大型振動台実験装置によるバラスト軌道の地震時限界性能

JR 東海 正会員 〇岩田秀治 京都大学大学院工学研究科 フェロー 家村浩和

1.はじめに

過去の巨大地震の被災例に報告されるよう,バラ スト軌道は,耐震性能が低いと考えられていた.ま た,バラスト軌道の地震時動的応答のメカニズムに 関しては,明らかにされていなく,特に,摩擦・速 度依存性の影響が大きいため,静的な載荷実験等で は検証不可能なことも多い.

今回,これらの解明を目的として,大型振動台実 験装置を用い,振動台テーブル上に設置した実物大 の標準軌間(1435mm)のバラスト軌道(60kg レー ル,PC マクラギ,バラスト)に対して,L1・L2 地 震動による振動実験を行った.

以下,振動台実験によるバラスト軌道の地震時限 界性能について報告する.

2.実験方法

(1) 振動台実験装置

本実験は,京都大学防災研究所内にある大規模強 震応答実験装置(振動台実験装置)を用いた(図1). (2)実験供試体および実験ケース¹⁾

供試体は,図1に示すように,振動台テーブル上 に治具(高さ55cm:路盤面)を組上げ,標準軌間の バラスト軌道を上載させた.

実験は2ケース実施した.実験ケース1(写真1) は,マクラギ3本上載による線路方向および線路直

写真1 実験ケース1

角方向の動的応答,実験ケース2(写真2)は,マク ラギ6本上載により,マクラギ本数による相違に関 する動的応答を確認した.入力地震動は,鉄道用想 定地震動入力波(L1,L2地震波)を用いた²⁾.

3.実験結果

バラスト軌道の挙動は,入力地震動および路盤面 の応答加速度・変位に着目し,目視およびビデオに より確認した.実験結果を図2,3,表1~3に示す.

L1 地震動 (L1-G1 基盤波: max137gal, L1-G5 地

写真2 実験ケース2

キーワード : バラスト軌道,振動台実験,限界性能,動的作用,地震

連 絡 先 : JR 東海 技術開発部〒485-0801 愛知県小牧市大山 1545-33 tel0568-47-5375, fax0568-47-5364

2 ハラスト	表		表Ⅰ 実験ケースと応答値結果						
7	盤面の	路盤	路盤上の最大	路盤上の最大	マクラギ	入力地震動の種類	入力	実験	NO
線路方向(昏加速度	応答加	応答変位(mm)	応答加速度(gal)	本数(本)	最大加速度(gal)	方向	ケース	NO.
変状なし	200 1	81.2	164.4	3	L1(G5) 198.6	L	1	1	
	~ 300gai	-	87.6	367.8	3	L2- (G1) 250.0	L	1	2
変状なし	300gal ~ 350gal		104.9	576.5	3	L2- (G1) 300.0	L	1	3
			112.3	476.2	3	L2- (G1) 321.9	L	1	4
不安定なバラス	350gal ~ 400gal		75.1	442.3	3	L2- (G1) 375.0	L	1	5
振動			100.4	576.2	3	L2- (G1) 500.0	L	1	6
バラスト振動のタ	400gal ~ 450gal		148.9	856.2	3	L2- (G1) 749.6	L	1	7
			90.8	209.7	3	L1(G5) 198.6	С	1	8
バラスト変状のタ	450gal ~ 500gal		97.5	389.2	3	L2- (G1) 250.0	С	1	9
	n boogin		117.4	469.5	3	L2- (G1) 300.0	С	1	10
軌きょう振動のな	500gal ~ 550gal		125.2	474.0	3	L2- (G1) 321.9	С	1	11
			83.7	468.3	3	L2- (G1) 375.0	С	1	12
ハラスト发状,	550gal ~		111.6	697.2	3	L2- (G1) 500.0	С	1	13
ト面で虮きょつ(167.1	1113.4	3	L2- (G1) 749.6	С	1	14
	0	- 200	61.0	146.4	6	L1(G1) 137.0	L	2	15
験ケース1.L方向ノ	「 ■ 実	200 -	97.7	379.9	6	L2- (G1) 250.0	L	2	16
験ケース1,C方向/	● 実	_	117.4	454.9	6	L2- (G1) 300.0	L	2	17
験ケース2,L方向/	🔺 実		126.4	484.5	6	L2- (G1) 321.9	L	2	18
		7	68.6	363.9	6	L2- (G1) 300.0	L	2	19
	0	· (원 150 - 발)	78.5	479.2	6	L2- (G1) 350.0	L	2	20
L2- 地震動		<u>त</u> ्र	89.4	560.3	6	L2- (G1) 400.0	L	2	21
	1	領	100.5	716.6	6	L2- (G1) 450.0	L	2	22
		额	111.4	752.9	6	L2- (G1) 500.0	L	2	23
	0	[년 100 -	122.7	804.8	6	L2- (G1) 550.0	L	2	24
		Ϋ́	134.3	833.8	6	L2- (G1) 600.0	L	2	25
/ 7, •			145.4	880.8	6	L2- (G1) 650.0	L	2	26
		- 10	155.8	921.2	6	L2- (G1) 700.0	L	2	27
	0 -	- 10 - 50 -	166.5	1010.4	6	L2- (G1) 749.6	L	2	28

盤波:max199gal)を入力した場合は,軌道変形・変 状は一切なかった.

L2 地震動の海洋型地震(スペクトル ,L2- -G1 基盤波 max321.9gal)および内陸地震(スペクトル , L2- -G1 基盤波 max749.6gal)を加速度調整^{表2} を行 いながら入力した場合は,まず,線路直角方向入力 の路盤面応答 300~350gal で,写真 1 赤丸部に意図 的に不安定に置いたバラストが振動する程度であっ た.同様に線路方向の挙動は 350~400gal で発生し た.また,応答が大きくなるに従い,変状も大きく なり,応答 500gal 以上ではバラストが流動化し,軌 道構造の要求性能は満たされない状態になった.図 3 に示すように,バラスト軌道の最も大きい滑動面 は,スラブ上面ではなく,マクラギ下端面であった.

線路方向と直角方向の挙動の比較では,同じ現象の発生は線路方向が約50gal上回ることを確認した.

マクラギ本数の比較においては,供試体の重量差 により応答値には若干の相違があったものの,バラ スト軌道の変状・動的挙動には差が見られなかった. 4.まとめ

従来,バラスト軌道の地震時の性能は極めて低い と言われていたが,本振動台実験の結果からは,L1 地震動を直接入力しても,バラスト軌道自体の安定 性により形状は保持された.また,地震波の周波数 特性に相違はあるものの,300gal~350gal 程度の路 盤上の応答であれば,バラスト軌道の変状は発生し にくいと考えられる.ただし,高架橋等の土木構造

長2 バラスト軌道の実験結果

_			
	路盤面の	バラスト軌道	首の変状状況
_	応答加速度	線路方向(L)	線路直角方向(C)
_	~ 300gal	変状なし	変状なし
_	300gal ~ 350gal	変状なし	不安定なバラスト微小な 振動
_	350gal ~ 400gal	不安定なバラスト微小な 振動	バラスト振動の始まり
_	400gal ~ 450gal	バラスト振動の始まり	バラスト変状の始まり
_	450gal ~ 500gal	バラスト変状の始まり	軌きょう振動の始まり
_	500gal ~ 550gal	軌きょう振動の始まり	バラスト変状,マクラギ 下面で軌きょうの滑動
_	550gal ~	バラスト変状,マクラギ 下面で動きょうの漫動	軌きょうの滑動,バラス ト (2011)

図2 バラスト軌道の実験結果

図 3 バラスト軌道の動的変状

物で共振・増幅する場合や,構造物間で位相差が生 じる場合では,L1地震動でも,応答値が大きくなる 可能性があることを注意したい.

本実験は,マクロな観点からの検証であるが,軌 道が地震時にも保有している拘束力を確認したと考 え,今後は,耐震設計上でも軌道拘束力を評価でき るよう検討を重ね,鉄道構造物の耐震性能の向上, 高性能化に努めたい.

最後に鉄道総研村田清満氏,池田学氏をはじめと する多くの方々にご指導,ご協力を賜ったこと,深 く感謝するものです.

【参考文献】

- 岩田秀治:鉄道橋の免震構造化に関する振動台実験と動的 解析モデル,京都大学博士論文,平成14年9月
- 2) 鉄道構造物等設計標準・同解説(耐震設計),運輸省鉄道 局監修,(財)鉄道総合技術研究所編,平成11年10月