1.総則

風は,おもに気圧差によって生じる空気の流れである.構造物の設計においては、対象地点において 供用期間内に発生する可能性のある風の作用に対し,経済性を損なうことなく所要の安全性、使用性を 確保しなければならない。

2.風の作用と現象

風の作用は,空間的,時間的に変動し,また構造物の規模,特性にも影響され,多種多様な現象を構造物に引き起こす.通常,構造物の設計の便宜から,風の作用を現象毎に分類し,設計での対処法を定めている.ここで,風の作用とは次のような現象をいう.

- a) 橋梁もしくは部材に発生する変形,応力
- b) 橋梁もしくは部材に発生する繰り返し応力によって生じる疲労
- () 空力不安定現象
- d) 利用者が不快もしくは不安に感じる振動

3.作用因子

風作用での作用因子としては,高度 10m,基準粗度における 10 分間平均風速として定義される基本 風速: U₁₀ (m/s)とする.基本風速は,対象地点の風の特性,構造物の重要度に応じて適切に設定する ものとする。

また,次に示す風の特性についても,風の静的・動的作用のモデルを規定するため,適切に設定するものとする.

- a) 風速の高さ方向分布
- b) 乱れ強さ
- c) 風速のパワースペクトル密度
- d) 風速の空間相関

4.作用

構造物の風軸方向に作用する風荷重(抗力)は,以下のように表される.

$$P = \frac{1}{2} \rho U_d^2 A_n C_D G$$

ここで, P:風荷重(N), ρ:空気密度(道路橋示方書では 1.23 kg/m³), U_d:設計基準風速(m/s), A_n: 投影面積(m²), C_D:抗力係数, G:ガスト応答係数(道路橋示方書では 1.9)である.

5.作用効果

風の作用は,空間的,時間的に変動し,また構造物の規模,特性にも影響され,多種多様な作用効果 をもたらす.通常,構造物の設計の便宜から,風の作用を静的,動的現象に分類し,それぞれの作用効 果に対して設計での対処法を定めている.

[静的な変形,応力]

風荷重を構造物に載荷して,解析的あるいは風洞実験により求める.

[動的な振動]

風洞実験,あるいは風の作用モデルを用いて解析的に求める.解析的な手法としては,ガスト応答解 析,フラッター解析などがある.

また,道路橋耐風設計便覧で規定する現象毎の推定式を用いてもよい.

6.用語

(1) 基本風速 U₁₀

耐風設計の基本とする風速であり,橋梁架設地点で標準的な地表を仮定した場合の地上10mの高度 における10分間平均風速で表わす。

(2)設計基準風速 U_d

橋梁の高度および地表条件を考慮して基本風速を補正した風速であり,動的耐風設計に用いる。な お,道路橋示方書の設計基準風速は一部強風地域を除き,全国的に安全な値となるように高度および 地表条件を設定して定めたものである。

(3) 発現風速 U_c

フラッター,ギャロッピングに関して用いる場合は,これらの現象が構造物に発現する最低の風速のことである。渦励振に関して用いる場合は,渦励振の振幅が最大となる風速である。

(4) 照查風速 U_r

構造物の風による振動に対する照査のために用いる風速である。発現風速が照査風速を上回る場合は,安全と判定される。

(5) 三分力

抗力,揚力および空力ピッチングモーメントをいう。空力ピッチングモーメントは本便覧において簡単の ため空力モーメントと呼ぶ。抗力は空気力のうち気流流れ方向の空気力,揚力は空気力のうち気流と直 交する方向の空気力,また空力モーメントは空気力のうち橋軸直角面内の回転方向(ねじれ)に作用する 空気力である。

(6)風荷重 P

風の作用のうち抗力による静的変形およびガスト応答を応力が等価となる静的な水平荷重に置き換えたものである。

(7) 渦励振

比較的低風速の限られた風速領域で発現する規則性の強い振動。風琴振動ともいう。

(8) ガスト応答

特定の発現領域をもたない,自然風の風速変動に起因する不規則性の強い振動をいう。バフェッティングとも呼ばれる。

(9) 発散振動

ある風速に達すると振幅が急激に大きくなる振動をいう。

(10) ギャロッピング

気流に直角なたわみ1自由度の発散振動をいう。

(11) フラッター

ねじれ1自由度あるいは鉛直たわみとねじれ2自由度連成の発散振動をいう。

(12)レインバイブレーション

斜張橋ケーブルのように斜めケーブルに発生する風と雨の相互作用により生じる振動現象。

(13)ウェイクギャロッピング

複数のケーブルが空間的に配置された場合に,下流側のケーブルに生じる現象であり,主に風向方向に対して直角方向のモードが卓越する振動。ケーブル間隔が比較的狭い場合に顕著となる。

(14)ウェイクインテューストフラッター

複数のケーブルが空間的に配置された場合に,下流側のケーブルに生じる現象であり,主に風向方向に対して楕円軌道を描く振動。ケーブル間隔が比較的広い場合に顕著となる。

(15) 一様気流

風速が時間的にも空間的にもほとんど変化しない気流をいう。

(16)乱流

風速が時間的にあるいは空間的に変動するような気流をいう。

(17)風の傾斜角

水平方向を基準とする風の鉛直面内の角度をいう。吹上げを正とする。

(18)迎角

橋げたの橋軸に直角な基準軸と風のなす角度をいう。橋げたが水平な場合は風の傾斜角に等しいが, 曲線区間などで橋げたが片勾配を持つ場合は迎角と風の傾斜角は異なってくる。吹上げを正とする。

(19) 地表粗度

地表面の凹凸の程度を表わし,地形,植生,土地利用状況などによって変化する。

(20)総高D

風荷重を算定する際に用いる橋げたの鉛直方向高さに関係する量をいう。橋梁用防護柵の高さは壁 型剛性防護柵でその全高さを,その他では 0.4m を高さに含める。

(21)総幅 B

橋梁の幅員方向の長さをいう。充腹げた橋の場合は,最外側の間隔,トラス橋の場合は主構の中心間隔 (主構間隔)とする。

(22)有効高 d

動的照査に用いる橋梁の鉛直方向の高さをいう。充腹げたの橋の場合は,けたの投影高さで,壁型剛 性防護柵以外の橋梁用防護柵の場合,地覆までを含み橋梁用防護柵は含まない。トラス橋の場合には 上下弦材の中心間隔(主構高さ)とする。

(23)有効鉛直投影面積 A_n

橋梁の風上側の側面を横方向(橋軸直角水平方向)に正投影した面積。ただし,中央分離帯、風下側 橋梁用防護柵などは含めない。また、橋床・床組の横断勾配の影響は無視する。

(24) 充実率 φ

有効鉛直投影面積/外郭面積を表わす。

(25)構造減衰(対数減衰率)δ

構造材料の内部粘性や部材相互の摩擦などに起因する橋梁固有の振動の減衰を対数減衰率で表したものをいう。耐風設計のパラメータとなる無風時の構造減衰には、上記要因のほかに静止気流中での 空力減衰が含まれる。

風作用

1.概説

風は,おもに気圧差によって生じる空気の流れである.自然風の風速,風向は時間的・空間的に 変化する.また,「平均風速」と「最大瞬間風速」が使い分けられていることからも,風の構造物に及 ぼす作用は平均的な作用として時間的に変動しない静的作用として扱われる部分と,不規則に変 動し振動問題となる動的作用として扱われる部分とが同時に現れる.特に,動的作用に関しては,風 の変動特性のみならず,構造物の規模,構造・振動特性が関係する.

したがって,構造物の耐風設計においては,自然風の性質との関係,発生する風による作用との 関係で,風荷重としての扱い,振動としての対処が適宜組み合わされて行われる.すなわち,風によ る作用は,「静的な作用」と「動的な作用」に大分類し,自然風の特性と現象の発生する性状とに応じ てさらに細分類して,取り扱うことが通常となっている.

適用範囲

ここでは,構造物への風の作用について述べるが,先に述べたように構造物への風の作用は風の 特性のみならず,構造物の特性にも影響されるため,以下では橋梁を例として説明することとする. ただし,基本的な考え方は,その他の構造物においても同じである.

2.風の作用と現象

風は,気象のおもに気圧差によって生じる空気の流れであり,その成因に応じて,季節風,台風, 低気圧・前線性強風,竜巻,ダウンバーストなどがある.ただし,構造物の耐風設計体系においては, 風の風速(あるいは平均風速)が指標となるため,風の成因については特に言及しないこととする.

風の作用は,空間的,時間的に変動し,また構造物の規模,特性にも影響され,多種多様な現象 を構造物に引き起こす.通常,構造物の設計の便宜から,風の作用を現象毎に分類し,設計での対 処法を定めている.

以下に,風の作用の分類と発現する現象を示す.

● 静的作用

・風圧により生じる静的な変形

・静的空気力による不安定現象(ダイバージェンス,横座屈)

- 動的作用
 - ・比較的低風速で発生する振幅の限定的な空力振動(渦励振)
 - ・高風速で発生し、風速の増加とともに急激に発達する空力振動(発散振動:ギャロッピング、 フラッター)
 - ・風速の増加とともに徐々に発達する不規則な空力振動(ガスト応答)

3.作用因子

1)作用因子と風の特性値

風作用での作用因子としては,高度 10m,基準粗度における 10 分間平均風速として定義される 基本風速: U₁₀ (m/s)とする.

基本風速 U₁₀は,確率変数であり,既往の観測値(年最大風速など)から極値統計手法や地形因 子解析,あるいは台風シミュレーションなどの手法によって再現期待値として設定される.土木構造 物では,設計風速の再現期間として,完成系に対して 50~150年程度が,架設系に対して1~10年 程度が使われる.道路橋耐風設計便覧においては,再現期間100年として,全国を4つの基本風速 レベル(30,35,40,45m/s)に区分している(図1参照).ほかに,建築物に対しては建築物荷重指針 において,風速マップを示している(図2参照). また,次に示す風の特性についても,基本風速と合わせて風の静的・動的作用のモデルを規定する.

- 風速の高さ方向分布
- 乱れ強さ
- 風速のパワースペクトル密度
- 風速の空間相関

図1 基本風速 U₁₀に対する風速マップ(道路橋耐風設計便覧)

図2 基本風速 U₁₀に対する風速マップ(建築物荷重指針)

2)作用因子の設定法

風は,空間的,時間的に変動しており,構造物の設置地点,規模,供用年数などに応じて,適切 な特性値を定める必要がある.作用因子である基本風速 U₁₀を設定する際にも,空間的要素として の地形の影響,地表面粗度の影響,時間的要素としての再現期間(極値統計)の処理が必要とな る.

基本風速 U₁₀の設定方法としては, 過去の風速観測記録からの極値統計手法 地形因子解析手法 台風シミュレーション手法 が挙げられる.それぞれの手法の詳細については, Appendix A に示す. 過去の風速観測記録としては,気象官署,AMEDASのデータが利用できる.ただし,観測位置, 高度の変更や計器の変更があったり,観測地周辺の都市化に伴う風環境の変化などによって,長期 間にわたっての均質なデータが得られないことに注意が必要である.その他に,国の行政機関,地 方自治体,消防署,道路管理者,鉄道事業者,電力会社などによっても風観測が行われている.

構造物の設置地点での風の観測記録が無い場合,近隣の気象官署などでの記録から極値解析 を行い,それを対象地点に変換する必要が生じる.また,台風シミュレーションでは,地表面の影響 を受けない上空での風速が与えられるため,これを地上風速に変換する必要がある.いずれの場合 にも対象地点周辺の地形の影響を適切に考慮する必要があるが,これらは周辺地形の縮尺模型を 用いた風洞試験や数値流体解析によって検討が行われることがある.

3)風の特性値

風の作用を規定するためには,平均風速に加えて風の変動特性に関する情報が必要となる.ここでは,風の変動特性に関するモデル,確率分布情報を与える.

● 風速の高さ方向分布

風速は周辺の地表粗度や高度によって変化する.上空での風速は地表粗度によらず一定である が,地表に近づくにつれて,地表粗度の影響を受け風速は減少する.このような風速の高度による 変化特性は,次に示す対数則か,べき法則のどちらかで表される.対数則は理論的に導かれたもの であるが,対数の取扱いが実務的でないこともあり,より簡便なべき法則が用いられることもある.日 本においても土木構造物の耐風設計では,べき法則が一般に用いられている.

[対数則]

$$U_z = \frac{u_*}{k} \ln \frac{z}{z_0} \tag{1}$$

ここで, U_z は高度 $z(\mathbf{m})$ での風速, u_* は摩擦速度, $k \cong 0.4$)はカルマン定数, z_0 は粗度長である.

[べき法則]

$$U_z = U_{10} \times \left(\frac{z}{10}\right)^{\alpha} \tag{2}$$

ここで, αはべき指数で高度による風速の変化率を表す.αは地表面粗度に応じて平均的に次のよう な値を取るとされる.

平坦な地形の草原,海岸地帯	1/10 ~ 1/7
田園地帯	1/6 ~ 1/4
森林地帯,市街地	1/4 ~ 1/2

また,道路橋耐風設計便覧では,4つの粗度区分に分類し,べき法則でのパラメターを表1のよう に設定している.なお,地表面近くの地物の代表高さ*zb*より低いところでは風の吹き方が複雑となり, べき法則に従わない傾向を示すことから,例えば,道路橋耐風設計便覧では*zb*より低い地点では*zb* での風速のままとするモデル化が行われている(図3参照).

表1 道路橋耐風設計便覧におけるべき法則のパラメター

地表粗度区分				
$z_b(\mathbf{m})$	5	10	15	30
α	0.12	0.16	0.22	0.29
$z_G(\mathbf{m})$	500	600	700	700
z_0 (m)	0.01	0.05	0.3	1.0

粗度区分 : 海上,海岸

: 農地,田園,開けた土地,樹木や低層建物が散在している地域

💠 樹木や低層建物が密集している地域,中高層建築物が散在している地域

なだらかな丘陵地

: 中高層建築物が密集している地域,起伏の大きい丘陵地

図3 道路橋耐風設計便覧における風速の高度分布のモデル化

● 乱れ強さ

空間上に風速を考えると,直交する3方向(x, y, z)にそれぞれ平均風速と変動風速に分けることができ,それぞれ $U, V, W \ge u, v, w \ge a$ くことにする.ここで,風向き方向を $x \ge b$,風速成分をUあるいは $u \ge b$,それに直交する水平方向と風速成分をy, Vあるいはv,同様に鉛直方向と風速成分をz, Wあるいは $w \ge a$.通常は,水平,鉛直方向の平均風速成分V, Wは0と見なせるので,変動する風速特性を表すには,U, u, v, wを用いればよいことになる.

各風速成分の変動の強さ, すなわち乱れ強さは次式で定義される.

$$I_u = \frac{\sigma_u}{U} , \ I_v = \frac{\sigma_v}{U} , \ I_w = \frac{\sigma_w}{U}$$
(3)

ここで, σ_u , σ_v , σ_w はそれぞれ u, v, w の標準偏差である.

乱れ強さの観測例として,新北九州空港連絡橋の建設現場でのものと大鳴門橋上,明石海峡大橋上でのものをそれぞれ図4,表2に示す.いずれも超音波風速で計測されたものである.新北九州空港連絡橋でのものを見ると,低風速で特にばらつきが大きく,風速の増大とともに一定の値に収束する傾向が見られる.主流方向乱れ強さよりも鉛直方向乱れ強さのほうが小さく半分程度である.また,大鳴門橋上での観測例を見ると乱れ強さが非常に小さいことが判る.これは南側の海上から吹き付けた風であり,設計基準で規定するよりも非常に乱れ強さの小さい例を示す貴重な観測例である.

図4 乱れ強さの観測例(新北九州空港連絡橋)

			旧石海峡大桥					
	日。任若			P 4	日本任共		马吹八 侗	D4
	風の種類	時間	10 分間値	風回	風の種類	時間	10 分間値	風回
平均風速 (m/s)			22.8				32.1	
最大風速 (m/s)		3:29) ~ 24.5		14:13 ~	38.9		
Iu (%)		3:39	2.08	橋軸直角 方向南風	喬軸直角 台風 方向南風 Sep.22/1998	14:23	7.02	台風の移動に 伴い橋軸直角 45°方向から 橋軸直角方向
平均風速 (m/s)		差節風 17/1998 3:39 22.6 橋軸直角 方向南風 3:49 1.98 22.1 3:49 22.1 3:49 22.1 3:49 24.3 5:0南風 S	22.6			14:23	33.2	
最大風速 (m/s)	李節風 Mar.17/1998		3:39 24.3				39.1	
Iu (%)			1.98			14:33	6.26	に 変化
平均風速 (m/s)						28.3		
最大風速 (m/s)				14:43	41.8			
Iu (%)		3:59	2.30			14:53	6.38	

表2 乱れ強さの観測例(大鳴門橋,明石海峡大橋)

● 風速のパワースペクトル密度

風速のパワースペクトル密度は,風速変動成分の振動数毎の寄与度を表すものであり,いくつかの提案式がある.一例として,比較的よく用いられる日野のスペクトル,等方性乱流に対するカルマン(Karman)型スペクトル,Bush&Panofskyのスペクトルを以下に示す.

日野のスペクトル

$$S_{u}(f) = 0.4751 \cdot \sigma_{u}^{2} \cdot \frac{\frac{1}{\beta}}{\left[1 + \left(\frac{f}{\beta}\right)^{2}\right]^{5/6}} \quad , \quad \beta = 1.7181 \times 10^{-2} \cdot \frac{\alpha K_{r} U_{10}}{I_{u}} \left(\frac{z}{10}\right)^{(2m-3)\alpha - 1}$$
(4a, b)

ここで, Kr: 地表面摩擦係数, m: 修正係数, α: べき指数, U10: 基本風速

カルマン型スペクトル [主流成分]

$$S_{u}(f) = \frac{\sigma_{u}^{2}}{f} \cdot \frac{4\left(\frac{fL_{u}^{x}}{U}\right)}{\left[1 + 70.8\left(\frac{fL_{u}^{x}}{U}\right)^{2}\right]^{5/6}}$$
(5)

[鉛直成分]

$$S_{w}(f) = \frac{\sigma_{w}^{2}}{f} \cdot \frac{4\left(\frac{fL_{w}^{x}}{U}\right) \left[1 + 755.2\left(\frac{fL_{w}^{x}}{U}\right)^{2}\right]}{\left[1 + 283.2\left(\frac{fL_{w}^{x}}{U}\right)^{2}\right]^{11/6}}$$

ここで, L_u^x , L_w^x :乱れスケール

Bush&Panofsky のスペクトル

$$S_{w} = \frac{0.632\sigma_{w}^{2}}{f} \cdot \frac{\frac{f_{r}}{f_{\text{max}}}}{\left(1 + 1.5\left(\frac{f_{r}}{f_{\text{max}}}\right)^{\frac{5}{3}}\right)}$$
(7)
$$\Xi \overline{C}_{v} f_{r} = fZ/U_{z} \quad f_{\text{max}} = 0.3$$

● 風速の空間相関

C

風速変動の空間的な相関を表す式として,実務的には距離とともに指数的に減衰する空間相関 関数式が多く用いられる.構造物への風の作用を考える際に風速の空間相関を必要とするのは,変 動風速場での空間的な広がりを持つ構造物の風荷重評価を行う際である.これは,通常,ガスト応 答解析を通じて行われるが,その際には次のように異なる2点間の風速変動のクロススペクトル密度 関数をそれぞれの点でのパワースペクトル密度関数と指数関数によって表現している.

(6)

$$\frac{\left|S_{ij}(i,j,f)\right|}{\sqrt{S_{i}(i,f) \cdot S_{j}(j,f)}} = \exp\left(-k\frac{f \cdot \Delta x}{U}\right)$$
(8)

ここで, k はディケイファクターで 5~15 程度の値をとる.また, f は振動数, Δx は 2 点間の距離である.

また,低振動数領域での空間相関をより厳密に表現するために,ESDU にも規定されるカルマン 型スペクトルの基づいた次の相関式が用いられることもある.

$$\frac{\left|S_{ij}(i,j,f)\right|}{\sqrt{S_{i}(i,f)\cdot S_{j}(j,f)}} = 0.994 \left[\eta^{5/6}K_{5/6}(\eta) - \frac{\eta^{11/6}}{2}K_{1/6}(\eta)\right]$$
(9)

ここで,

$$\eta = 0.747 rac{\Delta x}{L} \sqrt{1+70.8 \left(rac{fL}{U}
ight)^2}$$
, L : 乱れスケール相当長さ, $K_{5/6}$, $K_{11/6}$: 第 2 種変形ベッセル関数である.

明石海峡大橋で観測された風速変動の空間相関を図 5 に示す.図より,2 点間の距離が大きくなるに従って,相関が指数関数式よりも小さくなることが判る.

図 5 変動風速の空間相関の観測例(明石海峡大橋)

4.作用

1)風荷重

空間上の構造物に風が作用すると,3次元的に風荷重が生じ,厳密には6分力として定義される. このうち,最も直接的でかつ支配的なものが風軸方向に作用する風荷重(抗力)であり,通常は風荷 重として抗力のみを考える.その作用は,以下のように表される.

$$P = \frac{1}{2} \rho U_d^2 A_n C_D G \tag{10}$$

ここで, $P: 風荷重(N), \rho: 空気密度(道路橋示方書では 1.23 kg/m³), <math>U_d: 設計基準風速(m/s), A_n: 投影面積(m²), <math>C_D: 抗力係数, G: ガスト応答係数(道路橋示方書では 1.9) である.$

設計基準風速 U_d

設計基準風速 U_dは,風荷重を算出する対象とする部位の高度における10分間平均風速である. 基本風速と設計基準風速との関係は,べき法則によれば次のように表される.

$$U_d = U_{10} \left(\frac{z}{10}\right)^{\alpha} \tag{11}$$

抗力係数

抗力係数は,構造物の幾何学的形状によって変化するほか,近接する構造物,気流の傾斜角あるいは水平偏角,構造物の表面粗度等の影響を受ける.特に,円形断面の場合には,レイノルズ数の影響を大きく受ける.また,抗力係数は風の乱れや傾斜角によって変動するが,それらが特に大きくない場合は,一様流中の傾斜角0度での抗力係数が用いられる.

橋梁部材の代表的形状と考えられる角形, H 形および円形断面の抗力係数について, 形状ある いはレイノルズ数の影響を図 6 に示す.道路橋示方書では,角形断面と円形断面の抗力係数をそ れぞれ 1.6 と 0.8 としているが,角形断面の 1.6 は B/D が 2 程度の角形断面および I 形断面の抗力 係数となっている.また,円形断面の0.8は,直径がおよそ15cm以上の表面が滑らかな円形断面で, レイノルズ数が超臨界域あるいは極超臨界域での上限的な値となっている.また,図7,8にさまざま な形状をもつ物体の抗力係数を示す.

橋梁上部構造の代表的な形式に対する抗力係数の規定を以下に示す.これは,これまでの試験 値をもとに代表的な値として道路橋示方書に採用されているものである.

● プレートガーダー

充腹のI形断面, 形断面および箱形断面の桁を主構造にもつ上部構造の抗力係数にはプレー トガーダーの抗力係数を適用する.

 $C_{d} = \begin{cases} 2.1 - 0.1(B/D) & 1 \le B/D < 8\\ 1.3 & 8 \le B/D \end{cases}$ (12)

● 2 主構トラス

トラスと橋床(防護柵,床版,床組)に分けて定められる. トラス $C_d = 1.35 / \sqrt{\phi}$ (ただし, $0.1 \le \phi \le 0.6$) (13) 橋床 $C_d = 1.6$

ここで, φはトラスの充実率.

● アーチ橋

```
アーチ部材,補剛桁,垂直材
角形断面 1.6(風上側部材),0.8(風下側部材)
円形断面 0.8(風上側,風下側部材)
橋床
1.6
```

● 吊橋·斜張橋

橋桁部分に対しては,形状に応じてプレートガーダーあるいは2主構トラスの抗力係数を適用. 塔については,1.6(風上側部材),0.8(風下側部材),ケーブルについては,0.8(風上側,風下側 部材とも)が適用される.

● 橋梁付属物

遮音壁,落下物防止柵を橋床の一部として,それに作用する風荷重を考慮する. 風上側にある橋梁付属物の抗力係数は,プレートガーダーの場合を除いて2 主構トラスの橋床と同様に1.6としてよい.プレートガーダーの場合には,プレートガーダーの抗力係数と同一としてよい. また,風下側にある遮音壁,落下物防止柵に作用する風荷重は無視してよい.

● 下部構造

円形および小判形の場合は 0.8,角形の場合は 1.6を適用する.

図6角形,円形断面の抗力係数(図 3.3(a), 3.3(b)便覧)

-	正方形断面	$\begin{smallmatrix} 2.0 \\ [1.2 \\ (0.6) \end{smallmatrix}]$	- 0	十二角形断面	1.3 (1.1)
\rightarrow	v	$\begin{smallmatrix} 1.6 \\ [1.4 \\ (0.7) \end{smallmatrix}]$	- ()	円形断面 (表面滑らか)	1.2 (0.7)
\rightarrow $\boxed{1}_{2}$	矩形新面 (辺長比 1:2)	$\begin{smallmatrix} 2.3\\ [1.6\\ (0.6) \end{smallmatrix}]$	- ()	〃 (表面極めて粗)	1.2
	σ	1.5 [0.6]	- (]	半円形断面	1.2
monn	ッ (一面を地に) 接した場合)	1.2	- D	IJ	2.3
- <	正三角形断面	$\begin{smallmatrix} 1.3\\ [1.2\\ (0.5) \end{smallmatrix}]$	-0	長円形断面 (径比 1:2)	1.7 (1.5)
- >		$\begin{smallmatrix} 2.1 \\ [1.3] \\ (0.5) \end{smallmatrix}]$	-0	π	0.7 (0.2)
- <	直角二等辺 三角形断面	1.6		$\frac{d}{b} = \frac{1}{2}$ $\frac{r}{d} = \frac{1}{2}$	0.4 (0.3)
- ()	八角形断面	1.4			

(注)1 []は短辺の1/4の半径をもって切り取った場合の数値。

(注)2()は限界レイノルズ数以上での数値。

図7 さまざまな形状をもつ物体の抗力係数

→	平极	2.0	→ _	不等脚山形断面 (辺長比約 1:2)	1.9
<u>→</u>	1辺を地に 接した平板	1.2	$\rightarrow \top$	T 形 断 面 (辺長比約 1:2)	1.8
\rightarrow \vdash	H 形 断 面 (辺長比約 1:2)	1.9	→	N	2.0
- I	I 形断面 (辺長比約 1:2)	2.2	\rightarrow \rightarrow	11	1.5
$\rightarrow 45$	45"に傾けた I 形断面	1.6	- 145	N	1.4
→ L	等狗山形断面	2.0	→ <u>45</u>	N	2.4
	N	1.8	-]	溝形断面 (辺長比約 1:2)	2.1
-45	8	1.1	→ [σ	1.8
- >	σ	1.7	→ []	σ	1.4
$\dot{-} <$	σ	1.5	$\rightarrow +$	十字形新面	1.75
	不等即山形断面 (辺長比約1:2)	1.6	-)	半円形断面	2.3
	U	1.7	- (9	1.2
$r \rightarrow r = r$	σ	2.0			
				the second	

図 8 平板およびアングルの抗力係数(*Re* = 2.1×10⁵)

投影面積

正確には有効鉛直投影面積であり,風荷重の作用方向に直角な鉛直面に対する構造物の構造 実方向単位長さあたりの平均投影面積である.

橋梁の場合, 主桁, 縦桁, 床版, 地覆, 防護柵, 遮音壁および活荷重に対しては風上側側面の 投影面積のみを考慮し, 中央分離帯部, 風下側の地覆, 防護柵は含めないほか, 路面, 床版の横 断勾配の影響は含めない.また, アーチ橋のアーチ部材, 補剛桁, 吊材および支柱, 吊橋・斜張橋 の塔およびケーブルなどで風下側にも部材が配置される場合には, 風下側部材の風上側側面の投 影面積も考慮する必要がある.

ガスト応答係数 G

ガスト応答係数Gは風速の時間変動(乱れ)を考えた時の最大瞬間風荷重と時間平均風荷重との 比として定義される.

ガスト応答係数 G = 最大応答値 / 平均抗力による応答値

ガスト応答係数は,風の変動特性のみならず構造物の振動特性や着目する応答量によっても異なる.道路橋示方書で与えられる値(1.9)は,道路橋示方書が対象とするような風の作用が支配的と

ならない橋梁に対して,設計の便宜を図る目的で安全側の値を設定しているものである.構造の規 模が大きくなり,風の作用が大きくなるような構造に対しては,個別に検討を行う必要が生じる.具体 的には,変動風と構造とをモデル化し,変動風による構造の応答解析(ガスト応答解析)を実施し, 着目する部位の断面力の最大瞬間値の期待値と時間平均値との比からGを求めることになる.

風荷重の載荷方法

風荷重を算定する際には,通常,構造物に直角な方向から風が吹くことを前提としている.これは, 直角方向からの場合が最も風荷重が大きくなるためである.道路橋示方書においては,構造物の風 上側の有効鉛直投影面積の図心位置に,考えている部材に最も不利な応力を生じさせるように単位 長さあたりの風荷重を載荷する.単位長さあたりの風荷重を橋軸方向にどのように分布させるかにつ いては,議論の余地があるが,道路橋示方書では,風荷重は橋梁の水平剛度の確保のために用い られることなどを考慮し,考えている部材に最も不利な応力を生じさせるように分布させることとしてい る.

ただし,規模の大きな橋梁の場合には,橋軸直角方向だけでなく,橋軸方向からの風荷重によっても応力,変位が生じることから,設計においては橋軸直角方向からの風荷重と橋軸方向からの風荷重を組み合わせて設計を行っている.

風速の頻度分布

風の動的作用によって渦励振が発生し,疲労が問題となる場合がある.この場合,疲労の照査を 行うことになるが,〈り返し回数を算定するために風速の頻度分布が必要となる.一般に,風速の頻 度分布はワイブル分布でよ〈表せることが知られており,渦励振の発生する風速域とワイブル分布か ら求めた風速頻度,渦励振の周期から疲労の照査が行えることになる.

橋梁構造に対する風荷重値

単位面積あたりの風荷重もしくは単位長さあたりの風荷重の値が道路橋示方書に定められている.

$$P(kN/m) = \begin{cases} (4.0 - 0.2(B/D))D & 1 \le B/D < 8\\ 2.4D & 8 \le B/D \end{cases}$$
(14)

ただし,最低値は6kN/m.

[活荷重載荷時]

活荷重無載荷時の 1/2 + 活荷重に作用する風荷重(1.5 kN/m)

● 2 主構トラス

[活荷重無載荷時]

橋床
$$p(kN/m^2) = 3.0$$

ただし,最低値は6kN/m(載荷弦),3kN/m(無載荷弦).

[活荷重載荷時]

活荷重無載荷時の 1/2 + 活荷重に作用する風荷重(1.5 kN/m)

その他の形式

桁の形状に応じてプレートガーダーあるいは2主構トラスの風荷重を適用.

角形断面 $p(kN/m^2) = 3.0$ (16)

円形断面 $p(kN/m^2) = 1.5$

なお,風下側部材に作用する風荷重は,角形断面では風上部材の1/2(= 1.5 kN/m²),円形断面で は風上部材と同じ値(= 1.5 kN/m²)とする.また,活荷重載荷時の風荷重は,活荷重無載荷時の1/2 とする.

● 遮音壁を有する橋梁に作用する風荷重

遮音壁を有する橋梁で,周囲に住宅が密集している場合には,上部構造と下部構造に作用する 風荷重を0.8倍に低減することができる.

● 並列する橋梁の風荷重

プレートガーダーが近接して並ぶ場合,単独の場合の抗力と異なることが風洞試験で確認されて いる.道路橋示方書では,並列の効果による上部構造に作用する風荷重の補正係数を表3のように 定めている.

	业列の効果による風何里の補止係数				
上部構造の設計		1.3			
	S_h	風上側	風下側		
	$S_h \le 0.5 B_1$	1.3	1.3		
下部構造の設計	$0.5 B_1 < S_h \le 1.5 B_2$ $1.3 \qquad S_v \le 0.5 D_2$ $0.5 D_2 < S_v \le 1.5 D_2$ $1.5 D_2 < S_v \le 2.5 D_2$		$S_v \le 0.5 D_2$	0.3	
		1.0			
			$1.5 D_2 < S_v \le 2.5 D_2$	1.2	
	$1.5 B_2 < S_h \le 1.5 B_1$	1.3	1.0		

表 3 並列の効果による上部構造に作用する風荷重の補正係数

● 下部構造に作用する風荷重

橋軸直角方向および橋軸方向に作用する水平方向の荷重で,同時に2方向には作用しないとする.風荷重は,抗力係数を1.6と0.8として定められた値が適用され,風向方向の有効鉛直投影面積にこの風荷重を作用させる(表4参照).

-			
		風荷重	
円	形	活荷重載荷時	0.75
小判	判 型	活荷重無載荷時	1.5
岳	ШX	活荷重載荷時	1.5
用	π2	活荷重無載荷時	3.0

表4 下部構造に作用する風荷重(kN/m²)

2) 一般的な作用モデル

風による作用は,風(風速)に伴う空気力によって様々な現象を引き起こす.構造物の規模が比較 的小さく,剛な場合には,風荷重による変形や応力を考慮することで十分であるが,構造物の規模 が大きくなり,可撓性に富むようになると振動現象に対する考慮が必要となる.空気力は,平均的な 風速成分による静的空気力あるいは定常空気力,時間的・空間的に風速が変動することによる変動 空気力あるいはガスト空気力,構造物の動きに伴って生じる自励空気力あるいは非定常空気力に大 別される.このうち,1)で述べた風荷重には,定常空気力と変動空気力が簡便的に考慮されている. 構造物の規模が大きくなり,風の作用が支配的になる場合には,より精緻な方法によって風の作用 を検討する必要が生じるが,以下にその取扱い法について述べる.

いま,構造物に変動風速U + uが作用する場合の風荷重を考える.この場合の風荷重は,構造物の動きに対する相対風速を考えることで,以下のように表される.

$$P = \frac{1}{2}\rho(U + u - \dot{x})^2 A_n C_D$$
(17)

ここで, x は構造物変位の速度である.

上式を展開し, 微少量の2次項を省略することで, 以下のようになる.

$$P = \frac{1}{2}\rho \left(U^{2} + u^{2} + \dot{x}^{2} + 2Uu - 2U\dot{x} - 2u\dot{x}\right)^{2} A_{n}C_{D} \cong \frac{1}{2}\rho \left(U^{2} + 2Uu - 2U\dot{x}\right)A_{n}C_{D}$$

$$= \frac{1}{2}\rho U^{2}A_{n}C_{D} + \rho UuA_{n}C_{D} - \rho U\dot{x}A_{n}C_{D}$$
(18)

すなわち,第1項が定常空気力,第2項が変動空気力,第3項が非定常空気力を表し,構造物 への作用,風荷重(空気力)が近似的には定常空気力,変動空気力,非定常空気力の線形重ね合 わせで表せることを示している.なお,以上の展開は主流風速成分による1自由度系についてのも のであるが,鉛直および水平風速成分も考慮した多自由度系に対しても拡張できるものである.以 下に,各空気力成分に対する具体の取扱い法について述べる.

図9 主流風速成分による構造物の空気力

3)静的空気力(定常空気力)

構造物に作用する空気力は6成分の各空気力(6分力)によって表現することができる.このうち, 最も支配的で重要なものが先に述べた抗力(Drag)であり,それに加えて風直角鉛直方向の揚力 (Lift),風直角水平方向の横力(Side force),風と直交する水平軸まわりの空力モーメント(Pitching moment)の4分力が,土木構造物ではしばしば使われる.

$$D_{m} = \frac{1}{2} \rho U_{d}^{2} B C_{D}$$

$$L_{m} = \frac{1}{2} \rho U_{d}^{2} B C_{L}$$

$$S_{m} = \frac{1}{2} \rho U_{d}^{2} B C_{S}$$

$$M_{m} = \frac{1}{2} \rho U_{d}^{2} B^{2} C_{M}$$
(19a, b, c, d)

ここで, B は代表長, C_D, C_L, C_S, C_M はそれぞれ抗力係数, 揚力係数, 横力係数, 空力モーメント係数であり, 単位長さあたりの風荷重(空気力)と動圧との比として定義され, 通常, 風洞実験によって 計測される.

なお,橋桁の場合は代表長として桁幅を取るが,抗力係数の無次元化は風に対する見付け幅で ある桁高を取る場合が多い.例として,図11にトラス桁と箱桁での3分力係数(抗力,揚力,空力モ ーメント係数)の実測例を示す.また,矩形断面柱とH型断面柱の3分力係数を図12,13に示す.

図 10 6分力の定義

図 11 橋桁での 3 分力係数

図 12 矩形断面の 3 分力係数 (*Re* = 2.1×10⁵)

図 13 H 形断面の 3 分力係数 (*Re* = 2.1×10⁵)

4)変動空気力(ガスト空気力)

風の時間変動作用に起因する変動空気力(ガスト空気力)は以下のように表される.ガスト応答係 数は,道路橋示方書では簡易的に 1.9 として与えられるが,構造物の規模が大きくなり可撓性に富 むようになると,ガスト応答の影響をより精緻に評価する必要が生じる.その際には,風速の時間変 動特性をより精緻に考慮して,ガスト応答係数を求める必要がある.この作業を通常ガスト応答解析 といい,ガスト応答解析に用いられる変動空気力モデルを以下に示す.

$$D_{b} = \frac{1}{2} \rho U_{d} B \Big[2C_{D} \chi_{D}^{u} u + C_{D}^{\prime} \chi_{D}^{w} w \Big]$$

$$L_{b} = \frac{1}{2} \rho U_{d} B \Big[2C_{L} \chi_{L}^{u} u + (C_{L}^{\prime} + C_{D}) \chi_{L}^{w} w \Big]$$

$$M_{b} = \frac{1}{2} \rho U_{d} B^{2} \Big[2C_{M} \chi_{M}^{u} u + C_{M}^{\prime} \chi_{M}^{w} w \Big]$$
(20a, b, c, d)

ここで,(')は風の迎角に対するそれぞれの係数の勾配であり,通常迎角が 0 度での値を用いる. χ_F^r (F = D, L, or M, r = u or w)は空力アドミッタンスで,各風速成分の寄与する空気力成分ごとに定 義される.また,u,w は風の主流,鉛直方向の変動風速である.

上式で示される変動空気力を用いてガスト応答解析を行う際には,変動風速場が定常不規則過 程であると見なせることから,通常,振動数領域でのスペクトル解析手法が用いられることが多い.こ のとき,変動空気力は,変動風速 u,w のパワースペクトル密度関数を用いて表現されることから,風 の変動特性のパワースペクトル密度関数は風速変動特性を表す重要なパラメターとなる.さらに,構 造物が空間的に大きな広がりを有する場合,すなわち変動空気力が多点入力となる場合には,風速 変動の空間的な広がりを考える空間相関関数が必要となる.振動数領域でのガスト応答解析法につ いては, Appendix C で示す.

5)非定常(あるいは自励)空気力

構造物の規模がさらに大きくなり,風による発散的な振動作用を考慮する必要が生じるような場合 がある.これは,構造物の動きに伴って新たな空気力が付加され,振動が自励的に大きくなる現象 であり,次の非定常空気力として表される.

$$L_{ae} = \pi \rho B^{2} \omega^{2} \left[L_{yR} y + L_{yI} \frac{\dot{y}}{\omega} + L_{zR} z + L_{zI} \frac{\dot{z}}{\omega} + L_{\theta R} \theta + L_{\theta I} \frac{\dot{\theta}}{\omega} \right]$$

$$M_{ae} = \pi \rho B^{4} \omega^{2} \left[M_{yR} y + M_{yI} \frac{\dot{y}}{\omega} + M_{zR} z + M_{zI} \frac{\dot{z}}{\omega} + M_{\theta R} \theta + M_{\theta I} \frac{\dot{\theta}}{\omega} \right]$$

$$(19a, b, c)$$

$$D_{ae} = \pi \rho B^{2} \omega^{2} \left[D_{yR} y + D_{yI} \frac{\dot{y}}{\omega} + D_{zR} z + D_{zI} \frac{\dot{z}}{\omega} + D_{\theta R} \theta + D_{\theta I} \frac{\dot{\theta}}{\omega} \right]$$

$$(19a, b, c)$$

ここで, ωは構造の円振動数, y, z, θはそれぞれ構造の鉛直, 水平, ねじれ変位, (・)は時間微分を 表す.また, LyR, LyI, ..., DθI は, 非定常空気力係数と呼ばれる無次元係数であり, 構造の変位ある いは速度に比例して生じる非定常空気力の程度を表す.

また, Scanlan は, 非定常空気力係数を Flutter Derivative と称し, 以下のような定式化を使った.

$$\begin{split} L_{ae} &= \frac{1}{2} \rho U_d^2 B \Biggl[KH_1^* \frac{\dot{y}}{U} + KH_2^* \frac{B\dot{\theta}}{U} + K^2 H_3^* \theta + K^2 H_4^* \frac{y}{B} + KH_5^* \frac{\dot{z}}{U} + K^2 H_6^* \frac{z}{B} \Biggr] \\ M_{ae} &= \frac{1}{2} \rho U_d^2 B^2 \Biggl[KA_1^* \frac{\dot{y}}{U} + KA_2^* \frac{B\dot{\theta}}{U} + K^2 A_3^* \theta + K^2 A_4^* \frac{y}{B} + KA_5^* \frac{\dot{z}}{U} + K^2 A_6^* \frac{z}{B} \Biggr] \\ D_{ae} &= \frac{1}{2} \rho U_d^2 B \Biggl[KP_1^* \frac{\dot{y}}{U} + KP_2^* \frac{B\dot{\theta}}{U} + K^2 P_3^* \theta + K^2 P_4^* \frac{y}{B} + KP_5^* \frac{\dot{z}}{U} + K^2 P_6^* \frac{z}{B} \Biggr] \end{split}$$

(20a, b, c)

ここで, $K(= \omega B/U)$ は換算振動数, P_i^* , H_i^* , A_i^* (*i* = 1 - 6) は非定常空気力係数である. フラッター解析法の概要を Appendix B に示す.

5.作用効果

風の作用は、既に述べたように空間的、時間的に変動し、また構造物の規模、特性にも影響され、 多種多様な作用効果をもたらす、通常,構造物の設計の便宜から,風の作用を静的,動的現象に分 類し、それぞれの作用効果に対して設計での対処法を定めている。

静的な変形,応力

風荷重を構造物に載荷して,解析的に求める(4.1)あるいは4.2),3)の規定による).あるいは, 風洞実験により求める。

動的な振動

風洞実験,あるいは風の作用モデルを用いて解析的に求める.解析的な手法としては,ガスト応 答解析,フラッター解析などがある(4.4),5)の規定による).

ほかに,道路橋耐風設計便覧では,現象毎に以下の推定式を規定している,

渦励振

鉛直たわみ渦励振

発現風速(m/s):
$$U_{cvh} = 2.0 f_h B$$
 (21)

最大振幅(m):
$$h_c = \frac{\Delta_h \Delta_{th}}{m_r \delta_h} B$$
 (22)

ねじれ渦励振

発現風速(m/s):
$$U_{cv\theta} = 1.33 f_{\theta} B$$
 (23)

最大振幅(deg):
$$\theta_c = \frac{E_{\theta}E_{t\theta}}{I_{pr}\delta_{\theta}}$$
 (24)

ここで, f_h , f_{θ} はそれぞれたわみ, ねじれ固有振動数(Hz), B は桁幅(m), ρ は空気密度(kg/m³)で ある. m_r , I_{pr} はぞれぞれ無次元質量, 無次元極慣性モーメントで以下のように与えられる.

$$m_r = m/(\rho B^2)$$
(25)
$$I_{pr} = I_p / (\rho B^4)$$
(26)

m, I_p は橋の単位長さあたりの質量(kg/m),極慣性モーメント(kg·m)である.

また、補正係数として

$$E_{h} = \frac{0.065\beta_{ds}}{(B/d)} , E_{\theta} = \frac{17.16\beta_{ds}}{(B/d)^{3}}$$
(27, 28)

である. d は橋桁の有効高(m), β_dは橋桁の形状に関する補正係数であり, 次のように与えられる.

 $\beta_{ds} = \begin{cases} 2 ($ **ブ** $ラケット長が有効高dの1/4以下でウェブが垂直な場合) \\ 1 (トロい かっぽっ) \end{cases}$

) 1(上記以外の場合)

さらに, Eth, Eth (気流の乱れによる一様流中で観測された振動応答の低減係数であり, 次のよう) に与えられる。 1/2

$$E_{th} = 1 - 15 \times \beta_t (B/d)^{1/2} \times I_u^2 \ge 0$$
(29)
$$E_{th} = 1 - 20 \times \beta_t (B/d)^{1/2} \times I_u^2 \ge 0$$
(30)

 β_i は橋桁の断面形状が六角形の場合には 0_i その他の場合には1とする.

フラッター

発現風速(m/s): $U_{cf} = 2.5 f_{\theta} B$ (31)

ギャロッピング

発現風速
$$(m/s)$$
: $U_{cg} = 8f_h B$ (地形が平坦な場合) (32)
 $U_{cg} = 4f_h B$ (地形の影響により吹き上げ風が吹く場合) (33)

参考文献

1)日本道路協会,道路橋示方書,**

2)日本道路協会,道路橋耐風設計便覧,1991

3)日本建築学会,建築物荷重指針,**

4) 本州四国連絡橋公団, 本州四国連絡橋耐風設計基準(1976), 同解説, 1976

5)本州四国連絡橋公団,明石海峡大橋耐風設計要領·同解説,1990

6)本州四国連絡橋公団,本州四国連絡橋耐風設計基準(2001)·同解説,2001

7) 岡内, 伊藤, 宮田, 耐風構造, 丸善, 1977

8)日本鋼構造協会,構造物の耐風工学,東京電機大学出版会,1997

Appendix A: 基本風速の設定法

1.平均風速の頻度分布

特定の地点における平均風速値の分布は,次に示すワイブル分布によく従うことが確かめられている.

[累積分布関数]

$$F_{V}(V) = 1 - \exp\left[-\left(\frac{V}{c}\right)^{k}\right]$$
(1)

[確率密度関数]

$$f_V(V) = \left(\frac{k}{c}\right) \left(\frac{U}{c}\right)^{k-1} \exp\left[-\left(\frac{V}{c}\right)^k\right]$$
(2)

ここで, k, c はそれぞれ形状パラメター, 尺度パラメターである.

ワイブル分布における平均値と分散値は $k \ge c$ を用いて次のように表すことができ,またこの関係を使うことで,観測値から $k \ge c$ を求めることが出来る.

$$\mu_V = c\Gamma\left(1 + \frac{1}{k}\right) , \quad \sigma_V^2 = c^2 \left[\Gamma\left(1 + \frac{2}{k}\right) - \Gamma^2\left(1 + \frac{1}{k}\right)\right]$$
(3), (4)

ここで, Γ()は, ガンマ関数である.

図1は,比較的風の強い寿都(北海道)と室戸岬で観測された平均風速の頻度分布をワイブル分布と重ね合わせたものである.図より,ワイブル分布によって風速の頻度分布がよく表されていることが判る.

日本の気象官署で計測された風速データを解析した結果では,形状パラメターkは概ね2程度になることが示されている.なお,大気の動きを等方性2次元乱流とみなし,地面に平行な風速成分が正規分布に従うと仮定すると,k = 2としたレーリー分布となることが理論的にも証明される.(松本先生)

また,道路橋耐風設計便覧においては,全国の気象官署のデータから次式を風速頻度モデル式 として示している.

 $P(U) = \exp\left[-\left(\frac{U}{0.166U_{50}}\right)^{1.46}\right]$ (3)

ここで, *P*(*U*)は 10 分間平均風速が *U* を超える確率, *U*₅₀ は風速の 50 年再現期待値(*U_d*/1.07 として もよい)である.

さらに,風速の頻度分布においては,年最大風速の再現期待風速と異なり,大きな母集団サイズ となることから,風向別に風速頻度分布モデルを作成することができる.特に,構造物の空力振動の 場合には,風向によってその発現特性が大きく変わることから,空力振動による構造物の疲労を検 討する場合に有効である.

図1 平均風速の頻度分布のワイブル分布へのあてはめ(構造物の耐風工学)

2.年最大風速の分布

土木構造物は,通常数十年あるいは 100 年のオーダーで寿命を考えるため,基本風速は例えば 100 年再現期待値というかたちで決められる.そして,これは通常,年最大風速データから決められる.年最大風速は,年ごとには変化するが,年々の気象現象は独立で,確率統計的には同質な不 規則変量または確率変量と見なせる.

いま, 変量 x の同じ母集団からサイズ n の標本を N 個取り出すことを考える. 各標本における n 個の離散変量 x を順序統計量として, $x_1 \le x_2 \le \cdots x_i \le \cdots x_n$ のように並べた時, 各標本での最大値 x_n は標本のサイズ n が大きくなると, ある分布に漸近する. このような漸近極値分布については Fisher-Tippet が理論的研究を行い, 母集団の性質によって 型から 型までの 3 種類の分布関数 に分類している.

年最大風速に対する極値分布として最もよく用いられるものは,次に示す極値 型分布(Gumbel 分布)である.これは,先に述べたように平均風速値の分布が指数型分布の一種であるワイブル分 布に従うならば,その極値分布は 型分布となることが理論的にも証明されることによる.なお,年最 大風速の極値分布形に関しては種々の議論があり,極値 型が理論的には負の値も含むため,む しろ 0 の下限を持つ極値 型(Frechét 分布)のほうが妥当であるとか,自然風の風速には上限値が あることから極値 型の適用も考えられるといったものであるが,ここでは確率論の詳細には立ち入 らないこととする.また,強風の成因には,台風によるもののほか,季節風や温帯低気圧あるいは前 線によるものなどがあるが,これらの異なる成因による強風ではその極値分布形も異なるといった研 究成果も示されており,年最大風速データの取扱いには注意が必要である(この点に関しては,後 に再度触れることとする).

[極値 型累積分布関数]

$$F_V(V) = \exp\left[-\exp\left\{-\alpha (V-u)\right\}\right]$$
(4)

または,

$$F_{s}(s) = \exp\left[-\exp(-s)\right], \qquad s = \alpha(V - u) \tag{5}$$

ここで, α ,uはそれぞれスケールパラメター,位置パラメターである.

3. 極値統計に解析による基本風速の設定

式(4)の両辺の自然対数を2回取ると、

$$V = u - \frac{1}{\alpha} \ln \left[-\ln(F_V(V)) \right] = u + \frac{s}{\alpha} , \qquad s = -\ln \left[-\ln(F_V(V)) \right]$$
(6)

となる. すなわち, 縦軸に線形目盛の V, 横軸に線形目盛の s あるいは二重対数目盛での F(V)をとった図に年最大風速データをプロットすると, 直線で表されることを示している. このとき, s = 0 すなわち $F_V(V) = 1/e = 0.364$ のときの V の値が s であり, 直線の傾きが $1/\alpha$ である. また, s のモーメントは平均値 $\mu_s = 0.577216...(= \gamma: オイラー定数)$, 分散 $\sigma_s^2 = \pi^2/6$ となることから, パラメター α , u との間に次の関係が導かれる.

$$\alpha = \frac{1.282}{\sigma_V} , \qquad u = \overline{V} - 0.450\sigma_V \tag{7}$$

ここで, \overline{V} , σ_V はそれぞれ風速 Vの標本平均,標本標準偏差である.

図2 二重指数確率紙(構造物の耐風工学)

図 3 ある気象官署での 70 年間の年最大風速データの二重指数確率紙へのプロット

ある極値が何年に一度の割合で生起するかを示す期間を再現期間といい,年最大風速 V_T 以上の強風が平均して T 年に一度の割合で起きることが期待される場合に,この T 年を年最大風速 V_T の再現期間, V_T を T年再現期待値と呼ぶ.

次に,年最大風速の累積確率分布 $F_{V}(V)$ と再現期間 Tとの関係は, $1 - F_{V}(V)$ がある風速レベルを 超えない非超過確率を表すことから,

$$T = \frac{1}{1 - F_V(V_T)}$$
(8)

と表される.

実際に観測された年最大風速の順序標本について再現期待値を求める場合,極値型分布を 仮定して,標本平均と標本標準偏差から式(6)~(8)を用いれば,任意の再現期間に対する期待風 速を求めることができる.また,順序標本を二重指数確率紙にプロットし,直線回帰を行うことでも再 現期待風速を求めることができる.

後者の方法では,順序標本について大きい方から i 番目の値を超過する確率 P_i(経験的超過確 率という)を求める必要があるが,経験的超過確率を求める方法にはいくつかのものがある.以下に 代表的な方法を示す.

 $P_i = i/(n+1)$: Gumbel の方法

 $P_i = (i-1)/(n+1)$: 簡易 Pareto 法

 $P_i = (2i-1)/2n$: Hazen の方法

 $P_i = (i-a)/(n+1-2a)$: Gringorten の方法(*a* は定数で二重指数分布の場合には 0.44) これらのうち菊地原はのHazenの方法が最もよいとしている.

過去の風速記録から極値統計により基本風速を設定する際に,対象地点での風速記録がなく, 構造物の建設に先立ち数年間の風観測が行われる場合がある.そのような場合には,近隣の気象 官署等での同期間の風速データとの相関解析を行い,気象官署等のデータから得た再現期待風速 値に相関係数を乗じることで,対象地点での基本風速の設定を行う方法もある.

また,再現期間が100年程度の基本風速を設定するにあたって,どのぐらいの期間の年最大風速 データが必要かについては議論があるが,一般的には数十年の記録が用いられる.このような長期 間のデータが得られない場合の代わる手法として,比較的短期間の風速データから再現期待値を 推定する Gomes&Vickery の方法がある.これは, Rice の閾値通過確率を適用し, 平均風速の母集 団分布(weibull 分布)から再現期待風速を推定するものである.

$$U_{R} = U_{1} + \frac{\ln R}{a}$$
(9)

$$\Box \Box \nabla, U_{1} = c \left[\ln N + (k-1) \ln \left(\frac{U_{1}}{c} \right) \right]^{1/k}, \quad a = \frac{k}{c} \left(\frac{U_{1}}{c} \right)^{k-1} - \left(\frac{k-1}{U_{1}} \right), \quad N = 2\pi v_{U} \beta_{U} \left(k \sigma_{U} / c \right)$$

 U_R : 再現期待風速, R: 再現期間, k および c: ワイブルパラメター, σ_U : 風速 U の標準偏差, v_U および β_U : 上向き通過パラメターでそれぞれ 675 および 0.36. なお, v_U および β_U は, シドニーでの 5 年間 (1965-1969)のデータに基づくものであり, 場所が異なれば値も異なることに注意が必要である. さら に, この手法では風の成因が均質であることが必要であり, 希に発生する大型台風などを考慮するこ とは難しい.

さらに,日本における強風の成因としては,台風,季節風,温帯低気圧などが考えられるが,台風, 季節風,低気圧・前線の3種類の成因別に強風の極値統計解析を行った研究によると,成因に分け ずに極値統計解析を行ったものよりも極値分布への適合度が改善され,精度の高い再現期待値が 得られるとしている.

4.地形因子解析による基本風速の設定

風速の観測値がない地点の再現期待風速を求める場合には,既往の資料のある多数の観測地 点の資料を基に,風速に影響する因子(地形因子)と風速の関係を求めておき,対象地点の因子の 値から必要な風速を求める地形因子解析法が用いられることがある.

当初は,図式相関解析法という方法が用いられ,高度,起伏度,陸度,海岸度,開放 度,走向,適用地域区分の因子が用いられ,あらかじめ作っておいた因子毎の経験曲線から対 象地点の地形因子パラメターを当てはめ,風速推定値を求めた.ただし,この方法は経験曲線作図 の際の曲線の引き方に客観性を欠くことと大量のデータ処理に適さない問題がある.

(起伏度) (陸度) (海岸度) (開放度·走向) (地域区分) (高度) $\longrightarrow V_1 \longrightarrow V_2 \longrightarrow V_3 \longrightarrow V_3 \longrightarrow V_4 \longrightarrow V_5$ (推定值)

これに代わる手法として多重回帰式による方法が現在では一般的である.これは,風速の再現期 待値 V がその地点の地形因子 x₁, x₂, …, x_N の多変数線形回帰式

 $V = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_N x_N \tag{10}$

で表されるとする.重回帰係数 $\beta_1, \beta_2, \dots, \beta_N$ は,解析しようとする地域にある観測地点での風速と地 形因子の値から求めておく.この方法では,多くの地形因子を考慮することが可能であり,最近での 適用例においては,先にあげたものの他に,経度、緯度,海岸からの距離,傾斜,曲率,収れんとそ の方向,さらに因子よっては着目地点を中心とする円半径の大きさを何種類かに変化させるなどして かなり多くの因子を考慮している.ただし,最終的には再現風速と地形因子間の単相関係数の大き なもの,および地形因子相互間の相関係数の小さなものを選び最適の地形因子を選択する必要が ある.また,この方法では先に述べた地域区分は数量化が困難であるため,回帰分析は地域ごとに 行う.図4に多重回帰式による相関解析の流れを示す.

多重回帰式による方法においては,風の成因別(台風,低気圧・前線性の風,季節風)に相関解析 を行ったもの,常時風を対象に風向毎の相関解析を行い,風向毎のワイブルパラメターを求めたも のなどがある.なお,風向毎に行った相関解析においては,地形因子の他に風向を示すダミー変数 を加えて相関解析を行っている.

図4 多重回帰式による相関解析の流れ

5.台風シミュレーションによる基本風速の設定

北海道や東北地方を除く日本のほとんどの地点で,年最大風速は台風によってもたらされる.し かしながら,観測記録から極値解析によって再現期待風速を求めようとすると,観測記録の長短で台 風の影響度が異なり,その推定精度が問題となる.このような問題点を解決する方法として,過去に 日本に上陸,接近した台風,あるいは発生した全ての台風のデータから台風特性(年発生数,中心 気圧低下量,進行速度,最大旋衡風速半径など)の確率モデルを構築し,モンテカルロシミュレーシ ョンによって,例えば5千年1万年といった長期間にわたる台風の発生,進行を模擬する台風シミュ レーション手法を用いることができる.シミュレーションの結果,着目地点での台風毎の風速,風向な どが得られ,これを1年毎に整理すれば年最大風速が得られ,シミュレーション期間での極値解析を 行うことで着目地点での再現期待風速が求められる.この方法によれば,十分に長い期間でのシミュ レーションを行うことで,極値解析で問題となる確率分布形の裾部の特性が安定して再現できる利点 がある.さらに,風観測データからでは統計期間などの問題で困難とされる,風向毎の再現期待値 の算定も行うことができ,基本風速の風向特性も検討することができる.ただし,この方法で得られる 風速は,台風の気圧場を基にしているため地表地形の影響を受けない上空風速(傾度風速)であり, これを地表風速に変換する際の精度に注意が必要である.

台風シミュレーションには,大別して,地域限定型モデル(Region Specific Model)とサイト限定型 モデル(Site Specific Model)の2つの方法がある.このうち,地域限定形モデルでは,モデル台風を 日本の南海上で発生させ,その後の進行,盛衰を確率的にシミュレートするものである.一方,サイト 限定形モデルでは,基本風速を求めようとする地点を含む一定の地域を通過した台風統計から台 風の確率モデルを作成し,対象地点での風速特性をシミュレートしようとするものである.

図 5 に,一例として,地域限定型モデルでのシミュレーション結果を示す.これは,日本南海上で 過去 50 年間に発生した台風の統計データを用いて確率モデルを作成し,5,000 年に相当する期間 での北西太平洋上での台風をシミュレートしたものである.東京を対象地点とすると,1 年毎に年最 大風速を整理することができ,その結果を基に極値統計解析を行うことで,任意の期間の再現期待 風速を求めることができる.また,この例では,台風の強度に影響を及ぼす海面水温をパラメターとして組み込み,将来の海面水温予測データを使うことで,海面水温の上昇が再現期待風速に与える 影響を調べている.

図 5 地域限定型モデルによる台風シミュレーション結果の一例

6.地形模型風洞試験による方法

基本風速を求める地点が平坦な地形ではなく、切り立った斜面の近傍や渓谷部などでは、風は地 形の起伏の影響を大きく受け、上空とは異なる複雑な吹き方をすることが予想される.また、基本風 速を求めようとする地点に風の観測データがあるとは限らない.このような場合、上空風速と地表風 速との比、あるいは風速の推定されている基準地点の風速と着目地点の風速・乱れ強さの比を地形 模型風洞試験によって求めることができる.

旧くは関門橋や本州四国連絡橋の基本風速を決める際に,他の方法と併用して地形模型風洞試験が行われたことがある.この際,風洞試験に用いる模型は,着目する地域の数倍以上の範囲をカバーしなければならないので,模型縮尺が通常は1/500~1/10,000程度とかなり小さなものとなり,測定精度があまり高くならないという問題がある.

7.数値流体計算による方法

地形の影響を受ける場合の風の予測は,既に述べた地形模型を使った風洞試験によることができる.しかしながら,地形模型の製作に時間と費用がかかり,再現可能な地形範囲も風洞の大きさに制限されるため,それほど自由度は高くない.一方,近年,計算機や流体計算技術の進歩に伴って, 地形模型風洞試験に代わる風の予測計算が可能となってきている.

例えば,地形の影響を受ける場所での基本風速を評価するには,局地風モデルと風観測とを組 み合わせる方法がある.局地風モデルでは,流体力学の基本方程式であるナビエ・ストークス方程 式を基礎として数値解析により複雑地形上の風を予測する.この方法は風洞実験のような制約を受 けることがなく,広い範囲の地形を取り扱うことができる.また数値解析では解析空間内のすべての 風速データを一度に得ることができるため,風洞実験に比べて低コストかつ短時間で複雑地形上の 局所風況を予測できるメリットがある.しかしながら,局地風モデルは対象地域内における風速の相 対的な変化を予測することはできるが,風速の絶対値が求められない問題もある.そこで,風観測 (参照観測)と併用することにより,対象地域内の風速の絶対値を求めることが行われており,すでに 実際の橋の耐風設計に用いられている.ただ,参照用の観測にも多大の時間と費用が必要であり, また建設地点の近くに気象官署のない場所では利用できない問題がある.

以下に,局地風モデルを用いた解析例を示す.これは,北海道積丹半島先端の一部を対象とした解析例であり,縮尺1/2000の地形模型を用いた風洞実験も実施されている.図6に地形の等高線と測定点の配置を示す.この図から分かるように,測定点B,C,DではS風向からW風向にかけて複雑に入り組んだ地形が広がり,谷に沿う風が大きく増速することが予測される.事実,風洞実験から,地上40mの高さでは30%以上の風速の増加が予測されている.

図7は地点Bでの地上40mにおける数値解析と測定値との比較結果を風向別風速比で示したものである.図中の点線が実験値,実線が解析結果を示す.局地風モデルによる予測結果は風洞実験の結果をよく再現している.数値解析による風予測のメリットは解析空間内のすべての風速データを一度に得ることができ,風速の空間分布を容易に知ることができる点である.図8にはB地点付近における南西風向の地上10mでの風速ベクトルを示す.図中の色の濃いところは高い標高を表している.B地点の南には南南西向きの深い谷があり,風が南西から吹くときに,B地点での地表面付近の風の風向は南向きに変化していることが分かる.

図6 地形の等高線と測定点の配置

図7 観測点Bにおける地上40m での風向別風速比

図8 観測点Bにおける地上10mでの風速ベクトル図

長大橋梁を立体骨組みモデル化したとき、風荷重作用下の運動方程式は次のように表すことができる.

$$\mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\dot{\mathbf{u}} + \mathbf{K}\mathbf{u} = \mathbf{F}_{\mathbf{v}}\dot{\mathbf{u}} + \mathbf{F}_{\mathbf{d}}\mathbf{u} + \mathbf{F}_{\mathbf{b}}$$
(1)

ここで, M, C, K, u はそれぞれ質量マトリクス, 減衰マトリクス, 剛性マトリクス, 変位ベクトルを表し, F_v , F_a および F_b はそれぞれ速度, 変位に比例する非定常空気力係数マトリクスおよびガスト空気力ベクトルを表す.また, (・) は時間に関する微分を表す.

式(1)に対する非定常空気力は,桁断面に関しては部分模型を用いた風洞実験によって計測される.通常,鉛直たわみ(y)とねじれ(θ)の2自由度に対する揚力(L),空力モーメント(M)成分を計測することが多いが,場合によっては抗力(D)成分を加える計測や水平たわみ(z)成分の自由度を加える計測なども行われることがある.これらの計測される非定常空気力は,無次元化された非定常空気力係数を用いて式(7.2)のように表される.なお,よく知られた Scanlan による表記法の非定常空気力係数へは,式(7.2)の非定常空気力係数を 2π 倍することで変換される.

$$L = \pi \rho B^{3} \omega^{2} \left[L_{yR} \frac{y}{B} + L_{yI} \frac{\dot{y}}{B\omega} + L_{ZR} \frac{z}{B} + L_{ZI} \frac{\dot{z}}{B\omega} + L_{\theta R} \theta + L_{\theta I} \frac{\dot{\theta}}{\omega} \right]$$
(2a)

$$D = \pi \rho B^{3} \omega^{2} \left[D_{yR} \frac{y}{B} + D_{yI} \frac{\dot{y}}{B\omega} + D_{ZR} \frac{z}{B} + D_{ZI} \frac{\dot{z}}{B\omega} + D_{\theta R} \theta + D_{\theta I} \frac{\dot{\theta}}{\omega} \right]$$
(2b)

$$M = \pi \rho B^4 \omega^2 \left[M_{yR} \frac{y}{B} + M_{yI} \frac{\dot{y}}{B\omega} + M_{ZR} \frac{z}{B} + M_{ZI} \frac{\dot{z}}{B\omega} + M_{\theta R} \theta + M_{\theta I} \frac{\dot{\theta}}{\omega} \right]$$
(2c)

ここで, ρ は空気密度, B は桁幅, K (= $\omega B/U$) は無次元振動数, ω は円振動数, U は平均風速をそれぞれ表す. L_{yR} , L_{yl} , ..., M_{θ} , は桁断面の非定常空気力係数であり, 無次元振動数 K の関数である.

式(1)の右辺の非定常空気力は速度と変位に比例することから,これを左辺に移項して整理すると次のようになる.

$$\mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}'\dot{\mathbf{u}} + \mathbf{K}'\mathbf{u} = \mathbf{F}_{\mathbf{b}}$$
(3)

ここで, $\mathbf{C}' = \mathbf{C} - \mathbf{F}_{\mathbf{v}}$, $\mathbf{K}' = \mathbf{K} - \mathbf{F}_{\mathbf{d}}$ である.

式(3)に対して,変位を固有振動モード形の重ね合わせで表現するモード解析法を適用する.また,式(3)の微分方程式の右辺,ガスト空気力すなわち非同次項は,系を安定化させるため,フラッター解析においてはこれを省略して考える.

変位ベクトルを振動モードマトリクス X と基準座標ベクトルΦを用いて次のように表すと,

$$\mathbf{u} = \mathbf{X}\boldsymbol{\Phi} \tag{4}$$

式(3)は次のように変換される.

$$\widetilde{\mathbf{M}}\widetilde{\boldsymbol{\Phi}} + \widetilde{\mathbf{C}}\dot{\boldsymbol{\Phi}} + \widetilde{\mathbf{K}}\boldsymbol{\Phi} = \mathbf{0} \tag{5}$$

ここで, $\tilde{\mathbf{M}} = \mathbf{X}^T \mathbf{M} \mathbf{X}$, $\tilde{\mathbf{C}} = \mathbf{X}^T \mathbf{C}' \mathbf{X}$, $\tilde{\mathbf{K}} = \mathbf{X}^T \mathbf{K}' \mathbf{X}$ であり, それぞれ一般化質量マトリクス, 一般化減 衰マトリクス, 一般化剛性マトリクスとなる.

基準座標ベクトルΦに対して次のように調和振動を仮定することで,

$$\mathbf{\Phi}(t) = \mathbf{\Phi} \exp(\lambda t) \quad , \quad \lambda = \lambda_R + i\lambda_I \tag{6}$$

式(5)からフラッター条件が次のように導かれる.

$$\det\left(\lambda^{2}\widetilde{\mathbf{M}} + \lambda\widetilde{\mathbf{C}} + \widetilde{\mathbf{K}}\right) = 0 \tag{7}$$

式(7)は複素固有値問題となり、得られた複素固有値 $\lambda(=\lambda_R + i\lambda_I)$ と複素固有ベクトル $\Phi(=\Phi_R + i\Phi_I)$ から固有円振動数 ω と減衰定数 h が次式にて算出される.

$$\omega = \sqrt{\lambda_R^2 + \lambda_I^2} \tag{8}$$

$$h = \frac{\lambda_R}{\sqrt{\lambda_R^2 + \lambda_I^2}} \tag{9}$$

減衰定数hがゼロ,すなわち複素固有値の実部 λ_R がゼロとなる風速Uがフラッター限界風速であり, その時の虚部 λ_I とからフラッター振動数が求められる.ところで,式(7)は無次元振動数Kの関数で あるため,その解法として円振動数 ω と風速Uを仮定して収束計算を行う方法と,Kを仮定して得ら れた ω からUを計算する方法が用いられている.図1にフラッター解析結果の一例を示す.

なお,以上の定式化は固有振動モードを用いたいわゆるモード解析法をベースにしたものである が,この方法では用いるモードの数に解が依存することになる.一般には十分な数(50 次程度)のモ ードを用いることで実用上は精度に問題ないとされているが,ほかに固有振動モード形を用いずに 構造の運動方程式(式(3))を直接に複素固有値解析して,その解から応答減衰,振動数を求め,フ ラッター限界風速を求める"直接法"も用いられている.

図1 フラッター解析結果の一例

ここで,周波数領域でのガスト応答解析法について説明する.フラッター解析法の部分で述べるが,モード解析法に従うと,変位 uの共分散 σ_u^2 と基準座標 Φ のパワースペクトル密度 (PSD) $S_{\Phi\Phi}$ が次のように求められる.

$$\sigma_{\mathbf{u}}^{2}(i,j) = \int_{0}^{\infty} \mathbf{S}_{\mathbf{u}\mathbf{u}} df = \int_{0}^{\infty} \mathbf{X} \mathbf{S}_{\boldsymbol{\Phi}\boldsymbol{\Phi}} \mathbf{X}^{T} df \quad , \qquad \mathbf{S}_{\boldsymbol{\Phi}\boldsymbol{\Phi}} = \mathbf{E}^{-1} \mathbf{S}_{\mathbf{Q}\mathbf{Q}} [\mathbf{E}^{+}]^{-1}$$
(10, 11)

ここで, $\mathbf{E}(=\lambda^2 \widetilde{\mathbf{M}} + \lambda \widetilde{\mathbf{C}} + \widetilde{\mathbf{K}})$ はインピーダンスマトリクス, $\mathbf{S}_{\mathbf{QQ}}$ はガスト空気力の PSD, +は共役転置行列, また i, jは着目点を表す.

ガスト空気力としては,揚力 L_b ,抗力 D_b ,空力モーメント M_b を考え,それぞれ変動風速の主流変動成分 u および鉛直変動成分 w によって励起される.

$$L_{b} = \frac{1}{2} \rho U^{2} B \left\{ C_{L} \chi_{L}^{u} \frac{2u}{U} + \left[C_{L}^{\prime} + C_{D} \right] \chi_{L}^{w} \frac{w}{U} \right\}$$
(12a)

$$D_{b} = \frac{1}{2} \rho U^{2} B \left\{ C_{D} \chi_{D}^{u} \frac{2u}{U} + C_{D}^{\prime} \chi_{D}^{w} \frac{w}{U} \right\}$$
(7.12b)

$$M_{b} = \frac{1}{2} \rho U^{2} B^{2} \left\{ C_{M} \chi_{M}^{u} \frac{2u}{U} + C_{M}^{\prime} \chi_{M}^{w} \frac{w}{U} \right\}$$
(7.12c)

ここで, C_L , C_D , C_M はそれぞれ揚力係数, 抗力係数, 空力モーメント係数であり, (')は迎角に対する勾配を表す.また, χ は空力アドミッタンスであり, 上添字は入力, 下添字は出力成分に対応する.

いま,次のようにガスト空気力を и 成分と w 成分に起因するものとの重ね合わせで表現すると,

$$\mathbf{P}_{b}(t) = \{\dots, L_{b}, D_{b}, M_{b}, \dots, \}^{T} = \mathbf{P}_{b}^{u}(t) + \mathbf{P}_{b}^{w}(t)$$

$$(13)$$

ガスト空気力の PSD は次のように表される.

 $\mathbf{S}_{\mathbf{Q}\mathbf{Q}} = \mathbf{X}^{T} \mathbf{S}_{P_{i}P_{j}}^{S_{uu}} \mathbf{X} + \mathbf{X}^{T} \mathbf{S}_{P_{i}P_{j}}^{S_{ww}} \mathbf{X} + \mathbf{X}^{T} [\mathbf{S}_{P_{i}P_{j}}^{C_{uw}} + i\mathbf{S}_{P_{i}P_{j}}^{Q_{uw}}] \mathbf{X} + \mathbf{X}^{T} [\mathbf{S}_{P_{j}P_{i}}^{C_{uw}} - i\mathbf{S}_{P_{j}P_{i}}^{Q_{uw}}] \mathbf{X}$ (14)

ここで, $\mathbf{S}_{P_iP_j}^{S_{uu}}$, $\mathbf{S}_{P_iP_j}^{C_{uv}}$, $\mathbf{S}_{P_iP_j}^{Q_{uv}}$ は *i* 点, *j* 点間の変動空気力のクロススペクトルを表し, 上添字はそれぞれが励起される変動風速成分を表す. すなわち, S_{uu} , S_{ww} は *u*, *w* 成分の PSD を C_{uw} , Q_{uw} は *uw* 成分間のコスペクトル, クオドラルスペクトルをそれぞれ表す.

ところで,式(10),(11),(14)においては,インピーダンスマトリクス,ガスト空気力 PSD マトリクスに 異なるモード間の影響(モード連成)が存在するため,非対角項にも値を持つフルマトリクスとなる.こ のため,解析に長時間を要するため,いくつかの簡略化を行う場合が多い.以下に,本州四国連絡 橋で行われた解析手法を上記の展開と比較して述べる.

いま,式(11)において,振動モード間の連成(非対角項)を無視すると,式(11)は振動モード毎の 1自由度の振動方程式に分解される.いわゆる,基準座標ベクトル PSD が変動風 PSD,空力アドミッ タンス,ジョイントモードアクセプタンス(空間相関関数),メカニカルアドミッタンス(インピーダンス)の 積の形で表すことができる.通常,簡便のため式(14)に示す変動風のクロススペクトルのうち,uw 成 分間のものは無視し,u 成分,w 成分の PSD を解析に応じて使い分ける形を取っている.

$$\mathbf{S}_{\mathbf{\Phi}_{m}} = |\mathbf{E}|^{2} \left\{ \mathbf{\tilde{X}}_{m} \right\}^{T} \mathbf{R} \left\{ \mathbf{\tilde{X}}_{m} \right\} |\chi|^{2} \mathbf{\tilde{P}}_{b}^{2} S_{v}$$
(15)

ここで, $\{\tilde{\mathbf{X}}_m\}$ は \mathbf{X} の m 番目 (m 次モードに対応)の列ベクトルのうち着目する自由度(鉛直たわみ, 水平たわみ, あるいは, ねじれ)方向のみの成分を取り出したもの, \mathbf{R} は空間相関関数, χ は空力アド ミッタンス関数, $\tilde{\mathbf{P}}_b$ は以下に定義されるガスト空気力係数, S_v (v = u or w) は u あるいは w 成分の PSD である.

すなわち,ガスト空気力は,式(7.12)に替えて以下のように簡略化される.

$$\widetilde{\mathbf{P}}_{b} = \frac{1}{2} \rho UB [C'_{L} + C_{D}] \qquad (BD)$$
(16a)

$$=\rho UAC_D \qquad (抗力) \qquad (16b)$$

$$=\frac{1}{2}\rho UB^2 C'_M \qquad (空力モーメント) \qquad (16c)$$

また,インピーダンスの中に非定常空気力の作用によってもたらされる空力減衰については,鉛直 たわみと水平たわみに伴うもののみを考え,非定常空気力係数に替えて準定常理論に基づいて定 義される.なお,ねじれの空力減衰は設計の安全を考慮してゼロとしている.

$$H_1^* = -\frac{1}{K} [C'_L + C_D]$$
, $P_1^* = -\frac{2C_D}{K}$, 他は全てゼロ (17,18)

本州四国連絡橋の設計時点では,解析負荷を極力小さくするために,式(15)によって振動モード 毎に解析する場合に,さらに着目方向自由度(鉛直,水平,ねじれ)毎に分解して解析を行ったため, 最終的に求める変位(変動成分標準偏差)は各モードと3成分による応答を2乗平均することで得られる.

$$\sigma_{\mathbf{u}} = \sqrt{\sum_{m}^{\text{mode}} (\sigma_{\mathbf{u}}^{L})^{2} + \sum_{m}^{\text{mode}} (\sigma_{\mathbf{u}}^{D})^{2} + \sum_{m}^{\text{mode}} (\sigma_{\mathbf{u}}^{M})^{2}}$$
(19)

ここで, $\sigma_{\mathbf{u}}^{L}, \sigma_{\mathbf{u}}^{D}, \sigma_{\mathbf{u}}^{M}$ は, それぞれ揚力, 抗力, 空力モーメントに伴う着目方向の変位を表す.

なお,最終的には変位 u の最大期待値を算出する必要があるが,通常は u が狭帯域定常確率過 程であると仮定して,評価時間 T の関数として次のように求める.

$$\mathbf{u}_{\max} = \mathbf{u}_{\max} + \sqrt{\sum_{m}^{\text{mode}} (g_{m}^{L} \cdot \sigma_{\mathbf{u}}^{L})^{2}} + \sum_{m}^{\text{mode}} (g_{m}^{D} \cdot \sigma_{\mathbf{u}}^{D})^{2} + \sum_{m}^{\text{mode}} (g_{m}^{M} \cdot \sigma_{\mathbf{u}}^{M})^{2}$$
(20)

ここで, g_m^L , g_m^D , g_m^M は, 各モード(m)毎, 成分(L, D, M)別のピークファクターであり, 次式で算出する.

$$g = \sqrt{2\ln\tilde{f}T} + \frac{0.5772}{\sqrt{2\ln\tilde{f}T}} \quad , \quad \tilde{f} = \left[\int_{0}^{\infty} f^{2}\mathbf{S}_{\mathbf{u}\mathbf{u}}(f)df \middle/ \int_{0}^{\infty} \mathbf{S}_{\mathbf{u}\mathbf{u}}(f)df \right]^{1/2}$$
(21a, 21b)

なお,現在では計算機の発達により解析負荷の問題が小さくなったため,3 成分に分解せずに解析する方法や,式(10)~(14)に従ってモード間の連成を全て考えて解析する方法が一般的となっている.

既に述べたように,長大橋のガスト応答は風荷重問題として捉えられるため,変位 u を算出した後に適当な変換を行って,部材力(曲げモーメントやせん断力)の最大期待値を求めることとなる.

解析で得られた着目部位での部材力の平均値を S_{mean} ,最大期待値を S_{max} とすると, S_{max}/S_{mean} がガスト応答倍率となる.耐風設計基準では、この倍率を補正係数として、水平方向に長い構造に関して μ_2 ,鉛直方向に長い構造に対して μ_3 として、設計風荷重 P_D を次式にて算出することになる.

$$P_{D} = (\mu_{2}, \mu_{3}) \frac{\rho U^{2}}{2} C_{D} A$$
(22)