x})$ を解析的に解く ために定義した随伴波動場の解であり、その時の応力場 を σ とする.また、*は畳込み積分、 δ_{ik} はKroneckerの デルタを表す.この随伴波動場を,順問題の解 $u_0(z^m,t)$ と実際の空洞により得られる計測データ $\boldsymbol{u}_{\Gamma}^{\mathrm{obs}}(\boldsymbol{z}^{m},t)$ の 差を振幅とし、受信点 z^m を波源とする点源波を時間反 転させることで求める. その際, 順問題と同様に, 無限領 域を考慮する. 順問題と時間反転させて得られる随伴波 動場の解より,式(7)のトポロジー感度T(x)を対象領 域 Ω₀ 内部の全内点で求めることで, 最適な空洞の位置, 個数,形状を決定する.

4. 数值解析例

解析モデルは, Fig.2(a) のような, 対象領域 Ω_Γ 内部に 4つの円筒空洞(半径 a)が,各方向 10a の間隔で存在す るモデルを考える.上方に位置する2つの空洞の中心か ら x₂ 方向 25a 離れた位置にアレイ探触子を設置し, 平 面波を角度 0° で送信し, Fig.2(a) のような 64 個の素子 $z^{m}(m = 1, 2, \dots, 64)$ で受信した散乱波形から, 未知の 空洞の位置, 個数, 形状を決定する解析を行った.

二次元弾性波動解析 (順解析) (1)

本解析で送信する平面波は,探触子面 S^m 上における $oldsymbol{z}^m (m=1,2,\cdots,64)$ からのポイントソースのリッカー 波の重ね合わせと考え、次式で与えた.

$$u_{\Gamma i}^{\rm in}(\boldsymbol{x},t) = \sum_{m=1}^{64} \int_{S^m} G_{ij}(\boldsymbol{x},\boldsymbol{z}^m,t) * q_{\Gamma j}(\boldsymbol{z}^m,t) dS_z \quad (9)$$

$$q_{\Gamma j}(\boldsymbol{z}^m, t) = \frac{\sqrt{\pi}}{2} \delta_{2j} A_0(\alpha - 0.5) \exp(-\alpha) \qquad (10)$$

$$\tau z \tau z \cup, \qquad \alpha = \left[\frac{w_p}{2} \left(t - t_s - t_m\right)\right]^2 \tag{11}$$

ここに、 $G(x, z^m, t)$ は二次元弾性波動問題における時 間領域の基本解, A_0 は振幅, ω_p は中心周波数 f_p に対 応する角周波数, t_s はリッカー波のピーク時刻である. 式(11)より,各アレイ素子にディレイ時間tm を与える ことで,任意の方向に入射波を与えることができる.な お、解析条件は、振幅 $A_0 = 100$ 、中心周波数 $f_p a/c = 0.5$ 、 ピーク時刻 $t_s = 1/f_p$ として与えた. 境界要素解析では, 空洞 1 つあたりの要素数を 72, 総時間ステップ数 N を N = 512, 時間増分 $c_L \Delta t/a = 0.346$ で与えた. また, 縦 波速度 c_L , 横波速度 c_T の比は $c_L/c_T = \sqrt{3}$ であり, ポア ソン比 ν は $\nu = 0.25$ とした. Fig.2(b)-(c)は、それぞれ ビームステアリングすることによって得られる平面波の 入射角 θ が $\theta = 0^{\circ}$ の場合の $c_L t/a = 24.22, 41.52$ におけ る空洞周辺の二次元弾性波動場を示している. なお,参 考のため、空洞を白円で示してある. Fig.2(b)-(c) より、

Fig. 2 Numerical examples (a)analysis model, (b) total wave fields at $c_L t/a = 24.22$ (c) $c_L t/a =$ 41.52 (d)topological sensitivity in Ω_{Γ} .

入射波の伝搬と,空洞からの散乱波が発生・伝搬してい る様子を確認することができる.以上の数値解析結果で 得られた各素子上の点*z^m* における散乱波動場を, 計測 データ $\boldsymbol{u}_{\Gamma}^{\mathrm{obs}}(\boldsymbol{x},t)$ として時間反転解析に用いる.

時間反転法による欠陥形状再構成 (逆解析) (2)

Fig.2(a) のような, 1 辺 40a の対象領域 Ω_Γ 内部に存 在する円筒空洞の位置, 個数, 形状を決定した数値解析結 果を示す. 解析パラメータは, 先に示した二次元弾性波 動解析で用いたものと同様である. Fig.2(d) は, 対象領 域 Ω_Γ 内部の 101 × 101 = 10201 点の全内点でのトポロ ジー感度 $\mathcal{T}(x)$ を求めた結果である.なお、トポロジー 感度 $\mathcal{T}(m{x})$ は, その最小値の絶対値 | $\mathcal{T}_{
m min}$ | で無次元化し た値を用いている. Fig.2(d) より, トポロジー感度 $\mathcal{T}(\boldsymbol{x})$ は,実際の空洞の位置周辺で大きな負の値を示している ことが見て取れる. 以上のことから, 本手法を用いて, 対 象領域 Ω_Γ 内部の未知の欠陥の位置, 個数, 形状を正しく 決定できており、本手法の妥当性が示せた.

まとめと今後の課題 5.

対象領域 Ω_Γ 内部に存在する円筒空洞に対して,トポ ロジー感度 T(x) を欠陥検出指標に用いた時間反転解析 を行い、欠陥の位置、個数、形状を正しく決定することが できた. 今後は, 三次元弾性波動問題に拡張する予定で ある.

参考文献

- 1) 斎藤隆泰,田代匡彦,森川光,木本和志:トポロジー感 度を欠陥検出指標に用いた時間反転法の3次元マト リクスアレイ探傷法への応用, 土木学会論文集 A2(応 用力学), vol.75, No.2, pp.I_41-I_49, 2019.
- 2) 中畑和之, 上甲智史, 廣瀬壮一:逆散乱解析法の超音 波フェーズドアレイ探傷への応用,応用力学論文集, Vol.10, pp.61-68, 2007.
- 3) 斎藤隆泰, 近澤文香, 廣瀬壮一: 演算子積分時間領域境 界要素法を用いた飽和多孔質弾性体における大規模 波動散乱解析, 土木学会論文集 A2(応用力学), Vol.68, pp.187-197, 2012.