参考表 9.1 対象として設定されている構造物 (津波避難ビル)

対象として設定されている構造物

津波避難ビル

出典資料(基準・ガイドライン)

1) 津波避難ビル等の構造上の要件の解説、国総研資料第673号

2) 平成23年度建築基準整備促進事業「40.津波危険地域における建築基準等の整備に資する検討」、中間報告書(その2)

発行者 / 発行年

- 1) 国土交通省国土技術政策総合研究所 / 平成24年3月(2012.3)
 - 2) 東京大学生産技術研究所 / 平成 23 年 10 月 (2011.10)

荷重の種類 津波先端荷重 水平荷重 衝擊段波波力 段波波力 波力と区別なし 参考表 9.2~9.4 波力 \bigcirc 鉛直荷重 全揚圧力 津波非先端荷重 水平荷重 抗力 揚圧力 鉛直荷重 浮力 \bigcirc 参考表 9.5 越流時荷重 水平荷重 水位差 流体力 鉛直荷重 揚圧力 浮力 漂流物荷重 参考表 9.6~9.8 水平荷重 衝突荷重 \bigcirc せき止め荷重

参考表 9.2 対象として設定されている構造物 (津波避難ビル)

大項目	小項目	細目		算定式		ページ	備考
津波	水平	波力	<u>•津沥</u>	<u>皮波圧算定式</u>		1)	算定式は,長周期波(ソリトン分裂波
先端部	荷重					I -7	を含む)を造波する遡上津波の水理模型
荷重				$qz = \rho g(ah - z)$		-	実験を行った朝倉らの算定式を参考に
(片側の						I -10	したものである。
みに水圧			qz:構	造設計用の進行方向の津波波圧(kN/m²), ρ:水の単位体和	責質量(t/m³)		左表中の(一)は遮蔽物の有無による
が作用し			g:重	力加速度 $(\mathbf{m/s^2})$, h :設計用水深 (\mathbf{m}) , z :当該部分の地面かり	うの高さ (z		比が 1.5 倍程度であることから,浸水係
ている状			≦z≦a	ah) (m), a: 水深係数 (=3.0)			数 a は 3.0 (朝倉ら) /1.5=2.0 としてい
態)							る。
			次に	表に掲げる要件に該当する場合は、それぞれ a の値の欄の数値 と	とすることが		左表中の(二)は津波の不確実要素を
			できる	0			考慮して割増係数 (=1.5) を考慮して浸
				要件	aの値		水係数は1.5 としている。
			(-)	津波避難ビル等から津波が生じる方向に施設又は他の建築	2		
				物がある場合(津波を軽減する効果が見込まれる場合に限る)			
			(二)	(一)の場合で,津波避難ビル等の位置が海岸及び河川から	1.5		
				500m以上離れている場合			
				出典:津波避難ビル等の構造上の要件の解説,国総研資料第6 ※参考表9.3 および参考表9.			

参考表 9.3 対象として設定されている構造物 (津波避難ビル)

大項目	小項目	細目	算定式	ページ	備考
津波	水平	波力	· 水深係数 a	1)	・水深係数 a=3.0 の場合
先端部	荷重		遮蔽物のある地域	I -7	水深係数 a=3.0 は, ソリトン分裂が生
荷重			a=1.5* a=2.0	-	じない条件での津波波圧を整理した値
(片側の			500m	I -10	であり,衝撃波圧およびソリトン分裂に
みに水圧			遮蔽物		は適用できない。
が作用し					· 水深係数 a=3.0 以外
ている状					係数 a=3.0 以外のときは, 東日本大震
態)			a=1.5 [⋆]		災津波の被害調査結果を参考に係数を
			遮蔽物		設定したものである。
			a=1.5 [*]		
			遮蔽物のない地域		
			#a=1.5 への低減は津波の流速増加がない地域を対象とする		
			図 水深係数 a の模式図		
			出典:津波避難ビル等の構造上の要件の解説,国総研資料第 673 号		

参考表 9.4 対象として設定されている構造物 (津波避難ビル)

大項目	小項目	細目	算定式	ページ	備考
津波	水平	波力	・津波波力算定式	1)	<参考文献>
先端部	荷重		$Qz = \rho g \int_{z_1}^{z_2} (ah - z)Bdz$	I -7	朝倉良介,岩瀬浩二,池谷毅,高尾誠,
荷重			$Qz = \rho g \int_{z_1} (un - z) B dz$	-	金戸俊道,藤井直樹,大森政則:護岸を
(片側の				I -10	越流した津波による波力に関する実験
みに水圧			Q_z : 構造設計用の進行方向の津波波力(kN), B : 当該部分の受圧面の幅(m)		的研究,海岸工学論文集,第 47 巻,
が作用し			z_l : 受圧面の最小高さ($0 \le z_1 \le z_2$)(m), z_2 : 受圧面の最小高さ($0 \le z_2 \le ah$)		pp.911-915, 2000
ている状			(m)		東京大学生産技術研究所: 平成 23 年度
態)					建築基準整備促進事業「40.津波危険地
			•		域における建築基準等の整備に資する
			$Qz=\rho g\int_{z1}^{z2}(ah-z)Bdz$ 建築物		検討」,中間報告書(その 2),pp.2-1~
			図 新ガイドライン(4.2)式による津波波力 出典:津波避難ビル等の構造上の要件の解説 国総研資料第 673 号		2-22, 2011

参考表 9.5 対象として設定されている構造物 (津波避難ビル)

大項目	小項目	細目	算定式	ページ	備考
津波	鉛直	浮力	・水没した建築物体積(内部空間の容積を含む)に相当する浮力を	1)	
非先端部	荷重		<u>考慮した算定式</u>	I -18	
荷重					
			$Qz = \rho gV$		
			Qz : 浮力(kN), V : 津波に浸かった建築物の体積(\mathbf{m}^3)		

参考表 9.6 対象として設定されている構造物 (津波避難ビル)

大項目	小項目	細目	算定式	ページ	備考
漂流物	水平	衝突	・松富の評価式(流木の衝突力)	2)	水路実験と空中での大規模実験を実
荷重	荷重	荷重	$\frac{F_m}{\gamma D^2 L} = 1.6 C_{MA} \left\{ \frac{V}{(gD)^{0.5}} \right\}^{1.2} \left(\frac{\sigma_f}{\gamma L} \right)^{0.4}$	参-16	施するとともに,見かけの質量係数を定
			$\frac{1}{\gamma D^2 L} = 1.0C_{MA} \left(\frac{1}{(gD)^{0.5}} \right) \left(\frac{1}{\gamma L} \right)$		量化し,衝撃力評価式を理論的な考察か
					ら算定式を提案したものである。見かけ
			Fm: 衝突力, Cma: 見かけの質量係数 (段波, サージでは 1.7), vao: 流木		の質量係数は、段波で1.7、定常流れで
			の衝突速度, D :流木の直径, L :流木の長さ, σ_f :流木の降伏応力, γ :		1.9 を定めている。
			流木の単位体積重量, g:重力加速度, V:漂流物の衝突速度・移動速度		<参考文献>
					松冨英夫:流木衝突力の実用的な評価式
					と変化特性, 土木学会論文集, No.621/II
					-47, pp.111-127, 1999
			・池野・田中の評価式(流木の衝突力)	2)	漂流物の形状や配置による違いを考
			$\frac{F_m}{\varrho M} = S \cdot C_{MA} \left\{ \frac{V}{\varrho^{0.5} D^{0.25} L^{0.25}} \right\}^{2.5}$	参-16	慮した漂流物の衝突力を表現した算定
			$\frac{1}{gM} = S \cdot C_{MA} \left(\frac{1}{g^{0.5} D^{0.25} L^{0.25}} \right)$		式である。漂流物の形状や配置は、付加
					質量係数 C _{MA} で表現している。
			F_H : 漂流物の衝突力, S : 係数(=5.0), C_{MA} : 付加質量係数, V_H : 段波速		算定式は,段波津波を造波させた実験
			度, D : 漂流物の代表高さ, L : 漂流物の代表長さ, M : 漂流物の質量, g :		を行い, 円柱, 角柱, 球の3種類の漂流
			重力加速度		物 (木材) が衝突した場合の結果との比
					較を行い,妥当性の確認を行っている。
					<参考文献>
					池野正明, 田中寛好: 陸上遡上津波と漂
					流物の衝突力に関する実験的研究,海岸
					工学論文集, 第 50 巻, pp.721-725, 2003

参考表 9.7 対象として設定されている構造物 (津波避難ビル)

大項目	小項目	細目	算定式	ページ	備考
漂流物	水平	衝突	・水谷の評価式(コンテナの衝突力)	2)	規則波と孤立波を造波させ,エプロン
荷重	荷重	荷重	$F_m = 2\rho_w \eta_m B_c V^2 + \frac{WV}{gdt}$	参-17	上のコンテナ (アクリル製) を漂流させ
			$I_m = 2P_w I_m D_c v \qquad gdt$		た実験結果と比較を行い,妥当性の検証
					を行っている。論文では, コンテナの長
			F_m : 漂流衝突力, dt : 衝突時間, ρ_m : 最大遡上水位, ρ_w : 水の密度, B_c :		さ 2 種類,質量を 6 種類変化させた実
			コンテナ幅, V_x : コンテナの漂流速度, W : コンテナ重量, g : 重力加速度		験を実施し,算定式で実験結果を近似で
					きることを示している。
					<参考文献>
					水谷法美,高木祐介,白石和睦,宮島正
					悟, 富田孝史:エプロン上のコンテナに
					作用する津波力と漂流衝突力に関する
					研究,海岸工学論文集,第 52 巻,pp.741-
					745, 2005

参考表 9.8 対象として設定されている構造物 (津波避難ビル)

大項目	小項目	細目	算定式	ページ	備考
漂流物	水平	衝突	・有川の評価式(コンテナの衝突力)	2)	Hertz の理論にもとづく算定式によ
荷重	荷重	荷重	$F_{m} = \gamma_{p} \chi^{2/5} \left(\frac{5}{4} \widetilde{M}\right)^{3/5} v^{6/5}$	参-17	り,鋼製コンテナ漂流物の衝突力が評価
			$F_m = \gamma_p \chi \left(\frac{-M}{4}\right) V$		できることを実験結果から確認してい
			$ \chi = \frac{4\sqrt{a}}{3\pi} \frac{1}{k_1 + k_2}, k = \frac{1 - v^2}{\pi E}, \widetilde{M} = \frac{M_1 M_2}{M_1 + M_2} $		る。
					<参考文献>
			F : 衝突力, α : 衝突面半径 1/2, E : ヤング率(コンクリート版), ν : ポ		有川太郎,大坪大輔,中野史丈,下迫健
			アソン比、 m :質量、 v :衝突速度、 γ_p :塑性によるエネルギー減衰効果		一郎, 石川信隆: 遡上津波によるコンテ
			(0.25), 添え字 k, m: 衝突体と被衝突体		ナ漂流力に関する大規模実験,海岸工学
					論文集,第 54 巻,pp.846-850,2007
			・FEMA の評価式(木材・丸太・コンテナの衝突力)	2)	<参考文献>
			$F_m = 1.3u_{\text{max}}\sqrt{kM(1+c)}$	参-17	FEMA : Guidelines for Design of Structures
			$m = max \sqrt{MT} (1 + 0)$		for Vertical Evacuation from Tsunamis,
					FEMA P-646, 2012
			F_i : 衝突力, u_{max} : 漂流物を運ぶ流体の最大流速, k : 衝突漂流物(剛性 k_d)		
			と被衝突構造体(剛性 k_s)の合成有効剛性($1/k=1/k_s+1/k_d$), m_d :漂流物の		
			質量, c:付加質量係数		