

【本州四国連絡高速道路(株)】

吊橋ケー **-ブル送気乾燥システム**

200年以上の供用実現を目指す吊橋防食技術

技術の概要

吊橋の「命」を守るために

吊橋を構成する部材の中で、最も重

なったこともあり、 駆けて開発し、 テム(以下、送気システム)を世界に先 を抑制する吊橋ケーブル送気乾燥シス 部に乾燥した空気を送り込んで腐食 で有効なケーブル防食を模索・検討し 分であることが過去の調査で明らかと かし、従来の方法だけでは防食が不上 遮断する方法で防食を行ってきた。 難であることから確実な防食が必要で 要で吊橋の命でもある主ケーブル(以 その結果、我が社ではケーブル内 ケーブル)は、取り替えが非常に困 従来では主に塗装により水分を 我が国の気候の下 97年に初めて明

送気システムの概要 石海峡大橋に採用した。

置して外気を除塵、除塩しており、 送気設備では、フィルターユニットを設 湿気を帯びた空気を排気バー へ通して送気カバ 空気を製造し、その乾燥空気を送気管 備で外気から塩分等を除去した乾燥 水の浸入を防止している。さらに、主 ステムを採用し、外部からの雨水等の ラッピングと、塗装からなるラッピングシ 送気システムの概要を述べる。 および補剛桁に設置された送気設 大橋は世界最長の吊橋であり、その ケーブル内を常に乾燥させている。 -ブルにはワイヤラッピング上にゴム ンカレイジサドル部から排出し ケーブル内の空隙を通過した ーからケーブル内へ送 -および塔 明石海

明石海峡大橋への適用事例を基に

塔

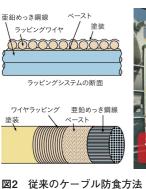
る (図 1)。 ブロワーで加圧しケーブルに送気してい の外気を除湿機により乾燥させて送気

鋼材は、相対湿度6%以下ではほと

度40%としている。 内の乾燥空気の管理目標値は、 60%以下を確実に保つために、ケーブル 験で確認している。このため、 んど腐食が進行しないことを文献や試 相対湿度 相対湿

または強み その技術の独自性

克服する技術 従来の防食法の弱点を


10年未満で局部的なさびの発生がケ しかしながら、この方法では、供用後 を目的とした仕様であった(図2左)。 -ワイヤラッピング+塗装による、遮水 従来のケーブル防食方法は、ペースト

て、

頂

ネオブレーンシート 液体ネオブレーン 接着刺(塩化ゴム系) - ワイヤラッピング(亜鉛めっき) 亜鉛めっき ❷送気管 会送気カバー ケーブル ラッピングシステム 4排気カバー 主ケーブル 主塔 外気 補剛桁 乾燥空気 ●送気設備(乾燥空気製造) 乾燥 空気 送気管へ 主塔基礎 乾燥空気 ルーツ ブロワ

図1 送気システムの概要図

第1999巻、第637号、103~機構に関する研究、土木学会論文集、恵太、聖生守雄: 吊橋ケーブルの腐食恵太、聖生守雄: 吊橋ケーブルの腐食を考文献 号、12~18頁、1 ブル防食試験、 で12~18頁、1 114頁、19 - 本四技報、第21巻、第1送気乾燥による吊橋ケ 84

この黒っぽい色の部分が錆 🌗 (他の薄茶色の部分はペースト)

に有効であることを実証できてお は、我が社が管理する吊橋でも長期的 現可能にする技術である。この技術 全な維持管理に努める。 の一つである「200年以上の長期に ないと確信している。 200年以上という年数が不可能では わたって橋の健全な状態を確保する万 送気システムは、我が社の経営理念 」ことを実 ŋ

ゃ

塗膜の劣化によるひび割れから水

ていないことが判明した。これは、施 2右) など、防食効果が十分に得られ ブル表面付近の素線で確認される(図

> 先に述べたゴムラッピング仕様だけでな として行うラッピングシステムとして、

S字ワイヤラッピング仕様や従来の

時に侵入した雨水が残存すること

いるためであると考えられている。 体化することにより、腐食を助長して 分が侵入し、ペーストが劣化して保水

可能となる技術である。

てより高い遮断効果を発揮することが 装仕様により、水等の腐食因子に対し 従性を有し、塗膜割れ防止の柔軟型塗 塗装の上にケーブルの伸縮に対して追

世界標準となりつつある防食技術

997年に送気システムを世界で

技術として選んだ理由我が社の一押し

にくいという従来方法の弱点を克服し

より、ケーブル内部の滞留水が排出し ル内部に送気し水分を排出することに 方、送気システムは、乾燥空気をケーブ

ている。さらに、ケ

-ブルの気密化対策

保持する技術

吊橋の健全性を200年以上

初めて明石海峡大橋に導入してから、 今年で20年以上たつ。その間、この技 るケーブル防食の標準的なシステ ムとなってきている。 術は国内外の主要吊橋で導入が進 んできており、世界の吊橋におけ

が誇る最高の一押し技術である。 をもってその防食効果を実証した、 ル送気乾燥システム」は我が社が身 世界が認めるものであり、我が社

これらのことから、「吊橋ケーブ

編集委員寸評

献した。 である。本技術は世界に先駆けて本設 あり、維持管理技術の発展に大きく り吊橋の健全性を保持する可能性が 橋梁に採用され、その結果長期にわた る、世界標準になりつつある防食技術 のトップを飾るのは、日本が世界に誇れ

(担当編集委員:宮田 和

技術の売り イント

11ケーブル内部の状態を自動 計測で遠隔モニタリング

ため、速やかなトラブル対応が可 があった場合は、警報メール等に た、管理基準値超過や機器異常 常に把握することができる。 グしており、 による自動計測で遠隔モニタリン より瞬時に把握することができる 部の乾燥状態は、温湿度センサ 送気システムでは、 ケーブル内の状態は ケーブル内 ま

2既設橋にも導入可能で、 い防食効果を発揮

を発揮することができる。 食の進行を抑える高い防食効果 が発生した既設橋でもさびや腐 経過しても導入前の状況と同程 いたものが、 素線に赤さびや点さびが見られて は供用後10年程度で表層付近の 可能である。我が社が既設橋に導 の高い防食効果を発揮することが なく既設の吊橋にも導入して、 度であった。この実績からも、さび 入した例では、システム導入前で 送気システムは、新設時だけで システム導入後10

応募36技術の中 から土木技術12選

2 土木学会誌 Vol.106 No.7 July 2021