5. 橋梁構造物の被害

5.1 鉄道橋の被害

本地震で被災した鉄道橋の殆どは新幹線であり, 在来線の高架橋被害は一次調査団の調査では確認さ れなかった.在来線については盛土の被害および地 滑りによって土砂が線路に覆いかぶさるなどの被害 が多かった.したがって,本報告では上越新幹線RC 高架橋および RC 橋脚の被害について調査結果を報 告する.一次調査団で調査した新幹線高架橋の一覧 を表-5.1.1 に示す.

今回被災した上越新幹線 RC 高架橋は, 1972 年 6 月の全国新幹線網建造物設計標準(東北,上越,成 田用)および1970年3月の建造物設計標準 鉄筋コ ンクリート構造物および無筋コンクリート構造物, プレストレストコンクリート鉄道橋に基づいて設計 されている.したがって,2003年5月に発生した宮 城県沖を震源とする地震(三陸南地震)において被 災した東北新幹線の RC 高架橋と同じ基準で設計さ

れた高架橋である.

被災した上越新幹線浦佐駅~燕三条駅間における RC 高架橋のうち,長岡市南部に位置する滝谷トン ネル(東京起点キロ程 205k 647m)~長岡駅から北 に 1km 程度の区間における RC 高架橋は, 緊急耐震 補強対策 (関東運輸局: 平成7年8月3日【 関鉄技 一第128号】鉄道施設耐震構造検討委員会の提言に 基づく鉄道構造物の耐震性能に係る当面の措置につ いて」)の対象線区となっており,耐震診断の結果, 耐震補強が既に施されていた高架橋も存在している. 十日町高架橋 R1, R2 については,断層直上に位置 するということもあり, せん断先行型との判断から 耐震補強が行われていた.一方,これ以外の区間に おいては,少なくとも今回の地震発生時点では耐震 補強は施されていなかった.

構造物名称	東京起点 キロ程	No.または 橋梁形式	損傷箇所	損傷状況
第一和南津高架橋	191k 919m	R2(1層)	柱4本	せん断破壊および重度の斜めひび割れ
			柱1本以上	軽微な斜めひび割れ
		R3(1層)	柱2本以上	軽微な曲げひび割れおよび斜めひび割れ
		R4(2層)	中層梁	軽微な曲げひび割れ
		R5(2層)	中層梁	斜めひび割れ
第二和南津高架橋	192k 174m	R2(1層)	柱2本	曲げひび割れ,柱の角が剥離
第三和南津高架橋	192k 266m	R1(1層)	柱2本	せん断破壊および重度の斜めひび割れ
		R2(1層)		せん断破壊,軌道沈下
魚野川橋梁	192k 338m	2P,3P(単柱)	橋脚2本	段落とし部曲げ破壊,斜めひび割れ
十日町高架橋	206k 625m	R1,R2(1層)		全柱に耐震補強済み
		その他		損傷なし
村松高架橋	206k 648m	R6, R7(1層)	柱4本以上	かぶり剥落,軸方向鉄筋座屈
		その他	柱 20 本以上	曲げひび割れ,柱の角が剥離
東大新江橋梁	207k 658m	単純箱桁橋	壁式橋脚1基	かぶりコンクリート剥離
第一袋町高架橋	214k 333m	R2(2層)	柱1本	かぶりコンクリート剥離
		その他		損傷なし

表-5.1.1 一次調査団で調査した鉄道高架橋・橋梁と損傷状況の一覧

図-5.1.1 川口町和南津地区の高架橋位置概略図

(1) 川口町和南津地区における被害

川口町内における上越新幹線の路線では,町東部 の堀之内トンネル(東京起点 188k 560m~191k 860m)から魚沼トンネル(東京起点 192k 682m~201k 306m)まで 1km 程度のわずかな区間に高架橋や橋 梁が設置されている.この区間における主な高架 橋・橋梁の概略位置図を図-5.1.1 に示す.これらの 高架橋・橋梁のうち,第一和南津高架橋,第三和南 津高架橋ではせん断破壊,魚野川橋梁においては橋 脚中間部に曲げ損傷が生じている.以下,各構造物 の被害について詳述する.

a) 第一和南津高架橋(東京起点 191k 920m)

全部で 5 基の RC 立体ラーメン高架橋 (R1~R5) と,それらを繋ぐゲルバー桁で構成されており,最 も起点方に位置する R1 は引込み線があるために 3 径間連続1層2連ラーメン高架橋が2基並設されて いる.R2とR3は3径間1層,R4は4径間2層, R5は3径間2層ラーメンである.このうち,R2に おいて特に重度の被害が生じており,その他のR3 ~R5 では比較的軽微な損傷が認められた.

<u>第一和南津 R2 高架橋</u> (写真-5.1.1)

3 径間連続1 層立体ラーメン高架橋の柱8 本のうち,東京方および新潟方の3本の端部柱でせん断破壊が生じた(図-5.1.2,写真-5.1.2 ~).残りの1本の端部柱(写真-5.1.2)および中間部柱(写真-5.1.2)においても斜めひび割れが生じている.

本高架橋の被害は,立体ラーメンを構成する柱の うち,桁受け部が設置されて柱高さが若干短い端部 の柱において大きな損傷が生じる傾向が見られる. この被害傾向は,2003年5月に発生した宮城県沖を 震源とする地震(三陸南地震)において被災した東 北新幹線のラーメン高架橋の被害と非常に類似して いる.

特に重度のせん断破壊を生じた3本の柱は,いず れも断面寸法900×800mmの角柱で,軸方向鉄筋は D32が26本配筋されており,せん断破壊した部分に は帯鉄筋としてD10が300mmで配筋されていた.

(a) 西側面

(b) 東側面

写真-5.1.1 第一和南津 R2 高架橋の近景

写真-5.1.2 第一和南津 R2 高架橋の損傷部

図-5.1.2 第一和南津 R2 高架橋の平面概略図 (丸数字は写真-5.1.2の撮影方向を表す)

上述の配筋状況を元に,材料強度を仮定して算出 した柱のせん断曲げ耐力比は 0.6~0.7 程度となる (せん断耐力は土木学会コンクリート標準示方書構 造性能照査編(以下,土木学会示方書と略称)に基 づいて算定).また,この高架橋は柱高さが5m程度 であるが,埋め戻し土の土被りが大きく,地上から 2m弱程度が地上に露出している.すなわち,せん断 破壊は地上2m区間で生じていることになる.

第一和南津 R4 高架橋 (写真-5.1.3)

4 径間連続2 層立体ラーメン高架橋の中層梁(線路方向,線路直角方向)の端部に軽微な曲げひび割れが見られ,線路方向梁の曲げひび割れの方が若干大きい.柱の損傷は殆ど見られなかった.

<u>第一和南津 R5 高架橋</u> (写真-5.1.4)

3 径間連続2 層立体ラーメン高架橋の中層梁(線路方向,線路直角方向)に軽微な斜めひび割れが確認されたが,柱の損傷は殆ど見られなかった.

写真-5.1.3 第一和南津 R4 高架橋

写真-5.1.4 第一和南津 R5 高架橋の損傷部

b) 第二和南津高架橋(東京起点 192k 174m)

全部で2基の RC 立体ラーメン高架橋(R1~R2) と,それらを繋ぐゲルバー桁で構成されており,い ずれの高架橋も3径間1層ラーメンである.R2に おいてラーメン高架橋の柱8本のうち,東京方に位 置する端部柱上端部で曲げひび割れおよび柱角が剥 落しているのが認められた(写真-5.1.5).

c) 第三和南津高架橋(東京起点 192k 266m)

全部で2基のRC立体ラーメン高架橋(R1~R2) と,それらを繋ぐゲルバー桁で構成されており,い ずれの高架橋も3径間1層ラーメンである.これら の高架橋の桁下には消雪基地が併設されており(写 真-5.1.6参照),R1直下には屋外設備が設置されて いる.また,R2の桁下は外壁で囲まれており,内部 に消雪設備が設置されている.

2基の立体ラーメン高架橋のうち,R1において重 度の損傷が認められた.R2においても重度の損傷 が生じていることが,後の二次調査団の調査により 確認されたが,本報告においてはR1の被害につい

写真-5.1.5 第二和南津 R2 高架橋の損傷部

写真-5.1.6 第三和南津 R1 高架橋

てのみ記述し,R2の被害詳細については二次調査団の報告に譲る.

<u>第三和南津 R1 高架橋</u>(写真-5.1.7)

3 径間連続 1 層立体ラーメン高架橋の柱 8 本のうち 新潟方の 2 本の端部柱でせん断破壊(写真-5.1.7

、)および大きな斜めひび割れ(写真-5.1.7 、)が生じた.東京方の端部柱2本については,斜めひび割れの発生は認められず,柱上端部でかぶりコンクリートの剥落が見られた(写真-5.1.7).
 また,新潟方の中間部柱においても,上端部で斜めひび割れが確認された(写真-5.1.7).

本高架橋の被害は,第一和南津 R2 高架橋におけ る被害と同様,2003 年 5 月に発生した宮城県沖を震 源とする地震(三陸南地震)において被災した東北 新幹線のラーメン高架橋の被害と類似している.

特に重度のせん断破壊を生じた3本の柱は,いず れも断面寸法1100×1000mmの角柱で,軸方向鉄筋

写真-5.1.7 第三和南津 R1 高架橋の損傷部

図-5.1.3 第三和南津 R1 高架橋の平面概略図 (丸数字は写真-5.1.7の撮影方向を表す)

は D32 が 28 本配筋されており, せん断破壊した部 分には帯鉄筋として D10 が 300mm で配筋されてい た.上述の配筋状況を元に,材料強度を仮定して算 出した柱のせん断曲げ耐力比は 0.9~1.0 程度となる (せん断耐力は土木学会示方書に基づいて算定).ま た,この高架橋は柱高さが 8m 程度であるが,埋め 戻し土の土被りが大きく,地上から 4m 弱程度が地 上に露出しており,この区間で破壊している.

d) 魚野川橋梁(東京起点 192k 337m)

信濃川支流の魚野川を跨ぐ魚野川橋梁(3 径間連続 PC 箱桁橋)では,内側の2P,3P 橋脚(直径 6.5mの円形 RC 単柱)において,高さ方向中央付近でかぶりコンクリートの剥落および軸方向鉄筋のはらみ出しが見られ,一部の帯鉄筋がはずれて落下している(写真-5.1.8~9).軸方向鉄筋は3段配筋されており,内側の軸方向鉄筋の段落とし部において損傷している.帯鉄筋は,円弧形鉄筋4本を重ね継手によって1段の帯鉄筋としている(写真-5.1.10).

写真-5.1.8 魚野川橋梁(手前:2P,奥:3P)

写真-5.1.9 魚野川橋梁(3P橋脚北面)

(2) 長岡市村松町・片田町付近における被害

小千谷市から長岡市に入り,滝谷トンネル(東京 起点203k027m~205k700m)からとき325号脱線現 場(東京起点207k580m~830m)の区間においても, 高架橋の軽微な被害が生じた.この区間においても, 高架橋・橋梁の概略位置図を図-5.1.4に示す.冒 頭に述べたように,この区間は平成7年の運輸省通 達における緊急耐震補強対策の対象線区となってお り,一部の高架橋には既に耐震補強が施されていた. したがって,この区間においてはそれほど甚大な被 害は生じておらず,村松高架橋および東大新江橋梁 において軽微な曲げ損傷が生じている.以下,各構 造物の被害について詳述する.

(a) 段落とし部の損傷状態

(b) 段落とし部の軸方向鉄筋 写真-5.1.10 魚野川橋梁 3P 橋脚の損傷部

図-5.1.4 長岡市十日町・村松町・片田町近辺の高架橋位置概略図

a) 十日町高架橋(東京起点 206k 057m)

全部で 13 基の RC 立体ラーメン高架橋(R1~R13) と,それらを繋ぐゲルバー桁および道路・河川を跨 ぐ橋梁で構成されており,R1~R5 は1層,R6~R13 は2層ラーメンである.このうち最も東京方に位置 する R1 高架橋および R2 高架橋(写真-5.1.11)に ついては,断層直上にあるためにせん断破壊が先行 するとの判断から,写真-5.1.12 に示すように,既 に鋼板巻き立てによる耐震補強が施されていた.こ れらの高架橋については,今回の地震では全く被害 を生じておらず,耐震補強の効果が確認された.

写真-5.1.11 十日町 R2 高架橋近景

写真-5.1.13 村松 R6 高架橋

b) 村松高架橋(東京起点 206k 648m)

全部で20基のRC立体ラーメン高架橋(R1~R20) と,それらを繋ぐゲルバー桁および道路・河川を跨 ぐ橋梁で構成されており,R1~R5およびR12~R14 は2層,R6~R11およびR15~R20は1層ラーメン である.これらの高架橋で多くの柱に比較的軽微な 曲げ損傷が生じたが,このうち,R6高架橋および R7 高架橋において相対的に大きな損傷が生じてい る.これらの高架橋はいずれも3径間連続1層ラー メン高架橋であり,東京方および新潟方に位置する 端部柱の上端部で,かぶりコンクリートの剥落およ

写真-5.1.12 鋼板巻き立て補強の状態

写真-5.1.14 村松 R7 高架橋

び軸方向鉄筋の軽微なはらみ出しが生じた.また, 中間部柱においても柱角に軸方向のひび割れが見受 けられた(写真-5.1.13~14).

c) 東大新江橋梁(東京起点 207k 658m)

とき 325 号脱線現場直下の東大新江用水路を跨ぐ 単純箱桁橋であり,2 つの壁式橋脚はそれぞれ隣接 する立体ラーメン高架橋のゲルバー桁との掛け違い 構造となっている.このうち,東京方の 1P 橋脚に おいて,隣の片田高架橋のゲルバー桁との掛け違い 部(固定端側)におけるコンクリート打ち継ぎ目で,

写真-5.1.15 東大新江橋梁

写真-5.1.16 かぶりコンクリートの剥落

図-5.1.5 長岡駅~燕三条駅間の損傷高架橋位置概略図

曲げ変形に伴うかぶりコンクリートの剥落および軸 方向鉄筋の露出が確認された(写真-5.1.15~16).

(3) 長岡駅以北における被害

長岡駅(東京起点 213k 830m)から燕三条駅(東 京起点 237k 380m)の区間では,図-5.1.5 に示した 4 つの高架橋において,橋脚柱に軽微な被害が生じ た(いずれの高架橋も柱1本のみ損傷).一次調査団 においては,これらの被害高架橋のうち,長岡駅か ら程近い第一袋町高架橋のみ調査を行った.冒頭で 述べたように,この区間では,長岡駅から1km程度 の範囲までが平成7年の運輸省通達における緊急耐 震補強対策の対象線区となっていた.第一袋町高架 橋はこの対象線区内であるが,耐震診断の結果,せ ん断破壊先行型とは判定されておらず,したがって 耐震補強は施されていない. a) 第一袋町高架橋(東京起点 214k 332m)
全部で4基のRC立体ラーメン高架橋(R1~R4)
と,それらを繋ぐゲルバー桁で構成されており,R1
は1径間2層,R2~R4は4径間2層ラーメンである.このうち,損傷を生じたのはR2 高架橋のみであり,写真-5.1.17に示すように端部柱下層の上端部(下柱-中層梁剛結部の下)にかぶりコンクリートの剥離が見られる.

写真-5.1.17 第一袋町 R2 高架橋

- 5.2 道路橋
- (1) 小千谷大橋¹⁾
- a) 構造概要

小千谷大橋は,小千谷市内を流れる信濃川を南東 から北西へ跨ぐ国道17号線の道路橋で,6基の円形 断面 T型 RC単柱で支持される連続桁橋(4 径間連 続鋼箱桁橋+3 径間連続鋼箱桁橋)である(写真 -5.2.1). 架設年は昭和57年である.

写真-5.2.1 小千谷大橋全景

写真-5.2.2 P2 固定支承橋脚

写真-5.2.3 P2 固定支承橋脚の被害状況 (応急復旧作業前:京都大学防災研究所 澤田先生提供)

b) 被害概要と応急復旧

大きな損傷は東岸にある4径間連続橋のP2固定 支承橋脚で生じていた(写真-5.2.2).土被り厚さは 不明であるが,被害を受けた橋脚は,地表上に現れ ている橋脚高さが6基の中で最も小さい.現地で橋 脚の直径を実測したところ,約4.5mであった.被害 としては,写真-5.2.3や写真-5.2.4に示されるよう に,橋軸直角方向と平行な面の柱部と横梁部との境

写真-5.2.4 P2 固定支承橋脚の被害状況

写真-5.2.5 橋軸方向面の斜めひび割れ

写真-5.2.6 P2 固定支承橋脚の応急復旧作業

界付近において,かぶりコンクリートの剥落と軸方 向鉄筋の座屈が見られ,また,帯鉄筋の重ね継ぎ手 のはずれも観察された.かぶりコンクリートの剥落 範囲内で軸方向鉄筋の一部が段落としされているの が確認された.橋軸方向と平行な面の柱には,斜め ひび割れが発生していた(写真-5.2.5).

写真-5.2.3 は地震発生直後に撮影されたものだ が,地震発生後5日目(10月28日)には,写真-5.2.6 に示されるように,応急復旧作業(損傷部の断面修復、 炭素繊維巻立てによるせん断耐力確保)が始められ ていた.

(2) 芋川橋

a) 構造概要

関越自動車道にある芋川橋は,橋長271m(上り線), 295m(下り線)であり,上部工の構造形式はPC3 径間連続箱桁とPC4径間連続中空床版である.また, 供用年度は昭和57年度である.

写真-5.2.7 P1 橋脚のひび割れ状況

写真-5.2.8 P1 橋脚復旧作業

b) 被害概要と応急復旧

<u>P1 橋脚</u>

被害を受けた P1 橋脚は,下り線に位置する固定 支承の柱式橋脚であり,断面幅は,橋軸方向 4.5m, 橋軸直角方向 7.0m であり 橋脚の躯体高さ 12.5mで ある.被害としては,橋軸方向平行面の柱中央位置 に斜めひび割れが発生した(写真-5.2.7).その後, 復旧対策として,ひび割れ部に樹脂注入後,炭素繊 維巻き立て補強が実施された(写真-5.2.8).

P2 橋脚支承部

被害を受けたのは,下り線の P2 橋脚支承部であ る.P2 橋脚は柱式橋脚であり,断面幅は,橋軸方向 4.5m,橋軸直角方向 7.0m であり,橋脚の躯体高さ 14.6m である.支承部の被害としては,ピンローラ ー支承のローラー逸脱であり(写真-5.2.9),その後 サンドル設置による仮受けによる応急復旧措置が取 られた(写真-5.2.10).

写真-5.2.9 P2橋脚支承部の損傷

写真-5.2.10 P2橋脚支承部の応急復旧措置

<u>P3 橋脚</u>

被害を受けたのは,下り線のP3橋脚(可動支承) 段違い部である(写真-5.2.11).P3橋脚は,壁式橋 脚である.写真-5.2.11において,左側の上部工が PC箱桁橋,右側がPC中空床版橋になっており,PC 箱桁が右に押し出され,段違い橋脚頭部が損傷して いる.応急復旧として,ベント設置による仮受けが 実施された.

(3) その他(山辺橋)

国道 117 号線の小千谷市にある山辺橋(写真-5.2.13)の,東京側A1橋台の支承部が被害を受けた.橋軸方向の水平力により上沓突起が破断し,上下支承にずれが生じている(図-5.2.1).なお,他の橋脚支承部でも,支承とソールプレート間に隙間が 生じるなどの損傷が観察されている. 謝辞:本被害調査報告をまとめるにあたり,JR 東日 本および日本道路公団より資料の提供を受けました. また,山辺橋の被害概要をまとめるにあたり,日本 橋梁建設協会より資料の提供を受けました.ここに 記して謝意を表します.

参考文献

 1) 国土交通省国土技術政策総合研究所・独立行政法 人土木研究所合同調査団:平成16年新潟県中越 地震による被害状況(速報),土木技術資料 Vol.46, No.12, pp.4-5 および pp.10-15, 2004.12

写真-5.2.11 P3 橋脚段違い部の損傷

写真-5.2.13 山辺橋

写真-5.2.12 P3 橋脚の復旧作業

桁が橋台側に移動し,上沓が破損. 上沓と下沓にずれが生じている.

図-5.2.1 A1橋台支承部の損傷状況 (被災調査時のスケッチ)