都市下水道管渠網の空気圧縮・マンホール蓋飛散を 伴う豪雨水流出シミュレーションモデル

STORMWATER RUNOFF SIMULATION MODEL WITH AIR COMPRESSION IN URBAN DRAINAGE SEWER PIPE SYSTEMS

渡辺 政広

Masahiro WATANABE

NPO法人愛媛県建設技術支援センター・愛媛大学名誉教授 (〒790-0001 松山市一番町四丁目1番地2)

1. はじめに

近年,各地の都市下水道流域で,異常豪雨あるい はゲリラ豪雨により,大規模な浸水はんらんを伴う 流出現象や,下水道管渠システムで管渠内空気が圧 縮されてマンホール蓋が飛散する流出現象などが, しばしば,現れるようになってきているが,こうし た流出現象を精度高くかつ実用的にシミュレートで きる流出解析モデル(MOUSE, InfoWorks, SWMM などの海外モデル)の開発も進展してきている.

本論文では、はじめに、海外モデルにおいて主用 されてきている SLOT Model において、本来、考 慮に入れるべき「取付管」が全く考慮されていない ことに着目し、新たに、取付管を組み入れた SLOT Model の流れの基礎式を導出した.次に、下水 道管渠網内で発生する空気圧縮とマンホール 蓋飛散を伴う雨水流出を詳細にシミュレート する雨水流出モデルの流れの基礎式を導出し、 その適用性を流出実験により調べた.

2. SLOT Model の適用性の向上に関する 考察

(1) 取付管を組み入れた下水道管渠網の 管水路非定常流の流れの基礎式

都市域の下水道管渠網には,雨水や家庭汚水 を下水道管渠に流入させるための取付管(直径 10~15cm の円形管渠)が、多数、接続されており、 下水道管渠網の非定常管水路流れ(サーチャージ流 れ)の導出に当たっては、それら取付管における流 出水の貯留を考慮する(これまで考慮されることは なかった)必要があると考えられる.

下水道管渠網の非定常管水路流れを導出するにあ たり、ここでは、従来より考慮されてきている、「水 の圧縮性」と「管壁の弾性変形」のみならず、上述 した多数の取付管における流出水の貯留(出入り) を考慮する.

a) 水の圧縮性

水の圧縮性については、図-1の座標軸を用いる

図-1 下水道管渠における流水の圧縮性

と、次の2式が書き表される(図-1).

$$K = \frac{dp}{\frac{d\rho}{\rho}} \tag{1}$$

$$\frac{dp}{dz} = \rho(z)g \tag{2}$$

ここに、p:水圧、 p_0 :大気圧(=0)、 ρ :水の 密度、 ρ_0 :大気圧下での水の密度、K:水の体積 弾性係数、z:水深(図-1)、y:圧力水頭、 D_0 : 変形前の(大気圧下での)管渠径、g:重力加速度.

式(1)を式(2)に代入し, z=0, $\rho=\rho_0$ から,密 度変化に寄与する水深 $z=y-D_0$ まで積分すると, 次式を得る.

$$\rho = \rho_0 + \rho_0 \frac{\rho_0 g}{K} \cdot (y - D_0)$$

= $\rho_0 \left\{ 1 + \frac{B_0 (y - D_0)}{A_0} \right\}$ (3)
; $B_0 = g(\rho_0 / K) A_0$

ここに, B_0 :水の圧縮性に起因するスロット幅(後に議論する), A_0 : D_0 に対応する(大気圧下での)流水断面積.

b) 管壁(流水断面積)の弾性変形

圧力水頭が $\rho_0 g(y - D_0)$ だけ増大す るときの流水断面積Aの増大については, よく知られているように,次の2式が書 き表される.

$$2\delta\Delta\sigma = \rho_0 g(y - D_0) D_0 \tag{4}$$

$$\Delta \sigma = \frac{\Delta D}{D_0} E \tag{5}$$

ここに、 δ :管壁の厚さ、 $\Delta \sigma$:圧力水頭 の増大に伴う管壁材引張り応力の増分、 ΔD :圧力水頭の増大に伴う管渠径の増分、 *E*:管壁材のヤング率.

上の2式より,次の流水断面積*A*の式を得る.また,同時に,潤辺*S*の増大を表す式(7)を得る.

$$A = A_{0} + A_{0} \cdot \frac{D_{0}}{E\delta} \rho_{0} g (y - D_{0})$$

= $A_{0} + B_{r} (y - D_{0})$
; $B_{r} = A_{0} \frac{D_{0}}{E\delta} \rho_{0} g$, $A_{0} = \frac{\pi}{4} D_{0}^{2}$ (6)

$$S = S_0 + 2\frac{B_r}{D_0}(y - D_0) ; \quad S_0 = \pi D_0 \quad (7)$$

ここに、 $A_0: D_0$ に対応する(大気圧下での)流 水断面積、 B_r :管壁の弾性変形に起因するスロット 幅(後に議論する)、 $S_0: D_0$ に対応する(大気圧 下での)潤辺.

c)管水路非定常流の流れの基礎式

図-2 に示すように、t = t に①-①'断面間にあった微小流体部分が、 $t = t + \Delta t$ には②-②'断面間の 微小流体部分へと移動すると考える.ここに、各断 面の各時刻における水理量、たとえば水の密度 ρ は、 表-1 のように表される.

図-2 微小流体部分の流れ

表-1 各断面の各時刻における水理量

断面	<i>x</i> 座標	t座標	密度 ρ
1	x	t	ρ
①'	$x + \Delta x$	t	$ ho + (\partial ho / \partial x) \Delta x$
2	$x + V\Delta t$	$t + \Delta t$	$ ho + V (\partial ho / \partial x) \Delta t + (\partial ho / \partial t) \Delta t$
2'	$x + \Delta x + V \Delta t$		
	$+ (\partial V / \partial x) \Delta x \Delta t$	$t + \Delta t$	$\rho + V(\partial \rho / \partial x) \Delta t + (\partial \rho / \partial x) \Delta x + (\partial \rho / \partial t) \Delta t$

この微小流体部分の流れに,水の圧縮性,管壁の 弾性変形,および取付管における流出水の貯留を考 慮して,質量保存則と運動量保存則を適用する.

はじめに,運動量保存則を適用すると,次の運動 方程式(8)を得る.

運動方程式

$$\frac{1}{g}\frac{\partial V}{\partial t} + \frac{V}{g}\frac{\partial V}{\partial x} + \frac{\partial y}{\partial x} - i_0 + \frac{n^2|V|V}{R^{4/3}} - \frac{1}{g}\frac{A_L}{A}V\frac{\partial y}{\partial t} \cdot \frac{N}{\sin\theta} = 0$$
(8)

ここに、V:流速、y:管渠底から測った水深(圧 力水頭)、R:径深(=A/Sであり、Aは式(6)で、Sは式(7)で表される)、 i_0 :管渠こう配、n:マニン グの粗度係数、 A_L :取付管の断面積、N:取付管 の管渠 1m 当たりの接続本数、 θ :取付管の水平面 となす接続角度、x:距離、t:時間.

次に,質量保存則を適用すると,次の連続の式(9) を得る.

$$\frac{\partial(\rho A)}{\partial t} + \frac{\partial(\rho AV)}{\partial x} + \rho A_L \frac{N}{\sin\theta} \cdot \frac{\partial y}{\partial t} = 0 \quad (9)$$

ここで,上式(8)に,式(3)および式(6)より得られる 次の諸式,

$$\frac{\partial \rho}{\partial t} = \rho_0 \frac{B_0}{A_0} \frac{\partial y}{\partial t}, \qquad \frac{\partial \rho}{\partial x} = \rho_0 \frac{B_0}{A_0} \frac{\partial y}{\partial x}, \\
\frac{\partial A}{\partial t} = B_r \frac{\partial y}{\partial t}, \qquad \frac{\partial A}{\partial x} = B_r \frac{\partial y}{\partial x}$$
(10)

を代入し, 整理すると, 最終的に, 次の連続の式(11) を得る.

連続の式

$$\frac{\partial y}{\partial t} + V \cdot a^2 \left(\frac{1}{a_r^2} + \frac{1}{a_0^2} \right) \cdot \frac{\partial y}{\partial x} + \frac{a^2}{g} \frac{\partial V}{\partial x} = 0$$
(11)

ここに,

$$a = \frac{a_0}{\sqrt{1 + \frac{a_0^2}{a_r^2} + \frac{a_0^2}{a_L^2}}}$$
(12)

$$; \begin{cases} a_0 = \sqrt{\frac{K}{\rho_0}} & (\text{水の圧縮性に起因する} \\ \text{ E力波伝播速度}) \end{cases}$$
;
$$\begin{cases} a_r = \sqrt{\frac{\delta E}{\rho_0 D_0}} & (\text{管壁の弾性変形に} \\ \text{ 起因する圧力波伝播速度}) \end{cases}$$

$$a_L = \sqrt{\frac{gA_0 \sin \theta}{NA_L}} & (\text{取付管の} \\ \text{ 流出水貯留に起因} \\ \text{ する圧力波伝播速度}) \end{cases}$$

d) 実流域の下水道管渠網における 管水路非定常流の圧力波伝播の特性

実流域(松山市および大阪市の公共下水道)の下 水道管渠網を構成する各管渠の諸元を調査した結果 をもとに,上述した3つの圧力波伝播速度を算定し た.この算定結果を表-2に示す.ここに,*d*:取付 管の直径,*D*:=*D*₀である.

表-2 および式(12)から明らかなように,実流域の 下水道管渠網では,全般に亘り,次式(13)が成立し ていることが分かる.

表-2 実流域の下水道管渠網	を構成する各種下水道管	渠における圧力波伝播速度

管渠諸元						∋ 竺 は			
本管			取付管			計			
D	δ	E	d	N	θ	<i>a</i> ₀	a _r	a _L	a
(m)	(m)	(N/m^2)	(m)	(本/m)	(度)	(m/s)	(m/s)	(m/s)	(m/s)
0.25	0.028	28,000	0.15	1/14	25	1,446	1,771	13	13
0.5	0.042			1/17			1,534	28	28
1.0	0.082			1/20			1,515	61	61
2.0	0.145			1/24			1,425	133	132

$$a = \frac{a_0}{\sqrt{1 + \frac{a_0^2}{a_r^2} + \frac{a_0^2}{a_L^2}}} \approx a_L$$
(13)

すなわち,実流域の下水道管渠網の管水路非定常 流れの圧力波伝播速度は,取付管により決定づけら れている(規定されている)ことが分かる.

(2) 取付管を組み入れた SLOT Model の流れの 基礎式

2.(1) で述べた,水の圧縮性,管壁の弾性変形お よび取付管の流出水貯留を考慮した管水路非定常流 の流れ(圧力流れ・管路流れ)を,図-3に示すよう な,管路頂部に微小幅のスロットを持つ管路(水路) の開水路流れに等価変換する.

<u>水の圧縮性に起因するスロット</u>: 任意の圧力水 頭(水深) y のときの流れについて,管水路非定常 流と同等な質量流量を流下させることのできる,ス ロットを有する開水路流れを考える.なお、質量流 量は次式のように表される.

$$\rho Q = \rho A V = \rho A \frac{1}{n} \left(\frac{A}{S}\right)^{2/3} \sqrt{i_w} \qquad (14)$$

ここに、*i_w*:水面こう配,である.

まず、 $\Delta \rho$ を式(3)で表される密度の変動分、 ΔA を 開水路流れにおける流水断面積の変動分とすると、

$$(\rho_0 + \Delta \rho)A_0 = (A_0 + \Delta A)\rho_0$$

より,

$$\Delta A = \frac{\Delta \rho}{\rho_0} A_0 = \frac{\rho_0 \frac{\rho_0 g}{K} (y - D_0)}{\rho_0} A_0$$
(15)
= $A_0 \frac{\rho_0 g}{K} \cdot (y - D_0) = B_0 (y - D_0)$

したがって、次式(16)で表されるスリット幅 B_0 を持 つスロットを立てる必要がある(図-4).

図-3 スロットを有する下水道管渠の開水路流れ

$$B_0 = g(\rho_0/K)A_0 \tag{16}$$

また、開水路流れにおいては、増大する流水断面 積 ΔA (式(15)) に対応して、潤辺を ΔS だけ増大さ せ、開水路流れの径深が管路非定常流れにおける径 深 A_0/S_0 と同値とならなければならない.すなわち、

$$\frac{A_0 + \Delta A}{S_0 + \Delta S} = \frac{A_0}{S_0}$$

が成立する条件より、次のΔSの式を得る.

$$\Delta S = \frac{\Delta A}{A_0} S_0 = \frac{B_0}{A_0} S_0 (y - D_0)$$

= $4 \frac{B_0}{D_0} (y - D_0)$ (17)

これより,スロット両壁面には,僅かではあるが, 潤辺(潤辺長)が存在することが分かる.

<u>管壁の弾性変形に起因するスロット</u>: 任意の圧 力水頭(水深) y のときの流れについて,管水路非 定常流と同量の流量を流下させることのできる,潤 辺*S*および流水断面積を備えたスロットを有する開 水路流れを考える.なお,流量は次式のように表さ れる.

$$Q = AV = \frac{1}{n} \left(\frac{A}{S}\right)^{\frac{2}{3}} \sqrt{i_w}$$
(18)

先ず,流水断面積については,既に,式(6)において議論されており,次式で表されるスロット幅*B*,を 有するスロットを立てればよいことが分かる(図-4).

図-4 3種のスロットを有する下水道管渠の開水路流れ

$$B_r = A_0 \frac{D_0}{E\delta} \rho_0 g \tag{19}$$

次に, 潤辺の増分 ΔS については, これも既に, 式(7)において議論されており, 次式のようになる.

$$\Delta S = 2 \frac{B_r}{D_0} \left(y - D_0 \right) \tag{20}$$

これより,スロット(幅 B_r)両壁面には,僅かで はあるが,潤辺(潤辺長)が存在することが分かる.

<u>取付管の流出水貯留に起因するスロット</u>: 任意 の圧力水頭(水深) y のときの流れについて,また 管渠の全長(マンホール間距離)に亘って,点在す る取付管における貯留量の総量が,連続したスロッ トにおける貯留量のそれと同量となるような幅*B_L* のスロットを有する開水路流れを考える.

図-2より、次式が成立することが分かる.

$$\frac{A_L(y-D_0)}{\sin\theta}NL_T = B_L(y-D_0)L_T \qquad (21)$$

ここに, L_T :管渠長 (マンホール間距離).

上式より,取付管の流出水貯留に起因するスロットの幅は,次式のように与えられる.

$$B_L = \frac{NA_L}{\sin\theta} \tag{22}$$

なお,この「取付管の流出水貯留に起因する」ス ロットは,貯留域としては作用するが,流水域とし ては作用しない点で,注意が必要である.

流れの基礎式の導出:

図-3, 図-4 および式(16)~(22)で表される特性を もつ,3種のスロットを有する下水道管渠における 開水路非定常流れの基礎式を導出した.

運動方程式

$$\frac{1}{g}\frac{\partial V}{\partial t} + \frac{V}{g}\frac{\partial V}{\partial x} + \frac{\partial y}{\partial x} - i_0 + \frac{n^2|V|V}{R^{\frac{4}{3}}} - \frac{V}{gA_0}B_L\frac{\partial y}{\partial t} = 0$$
(23)

連続の式

$$\frac{\partial y}{\partial t} + V \cdot \frac{B_0 + B_r}{B_0 + B_r + B_L} \frac{\partial y}{\partial x} + \frac{c^2}{g} \frac{\partial V}{\partial x} = 0$$
(24)

$$; \quad \begin{cases} c = \sqrt{g \frac{A}{B_0 + B_r + B_L}} \\ A = A_0 + (B_0 + B_r)(y - D_0) \\ R = \frac{A}{S} \tag{25} \\ S = S_0 + \left(4\frac{B_0}{D_0} + 2\frac{B_r}{D_0}\right)(y - D_0) \\ R = g \frac{\rho_0}{K} A_0 \\ B_r = A_0 \frac{D_0}{E\delta} \rho_0 g \qquad (26) \\ B_L = \frac{NA_L}{\sin \theta} \end{cases}$$

上述したスロット・モデルの特徴は、3種のスロ ットを有しており、そのうちの一つは、貯留域とし てのみ作用するスロットであることである.

下水道管渠網の空気圧縮を伴う雨水流出 シミュレーション・モデル^{1),2)}

(1) 下水道管渠網の空気圧縮を伴う雨水流出の 流れの基礎式

はじめに、図-5に示す、下水道管渠の微小区間の 流れに、空気圧を考慮して、運動量保存則を適用す ると、下水道管渠における雨水の流れの運動方程式 (27)が得られる.

図-5 下水道管渠における雨水流出

雨水流の運動方程式

$$\frac{1}{g}\frac{\partial V_{w}}{\partial t} + \frac{V_{w}}{g}\frac{\partial V_{w}}{\partial x} + \frac{\partial h}{\partial x} + \frac{1}{\rho_{w}g}\frac{\partial p'_{a}}{\partial x}$$

$$-i_{0} + \frac{n^{2}|V_{w}|V_{w}}{R_{w}} = 0$$
(27)

ここに、下添え字wは雨水流に関する諸量である ことを示し、 V_w :流速、h:水深、 p_a' :空気圧(ゲ ージ圧)、 R_w :径深、 i_0 :管渠こう配、n:マニン グの粗度係数、 ρ_w :水の密度、g:重力加速度、x: 距離、t:時間、である.なお、 $p_a'/(\rho_w g) = h_a$: 空気圧(ゲージ圧)水頭、である.

また,質量保存則を適用すると,連続の式(28)が 得られる.

雨水流の連続の式

$$\frac{\partial h}{\partial t} + V_w \frac{\partial h}{\partial x} + \frac{c_w^2}{g} \frac{\partial V_w}{\partial x} = 0$$
; $c_w = \sqrt{g \frac{A_w}{B}}$
(28)

ここに, *c_w*:微小擾乱の伝播速度, *A_w*:流水断 面積, *B*:水面幅.

次に、図-6に示す、下水道管渠の微小区間の空気 の流れに、等エントロピー流れ(式(29))として、運 動量保存則を適用すると、下水道管渠における空気 流動の運動方程式(30)が得られる.また、取付管か らの空気の流入出を考慮して、質量保存則を適用す ると、空気流動の連続の式(32)~(33)が得られる.

図-6 下水道管渠における空気流動

空気の圧縮性の式

$$\left(\frac{p_1}{p_2}\right) = \left(\frac{\rho_1}{\rho_2}\right)^{\gamma} \tag{29}$$

空気流動の運動方程式

$$\frac{\partial V_a}{\partial t} + V_a \frac{\partial V_a}{\partial x} + \frac{1}{\rho_a} \frac{\partial p_a}{\partial x}$$
(30)

$$+ f_D \frac{1}{4R_a} \frac{1}{2} |V_a| V_a - \frac{m'V_a}{\rho_a A_a} = 0$$

$$f_{D} = \frac{4 \times 0.0625}{\left[\log_{10}\left(\frac{\varepsilon}{3.7 \times 4R_{e}} + \frac{5.74}{R_{e}^{0.9}}\right)\right]^{2}}$$
(乱流)
$$f_{D} = \frac{64}{R_{e}}$$
(留流)

空気流動の連続の式

$$A_{a} \frac{\partial \rho_{a}}{\partial t} + \rho_{a} \frac{\partial A_{a}}{\partial t} + \rho_{a} A_{a} \frac{\partial V_{a}}{\partial x} + \rho_{a} V_{a} \frac{\partial A_{a}}{\partial x} + A_{a} V_{a} \frac{\partial \rho_{a}}{\partial x} + m' = 0$$
(32)

$$m' = \frac{m}{\Delta x}$$

$$m = -\rho_0 C_m F_l \left(\frac{p_a}{p_0}\right)^{\frac{1}{\gamma}} \sqrt{\frac{2\gamma}{\gamma - 1} \frac{p_0}{\rho_0} \left\{1 - \left(\frac{p_a}{p_0}\right)^{\frac{\gamma - 1}{\gamma}}\right\}}$$

$$\cdots < \overline{w} \leq \overline{w} \leq \overline{o} \geq \overline{\varepsilon} >$$

$$m = \rho_a C_m F_l \left(\frac{p_0}{p_a}\right)^{\frac{1}{\gamma}} \sqrt{\frac{2\gamma}{\gamma - 1} \frac{p_a}{\rho_a}} \left\{ 1 - \left(\frac{p_0}{p_a}\right)^{\frac{\gamma - 1}{\gamma}} \right\}$$

・・・ <排気のとき>

式(29)~(33)において、下添え字aは空気流動に関する諸量であることを示し、 V_a :流速、 p_a :空気圧(絶対圧)、 p_0 :大気圧、 ρ_a :密度、 ρ_0 :大気密度、 R_a :径深、 A_a :空気流の流動断面積、 f_D^{-3} :摩擦損失係数、 ε :粗度高さ、

 $R_e: レイノルズ数, \gamma: 比熱比 (=1.4), m: 排気 (吸気) 質量流量, <math>F_l:$ 取付管断面積 $(=A_L), C_m:$ 流量係数, $\Delta x:$ 計算距離間隔, である.

なお、マンホール地点における、雨水流および空 気流動の流れの基礎式は、ここでは、紙数の関係で、 省略する.

(2) 流れの基礎式の数値解析(特性曲線法)

ここでは、空気流動の流れの基礎式を、特性曲線 法を用いて数値解析するときの計算式を書き表す.

式(30)と式(32)を線形結合すると、次の特性曲線 式と特性方程式に変換される. すなわち,

特性曲線式:
$$\frac{dx}{dt} = V_a \pm a$$
 ; $a = \sqrt{\gamma \frac{p_a}{\rho_a}}$ (34)

の上で,次の特性方程式が成立することとなる. <u>特性方程式</u>:

$$\frac{dV_{a}}{dt} \pm \frac{a}{\rho_{a}} \frac{d\rho_{a}}{dt} \pm \frac{a}{\underline{A_{a}}} \left(\frac{\partial A_{a}}{\partial t} + V_{a} \frac{\partial A_{a}}{\partial x} \right) + f_{D} \frac{1}{4R_{a}} \frac{1}{2} |V_{a}| V_{a} - m' \frac{V_{a} - a}{\rho_{a} A_{a}} = 0$$
(35)

式(34),(35)において, *a*:空気の圧力波伝播速度, である.

(3) 空気流動の数値解析における解析技術的 工夫

図-8の上図に示すような、雨水流が圧力流れの区間では、通常、下水道管渠内には空気が存在してないため、たとえば、図-7の特性曲線 Ψが存在しない、あるいは途中で消滅するなどし、空気流動解析が不能となる事態が生ずる.

図-7 矩形格子システム上の特性曲線

図-8 圧力流れ区間の空気の流動

そこで、本解析では、仮想的に、図-8の下図に示 すように、下水道管渠頂部付近に、常に、空気が流 動する微小な空間(断面積)を確保して、解析を進 める.

また、この区間における取付管を通じての吸排気 については、式(33)において、 p_0 を、雨水流の管頂 から測った圧力水頭に置き換えて適用する.

(4) 空気流動モデルの適用性の検証

図-9 に示す下水道管渠模型を用いて,空気圧縮を 伴う雨水流出実験を行い,実験結果と提案した空気 流動モデルによるシミュレーション結果を対比して, 本モデルの適用性を調べた.

下水道管渠模型(図-9)は、透明アクリルパイプ 製で、管渠総延長は約11m、管渠直径は10cm、こう 配は2/1 000、粗度係数は0.009である。図-9 に示 すように、7 か所に取付管(内径1cmの円形アクリ ルパイプ)が接続(θ=90°)されている。

<u>流出実験概要</u>: ①初期の流れは,上流部で跳水を 伴うやや複雑な様相を呈している開水路不等流流れ ($Q=3.34 \lambda/s$)である. ② t=6.1s において下 流端のゲートを急閉塞(完全閉塞)する. ③サーチ ャージ流れとバックウォターが,管渠システム 内の空気を上流へと押しやりながら,上流へ向けて

図-9 水理実験に用いた下水道管渠

図-10 流出期間中の水深, 圧力水頭, 空気圧の

時間的·場所的変化

伝播してゆく. ④この間, 圧縮 された管渠システム内の空気圧 は,取付管を通じて大気中へと 排気される. ⑤サーチャージ 流れとバックウォターが管渠シ ステムの上流端に達するとき (t=27.7s),ゲートを急開放(完 全開放)する, ⑥管渠システム 内に貯留されていた流出水は,

下流端に向かって流出しつづける. ⑦この間,管 渠システム内に取付管を通じて吸気がなされるとと もに,管渠システムの下流端では管渠内空気が大気 中へと排気される. ⑧この後,管渠内空気圧,雨 水流出は共に,それぞれ,初期の大気圧,定常不等 流流れに戻る.

なお、流れの水深は、管渠底部で測られた圧力 *p*_{bottom}から、管渠頂部で測られた圧力(=開水路流 れ時は空気圧、サーチャージ流れ時は管渠頂部から 測った圧力水頭)*p*_{crown}を差し引いて算定しており、 この水深データを用いて空気流動解析を行っている.

No. ⑥地点における空気圧(開水路流れ時は空気圧, サーチャージ流れ時は管渠頂部から測った圧力水 頭)について,実測結果と本モデルによるシミュレ ーション結果を対比して,図-11に示す.およそt=15s 以降,シミュレーション結果は実測結果の空気圧を 再現できていない.これは,シミュレーションにお いて与えられた水深情報が不正確で,結果的に, t=15s までの間に,空気をほとんど排気してしまった ためと考えられる.

この点を考慮すれば、シミュレーション結果は実 測結果を、実用できる精度でシミュレートしている と言えよう.

図-11 シミュレートされた空気圧(あるいは管頂から 測った圧力水頭)と実測結果の比較

4. おわりに

ここに提案したスロットモデルについては、その 適用性につて、さらに検討を進める必要がある.

また,空気圧縮を伴う雨水流出シミュレーション モデルについても,その数値解析法と適用性につい て,さらに検討を進める必要がある.

参考文献

- 東 正史・渡辺政広・佐々木悠平・友近榮治:都市下 水道管渠網の空気圧縮を伴う雨水流出モデル,土木学 会論文集 B1, Vol. 70, No. 4, pp. I_775~I_780, 2014.
- 2) 堀江展弘・白石 央・渡辺政広:下水道管渠網における空気圧縮・マンホール蓋飛散を伴う降雨流出解析モデル,第67回(平成27年)土木学会中国支部研究発表会概要集,pp.II-5-1~II-5_2,2015.
- Oosthuizen P. H. and Carscallen W. E.: Compressible fluid flow, p. 230, McGraw-Hill, 1997.