

液状化地盤における多層固化改良の オンライン地震応答実験

高橋直樹1・山本陽一2・岸下崇裕3・兵動正幸4・三浦房紀5・吉本憲正6

¹三井住友建設株式会社 技術研究所(〒270-0132 千葉県流山市駒木518-1)
E-mail:tnaoki@smcon.co.jp
²三井住友建設株式会社 技術研究所主任研究員(〒270-0132 千葉県流山市駒木518-1)
E-mail:yoichiyamamoto@smcon.co.jp
³株式会社フジタ 技術センター主任研究員(〒243-0125 厚木市小野2025-1)
E-mail:kisisita@fujita.co.jp
⁴山口大学工学部教授 社会建設工学科(〒755-8611 山口県宇部市常盤台2557)
E-mail: hyodo@po.cc.yamaguchi-u.ac.jp
⁵山口大学工学部教授 知能情報システム工学科(〒755-8611 山口県宇部市常盤台2557)
E-mail: miura@earth.csse.yamaguchi-u.ac.jp
⁶山口大学工学部助手 社会建設工学科(〒755-8611 山口県宇部市常盤台2557)
E-mail: nyoshi@po.cc.yamaguchi-u.ac.jp

著者らは、板状の固化改良体を液状化対象層内に多層配置することにより、地盤の軟化や液状化を許容 して減震効果を利用するとともに沈下および不同沈下を低減することを期待した多層固化改良を提案した. 本論文では、改良率や改良形式を種々変えたオンライン地震応答実験を行い、これらが対策地盤の地震 時挙動に与える影響について考察した.まず、各改良形式の履歴変形特性や加速度応答特性を比較し、改 良形式の違いがこれらに与える影響について調べた.さらに、地盤変位や加速度等の応答特性と改良率お よび改良形式との関係を整理し、多層固化改良の減震効果について考察した.

Key Words: nonlinearity, seismic response, liquefaction, pseudo-dynamic test, soil improvement

1. はじめに

地震時の地盤の軟化や液状化は様々な被害をもた らすことから、地盤改良による液状化対策の多くは 液状化防止を目的としている.その一方で、液状化 は強非線形化により地震動を大きく低減する効果が あることから, 上部構造物に対しては免震層として 機能して構造物や人的被害を軽減する場合がある. 例えば、1995年兵庫県南部地震における埋立て地盤 に建つ直接基礎構造物の事例^{1),2)}では、直接基礎直 下の地盤で液状化が起こり、そのため上部構造物の 被害が低減されたことが報告されている. また, 同 地震におけるフローティング基礎の事例³⁾では、フ ローティング基礎の沈下挙動を地震の前後で照査し た結果、従来生じていた傾斜が地震により補正され たことが報告されている. このような効果に着目し て、液状化を積極的に利用する基礎形式や地盤改良 方法等の減震技術に関する検討が行われている4)~7). 地盤の軟化や液状化を許容する地盤改良方法は,

完全に液状化を防止する方法に比べて構造物が受け る慣性力やコストの面で有利となる.しかしながら, 直接基礎構造物を対象とした場合には要求性能を満 たす沈下や不同沈下を抑えられるかが問題となる. また,近年,既設構造物を撤去することなく安価に 維持補修する技術の必要性が高まり,対策工の既設 構造物への適用性が重要な課題となっている.

そこで,著者らは,板状の固化改良体を液状化対 象層内に多層配置することにより,地盤の軟化や液 状化を許容して減震効果を利用するとともに沈下お よび不同沈下を低減することを期待した多層固化改 良を提案した^{8)~12)}.本改良形式は,軟弱層の減震効 果はそれが硬い地盤に挟まれた場合に大きい¹³⁾こと に着目し,この効果を有効に利用することを構造的 特長としたものである.また,改良体は薬液注入工 法により築造するものであるため,多層固化改良は 既設構造物直下地盤への適用が可能である.

本研究では,種々の改良率(改良体全層厚/液状 化対象層厚)で多層固化改良のオンライン地震応答 実験を実施して、本改良形式の地震応答特性につい て詳細に検討した.さらに、他の改良形式との比較 から本改良形式の改良効果について検討を行った.

2. オンライン地震応答実験方法

(1) オンライン地震応答実験の概念

オンライン地震応答実験は日下部ら14)により開発 されたものであり、そのアルゴリズムは以下の通り である.まず,解析対象地盤を質点系にモデル化し, 基盤面から地震動を入力する. つぎにコンピュータ により質点系の振動方程式を解き,各質点の応答変 位を求める.そして,得られた変位に相当するせん 断ひずみをコンピュータ制御により供試体に与え, その時自動計測された復元力を用いて次のステップ の応答変位を計算する. すなわち, 本手法はこれら の過程を地震動が継続する間繰り返すことにより 時々刻々に変化する地盤の非線形な復元力を要素実 験の供試体から直接求め, それをオンラインで応答 解析に結びつけて地震時の地盤の挙動をシミュレー トするものである. なお,要素実験部分は,図-1に 示す日下部ら15)により試作された簡易直接せん断試 験機を用いた.また、多層からなる地盤の全てをオ ンライン実験することは、システムが高価になるば かりでなく作業も煩雑化する. そこで、本実験では 液状化や大変形が予想される数値モデル化が困難な 地盤要素部分のみを要素実験で復元力を求め、その 他の部分は修正R-Oモデルで復元力を求めるサブス トラクチャ法を採用した.

(2) 地盤モデル

地盤モデルは、図-2に示すように深度14mの水平 成層地盤を想定し、これを7分割して一次元の質点 系モデルで置き換えたものとした.このうち、地下 水位以下のL2層~L7層(GL-2m~GL-14m)の復元 力を要素実験により実測し、L1層(GL-0m~GL-2m)の復元力は修正Ramberg-Osgoodモデルにより 算定した.ここで、全ての地盤は D_r =50%の砂層、 すなわち地下水位以下では液状化層となるようにモ デル化した.

(3) 実験試料・供試体

要素実験に供した試料は浜岡砂($G_s=2.699$, $e_{max}=0.933$, $e_{min}=0.593$)である.未改良供試体はこれ を水中落下法により所定の相対密度となるように詰 めて作成した.一方,固化改良供試体には,水ガラ ス系恒久グラウト¹⁶⁾をモールドに満たした状態で水 中落下を行い,未改良供試体と同一の相対密度とし た.これを密封状態で28日間養生したものを試験に 供した.表-1に本実験で使用した水ガラス系恒久グ ラウトの標準配合を示す.供試体寸法は概ね直径 60mm,高さ40mmである.

図-1 簡易単純せん断試験装置

図-2 地盤モデル

表-1 恒久グラウトの標準配合表

	薬液名	配合量(ml)
A液	ASF シリカ	60
	アクターM	16
	水	124
B液	PR シリカ	60
	水	140

(4) 改良砂の繰返しせん断強度特性

図-3は、図-1に示した簡易直接せん断試験機を用いて行った繰返し単純せん断試験から得られた未改良砂と改良砂 (q_u =159kPa)のせん断ひずみ両振幅5%に至るに必要な繰返しせん断応力比 τ/σ'_m と繰返し回数 N_r の関係を示したものである.

繰返し回数20回で比較した場合,繰返しせん断強 度は改良砂で1.05,未改良砂で0.30であり,改良砂 の繰返しせん断強度は未改良砂の3倍以上に大きく なっていることがわかる.また,未改良砂は5%の

改良形式	無対策	単層固化改良		多層固化改良		全層固化改良
ケース名	N000	S017	S050	M033	M050	A100
改良率 層番号	0%	17%	50%	33%	50%	100%
L1	非液状化層	非液状化層	非液状化層	非液状化層	非液状化層	非液状化層
L2	未改良層	改良層		改良層	改良層	改良層
L3			改良層	未改良層	未改良層	
L4					改良層	
L5		未改良層	未改良層	改良層	未改良層	
L6				^{良層} 未改良層	改良層	
L7					未改良層	

表-2 実験ケース

図-3 繰返しせん断応力比と繰返し回数の関係

ひずみを生じて液状化に至っているが,改良砂は液 状化に至っていない.

(5) 実験·解析条件

オンライン地震応答実験は表-2に示すように要素 実験により復元力を求めるL2層~L7層を対象とし て, 改良形式および改良率を様々に変化させて実 施した. ここで, 全層固化改良は液状化層全てを改 良するものであり、従来の対策工法として位置付け られる, 単層固化改良は改良層の下に免震層として 未改良層を意図的に残す工法5)であり、既に設計事 例¹⁷⁾も報告されている.なお,表中のケース名は改 良形式と改良率を表しており, 単層 (Singlelayer) および多層 (Multilayer) の頭文字をとり, 例えば M050は改良形式が多層で改良率が50%のケースを 表している. L1層の修正R-Oモデルの解析パラメー タは、 $G_0=48697.35$ kPa、 $\tau_{f}=22.56$ kPa、 $\alpha=2.451$ 、 $\beta = 2.293$ である. なお、初期せん断剛性 G_0 は拘束圧 依存性を考慮して有効拘束圧の0.5乗に比例する形 で算定した. 圧密は静止土圧係数K₀を0.5に設定し た異方圧密とし、圧密圧力はK₀=0.5となるよう有効 側方向応力σ',と異方分の有効軸方向応力σ',を所 定の値になるまで段階的に加えるものとした.入力 波には、1995年兵庫県南部地震においてポートアイ ランドでアレー観測されたPI-79mNS成分(最大加 速度570Gal) を用いた.

3. オンライン地震応答実験結果および考察

(1) せん断応力 τ – せん断ひずみ γ 関係および有効 応力経路

図-4にL2層~L5層のせん断応力 τ - せん断ひず み関係を示し、改良形式に対して比較した.下層を 除く未改良層は、せん断応力が最大値に達した後、 剛性低下が進行して液状化に至り、ひずみが激増し てせん断応力がほぼゼロに近づいている.この傾向 は、S050のL5層やM050のL3層・L5層、すなわち改 良層の直下や改良層に挟まれた層において著しくな っていることが特徴的である.また、A100の結果 をみると、各層のせん断応力が他のケースと比較し て大きいことが明らかである.このことは、A100 は各層の復元力が大きく、上層への地震動の伝播が 大きいことを予測させる結果である.

図-5は図-4と同様のケースについて有効応力経路 を示したものである.なお,砂の有効応力経路には, 非排水の静的試験から求めた浜岡砂の変相線 PTL(Phase Transformation Line)も併せて示している. 未改良層は変相線PTLを越えると同時に変形が急激 に進行して液状化に至っていることがわかる.一方, 改良層は若干の有効応力の減少を示すものの,最終 的に初期有効拘束圧の7~8割程度の値を保持して定 常状態に至っている.

(2) 加速度の時刻歴応答波形と周波数特性

図-6は同様のケースについて質点m1~質点m5に おける応答加速度 αの時刻歴を示したものである. N000の結果をみると,質点m1~質点m4の波形が振 動に伴って減衰して長周期化していることが認めら れる.これは液状化によりL2層~L4層の剛性が著 しく低下して上層への地震動の伝播を抑制したため である.一方,A100の波形には全ての質点でその ような長周期化は認められず,応答も大きいことが わかる.これに対して,S050の結果をみると,質点 m1~質点m4の波形がA100のそれらと比較して減衰 しており,L5層が液状化したことによる減震効果が 認められる.さらに,M050は改良層(L4層)であ る質点m4の波形に若干の高振動数成分が認められ

図-4 せん断応力 τ-せん断ひずみγ関係

るものの、それより上層の質点m1~質点m3の波形 はN000と同様に振動に伴い大きく減衰し長周期化 していることが特徴的である.これはL5層に加えて L3層が液状化したためであり、L2層が改良層であ るにも関わらずこのような結果になったことから、 L3層が液状化したことによる減震効果は表層にまで 及ぶことが明らかである.

図-7は同一ケースにおける地表応答波(質点 ml)の加速度応答スペクトルを示したものである. S050に関しては、固有周期1秒付近の応答が卓越し ているのに加え、固有周期帯域が0.3~0.4秒付近の やや短周期側でも応答が大きくなるというA100と 同様な傾向を示している.これに対してM050の応 答は、固有周期2.5秒以下の周期帯域でS050よりも 小さく、特に0.3~0.4秒付近における減衰が顕著とな っていることが認められる.このことから、M050 の減震効果は、特に固有周期帯域が1秒よりも短周 期側の構造物において大きくなることがわかる.な お,風間ら¹⁸⁾は,地盤条件との関連で地表面応答に 及ぼす軟弱地盤の影響について検討し,地表面以下 に軟弱層がある場合にはその塑性化によって地表面 の最大加速度応答は小さくなるものの振動の長周期 成分は大きく減衰しないことを示している.ここで 示した結果も,固有周期2.5秒以上の周期帯域の応 答は軟弱層の有無による違いは認められなかった.

(3) 最大応答値の深度分布

図-8に最大せん断ひずみ γ_{max} ,図-9に最大水平変 位 H_{max} ,さらに図-10に最大応答加速度 α_{max} の深度 分布をそれぞれ示し、改良形式および改良率に関し て比較した.

最大せん断ひずみに関して、図-8(a)改良形式の 比較に着目すると、N000の場合、GL-10m以浅で液 状化によりひずみが増大し、その値は最大で5%と 大きな値となっている.これに対して、A100にお けるひずみの発生量は小さく、その最大値は2%以

図-5 有効応力経路

下である. S050については、改良層直下に位置する 未改良層 (L5層: GL-8m~GL-10m) のひずみが大 きく発達する分布形状を示している. M050は改良 層に挟まれた未改良層(L3層: GL-4m~GL-6m, L5 層: GL-8m~GL-10m)の2層でひずみが大きく発達 する分布形状を示すことが特徴的である.次に, 図-8(b) 改良率の比較に着目すると, S017および M033でひずみが最大となる層は前者でL5層(GL-8m~GL-10m),後者でL4層(GL-6m~GL-8m)で あることがわかる. これらは連続する未改良層のう ち下部に位置する層であることから、非線形化が著 しくなる層は前述した改良率50%の結果とは異なる. このように、未改良層の上部のひずみが下部のそれ と比較して相対的に小さくなったのは、下部で非線 形化が進んだために上部への地震動の伝播が抑制さ れたことによるものと考える.ただし、未改良層上 部におけるひずみは2%程度と大きいことから、液 状化には至らないものの,これらの層も非線形化が

進んでいると言える. 次に,最大水平変位について,図-9(a)改良形式 の比較に着目すると、N000およびA100では変位が 表層に向かって線形的に増大していくのに対して, S050およびM050では改良層直下や改良層に挟まれ た未改良層で変位が増大していることがわかる.地 表面最大変位は、N000の24cm程度に対して、A100 およびS050で13cm程度, M050で16cm程度となった. これより、水平変位抑止効果は改良層厚が厚いほど 大きくなるものの、改良層厚が薄い多層固化改良も 十分な効果があることが確認された. 図-9(b) 改良 率の比較をみると,多層固化改良および単層固化改 良のそれぞれで改良率の増加に伴い地表面変位が減 少していることがわかる. したがって, 多層固化改 良を含めて対策地盤は構造物の要求性能に応じた改 良率を選定することが可能であると考えられる.

最大応答加速度に関して、図-10(a)改良形式の比較をみると、N000の分布形状は地盤が液状化した

図-7 加速度応答スペクトル(地表)

図-8 最大せん断ひずみの深度分布

図-9 最大水平変位の深度分布

図-10 最大応答加速度の深度分布

ことにより上層への地震動の伝播が抑制され、表層 に向かって減衰している.これに対して、A100の 加速度の分布形状はGL-6m以浅で増幅するものとな っている.これは、図-4に示したように、本ケース では地盤の剛性低下が少なく復元力が大きいことが 原因と考える.一方,S050の加速度は,L5層 (GL-8m~GL-10m) が液状化したためにそこで減衰する ものの, 改良層となるL3層 (GL-4m~GL-6m) で再 度増幅している. M050の分布形状は,各改良層に おいて増幅傾向を示すものの、改良層に挟まれた未 改良層で大きく減衰する様相を呈している.特に, 本ケースにおける質点m4(GL-6m)の加速度は S050のそれと比較して1.4倍ほど大きな値であるが、 質点m3 (GL-4m)の加速度はL3層 (GL-4m~GL-6m)の液状化に伴う減震効果により大きく減衰し, その結果、地表面応答加速度はS050よりも小さくな っている. また、図-10(b) 改良率の比較に示すS017 の結果をみると、その分布形状はN000のそれと類 似していることから, 単層固化改良の場合, 改良率 が小さいとそれが加速度の分布形状へ与える影響は 僅かであることがわかる.

図-11 加速度減衰率と改良率の関係

(4) 加速度減衰率と改良形式および改良率の関係

図-11は加速度減衰率と改良率の関係を示したも のである.ここで加速度減衰率は,無対策および対 策地盤の地表面最大応答加速度をA100のそれで正 規化して求めている.先ず,加速度減衰率は改良率 の低下に伴って小さくなり,全層固化改良と比較し て無対策で50%の減衰率であることがわかる.さら に,同様の比較から,単層固化改良(改良率50%) で約70%,多層固化改良(改良率50%)で約60%の 減衰率を示していることがわかる.

これらのことから,部分的に地盤の軟化や液状化 を許容する改良体配置とする多層固化改良は,全層 固化改良と比較して減震効果を発揮し,さらにその 効果は同一改良率の単層固化改良よりも大きいこと が明らかである.

5. まとめ

本研究では、多層固化改良のオンライン地震応答 実験を実施して、本改良形式の地震応答特性につい て検討した.さらに、他の改良形式との比較から本 改良形式の改良効果について検討を行った.以下に、 本研究で得られた知見をまとめる.

- 未改良層の減震効果は、それが改良層の直下または改良層に挟まれた位置にある場合に大きいことが確認された.
- ② 全層固化改良と比較して、加速度減衰率は単層 固化改良(改良率 50%)で約 70%、多層固化 改良(改良率 50%)で約 60%となり、多層固 化改良は全層固化改良と比較して減震効果を発 揮し、さらに、その効果は同一改良率の単層固 化改良よりも大きいことが明らかとなった。
- ③ 多層固化改良の減震効果は、特に固有周期帯域 が1秒よりも短周期側の構造物において大きく

なることが確認された.

④ 水平変位抑止効果は改良層厚が厚いほど大きくなるものの、改良層厚が薄い多層固化改良も十分な効果があることが確認された.また、水平変位抑止効果は改良率に依存することから、構造物の要求性能に応じた改良率を選定することが可能であると考えられた.

謝辞:本研究において使用した水ガラス系の恒久グ ラウト材は、恒久グラウト協会より提供頂きました. 末筆ながら、記して感謝の意を表します.

参考文献

- マ井芳雄,加倉井正昭,丸岡正夫,山下清,青木雅 路:液状化した埋立て人工地盤の直接基礎の挙動と その評価,基礎工, Vol.24, No.11, pp.60~63, 1996.
- 加倉井正昭,青木雅路,平井芳雄,俣野博: 埋立て 人工島における直接基礎の挙動,土と基礎, Vol.44, No.2, pp.64~66, 1996.
- 3) 松尾雅夫, 辻英一, 北川勝, 小野俊博: 埋立地盤にお けるフローティング基礎の効果, 基礎工, Vol.24, No.11, pp.54~59, 1996.
- 4) 土木学会地震工学委員会:減震・免震・制震構造設計 法ガイドライン(案), 2002.
- 5) 福武毅芳: 液状化を利用した地盤免震と構造物への影響(その2) 第36回地震工学研究発表会, pp.1735~ 1736, 2001.
- 6) 福武毅芳:軟弱地盤の非線形性を利用した免震基礎, 一液状化現象を積極利用した地盤免震技術を中心として-,基礎工, Vol.30, No.12, pp.21~28, 2002.
- 7) 福武毅芳:液状化現象を逆手に取った地盤免震技術, 土と基礎, Vol.51, No.3.pp.31~33, 2002.
- 8) 三浦房紀,兵動正幸,吉本憲正,岸下崇裕,山本陽一, 高橋直樹:液状化地盤における多層固化改良に関す る研究(その1:振動台実験と考察),第38回地盤 工学研究発表会発表講演集,pp.1873-1874,2003.
- 9) 兵動正幸,三浦房紀,吉本憲正,山本陽一,高橋直樹, 岸下崇裕:液状化地盤における多層固化改良に関す

る研究(その2:改良率と改良効果について),第 38回地盤工学研究発表会発表講演集,pp. 1875-1876, 2003.

- 10) 兵動正幸,三浦房紀,吉本憲正,高橋直樹,山本陽一, 岸下崇裕,木村真也:液状化地盤における多層固化 改良に関する研究(その3:オンライン地震応答実 験による検証),第38回地盤工学研究発表会発表講 演集,pp.1877-1878,2003.
- 11) 三浦房紀,兵動正幸,吉本憲正,岸下崇裕,山本陽一, 高橋直樹:液状化地盤における多層固化改良に関す る振動台実験(改良率と改良幅の影響について), 土木学会第58回年次学術講演会講演集,pp.293-294, 2003.
- 12) 兵動正幸,三浦房紀,吉本憲正,高橋直樹,山本陽一, 岸下崇裕,木村真也:液状化地盤における多層固化 改良に関するオンライン地震応答実験(改良形式の 比較),土木学会第58回年次学術講演会講演集, pp.295-296, 2003.
- 村井信義:埋立地盤における地震動の増幅特性に関する研究,日本建築学会構造系論文報告集,第451号, pp.89~98,1993.
- 14) 日下部伸,森尾敏,有本勝二:オンライン地震応答実験による2層系砂質地盤の液状化挙動,土質工学会論 文報告集, Vol.30, No.3, pp.174-184, 1990.
- 15) 日下部伸,森尾敏,岡林巧,藤井照久,兵動正幸:簡 易単純せん断試験装置の試作と種々の液状化試験へ の適用,土木学会論文集,No.617/Ⅲ-46, pp.299-304, 1999.
- 16) 米倉亮三,島田俊介:恒久グラウトの恒久性のメカニ ズム,土木施工, Vol.40, No.7, pp.99-106, 1999.7.
- 17) 福武毅芳,竹脇尚信,長谷場良二,山口弘信,吉原 進:西田橋基礎の地震応答シミュレーション 沖積地 盤上の石造アーチ橋の移設計画,土木史研究,No.18, pp.395-410, 1998.
- 18) 風間基樹,柳澤栄司,稲富隆昌:地表面応答に及ぼす 中間軟弱粘土層の非線形性の影響,土木学会論文集, No.575/Ⅲ-40, pp.219-230, 1997.

(2003.6.30 受付)

ON LINE PSEUDO-DYNAMIC RESPONSE TEST TO EVALUATE THE EFFECT OF IMPROVEMENT OF LIQUEFIABLE SOILS BY MULTILAYER SOIL IMPROVEMENT

Naoki TAKHASHI, Yoichi YAMAMAOTO, Takahiro KISHISHITA, Masayuki HYODO, Fusanori MIURA and Norimasa YOSHIMOTO

In this study, a series of on-line pseudo-dynamic response tests was conducted to investigate the seismic behavior of the soils improved by the multilayer soil improvement method. The multilayer soil improvement method involves placing multiple plate-like layers of improved soil in a liquefiable layer. In the test, the ratio of layers of improved soil and the mode of soil improvement were varied.

As a result, it was found that the multilayer soil improvement method was effective for attenuating seismic motions by allowing the softening or liquefaction of the layers of untreated soil sandwiched between the improved soil layers.