

UNIVERSITE DELYON

Advanced constitutive model for bituminous materials: a research challenge for road engineering

Prof. Hervé Di Benedetto

ICPT Sapporo 07/08

Outline

- Introduction: bituminous materials and sollicitations on road
- Types of behaviour for bituminous materials
- The DBN model (thermo-visco-elastoplastic)
- Focus
 - Linear domain: Viscoelasticity (LVE)
 - Time-temperature superposition principle
- Importance of the type of behaviour: examples of numerical simulations
- Conclusion

Bitumen, mastic, bituminous mixture

Complex thermo-viscoplastic

- behaviour
- Bitumen: from fluid to brittle solid

- Mastic : the "glue"
 - Bitumen + fines (< 100µm)</p>

Bituminous mixture : used on road

- Aggregates: 80% to 85% in volume (92% to 96% in weight)
- Bitumen: 12% to 20% in volume (4% to 8% in weight)

Important aspects for bituminous layers

Stiffness and evolution with time & temperature Fatigue and damage law evolution Permanent deformation and accumulation of this deformation Crack and crack propagation, in particular at ow temperature

different "types or domains" of behaviour fo bituminous mixtures

Domains of behaviour

(Di Benedetto 90)

Behaviour and associated phenomena

- Linear viscoelasticity
- Non linearity
- Fatigue
- Healing
- Thixotropy
- Crack propagation
- Permanent deformation
- Brittle failure
- Viscoplastic flow
- Thermo-mechanical coupling
- 3 D formalism /one D

 \rightarrow Calculation stress path in road

DBN (Di Benedetto – Neifar) Model: Thermo-visco plastic

- Introduces non linearity and irreversibility but gives a linear behaviour in the small strain domain (asympyotic behaviour)
- Respects the time temperature superposition principle (even in the non linear domain)

One-dimensional formalism of the DBN Model

Generalisation of generalised KV body

 \rightarrow Choice of EP and V for mixes

Model For Bituminous mixtures DBN model (Di Benedetto, Neifar)

Each EP body behaves as a non cohesive granular material

Three-dimensional formalism of the DBN Model

3 D formalism

- Elastoplastic 3D model for EP_i
- For viscous branch: only one scalar equation and a mapping rule
 - Same equation 1D with:

$$\sigma^{v} \rightarrow \left\|\sigma^{v}\right\|$$
 and $\dot{\varepsilon}^{vp} \rightarrow \left\|\dot{\varepsilon}^{vp}\right\|$

Mapping rule : direction of d(σ^f)

Tension/compression cyclic tests at same frequency and different ε_0

Linear case (small strain domain)

Mapping rule (linear case)

Isotach case (Bituminous materials)

 σ^{v} and $d\sigma^{f}$ have the same direction

Callibration in the small strain domain : linear viscoelasticity

 Sinusoidal loading → interpretation in the frequency domain : Complex parameters (E*, G*, v*)

2S2P1D in 3Dim model (Di Benedetto et al, 2007) $\mathbf{E}^{*}(i\omega\tau) = \mathbf{E}_{0} + \frac{\mathbf{E}_{\infty} - \mathbf{E}_{0}}{1 + \delta(i\omega\tau)^{-k} + (i\omega\tau)^{-h} + (i\omega\beta\tau)^{-h}}$ $\frac{\upsilon_0 - \upsilon_{00}}{1 + \delta(i\omega\tau_v)^{-k} + (i\omega\tau_v)^{-h} + (i\omega\beta\tau_v)}$ $v^*(i\omega\tau) = v_0 +$ $v_{00} \& v_0$ $E_{00}, E_0, v_{00}, v_0 \delta, \tau, \eta, h, k \&$ time-temperature E_0-E_{00} superposition principle (C₁ & C₂) \rightarrow 11 constants modelling of binders, mastics & mixes k allows the introduction of a prediction E_{00} formula providing the mix complex h modulus and mix Poisson's Ratio from binder ones η → No simple analytical expression in the time domain 24

Two devices for bituminous materials: mixes, mastics & bitumen

T/C test (2 types) H=160mm, ϕ_{ext} =80mm

> Annular Shear Rheometer (ASR)

- Local strain measurements from some 10⁻⁶ to some 10⁻²
- High stress and strain resolutions
- precise loading conditions
- Temperature control
- Sinusoidal loading up to 10Hz

Focus on small strain

H=40mm, ϕ_{ext} =105mm, th=5mm

Kind of tests and measurements LVE Theory **Complex** Young's • Tension/compression Axial stress $S_1(t) = S_{01} \sin(wt + f)$ modulus $E^*=(\sigma_{01}/\epsilon_{01}) e^{j\phi}$ Axial strain $e_1(t) = e_{01} \sin(wt)$ Poisson's ratio Radial strain $e_2(t) = -e_{02}\sin(wt + f_n)$ $v^* = (\varepsilon_{01}/\varepsilon_{02}) e^{j\phi_v}$ 3D approach <u>Annular Shear Rheometer</u> Shear stress $t(t) = t_0 \sin(wt + f_t)$ Shear modulus Shear strain $g(t) = g_0 \sin(wt)$ $G^* = (\tau_0 / \gamma_0) e^{j\phi\tau}$ 1D approach

Validation of the time-Temperature superposition principle (linear domain)

Bitumen (B 50/70) : master curves

Prediction of the mix VEL behaviour from binder

Prediction of the mix VEL behaviour from binder : Poisson's ratio

$$\frac{v^{*}(i\omega\tau) - v_{00}}{v_{0}} = \frac{E_{mix}^{*}(i\omega\tau) - E_{00_mix}}{E_{0_mix} - E_{00_mix}}$$

$$\frac{E_{0_mix} - E_{00_mix}}{2 \text{ constants}}$$

- 5 constants to obtain the 3D mix behaviour from the binder one
- Verified by 2S2P1D (and DBN) if 6 parameters are the same for binder and mix:

 δ , η , h, k, $C_1 \& C_2$

Examples of simulations : 2S2P1D & DBN & link between binder and mix

2S2P1D Parameters

Generalisation of the Time-Temperature superposition principle

- Linear domain
 - Different experimental validations already shown: validity in 3 dim & same a_T for E^* and v^*
- Non linear domain
 - Cyclic compression & cyclic tension test
- High frequencies
 - Back analysis of wave propagation (linear domain)

Waves propagation

• Back analysis

piezoelectric sensors

Wave propagation: master curve

Importance to chose an appropriate model for simulation

→ Elasticity versus Viscoelasticity

Elasticity versus Viscoelasticity

• FEM calculation of the 5 point bending test (french standard NF P 98-286) use to study fatigue of mixtures surfacing on orthotropic steel briges

Identified problem for ortotropic bridges

FEM Calculation

- Steel and sealing sheet : linear elastic isotropic
- Mix surfacing (isotropic)
 - Elastic (modulus fixed by temperature and frequency)
 - Viscoelastic with v (Posson's ratio) constant
 - Viscoelastic with v function of time (DBN model with 20 elements)

Powerful constitutive law for bituminous materials &
Implementation for road calculation and design

A research challenge

With important practical implication

Hervé Di Benedet

Thank You

Road Materials and Pavement Design

Some publications on the DBN Model

NEIFAR M., DI BENEDETTO H., : *Thermo-viscoplastic law for bituminous mixes* Int. Jl Road Materials and Pavement Design, Vol 2, pp. 71-95, N° 1/2001.

OLARD F., DI BENEDETTO H.

The "DBN" Model : A Thermo-Visco-Elasto-Plastic Approach for Pavement Behavior Modeling. Application to Direct Tension Test and Thermal Stress Restrained Specimen Test, Journal of the AAPT, 33 p., 2005

DI BENEDETTO H., NEIFAR M., SAUZEAT C. and OLARD F. *Three-dimensional thermo-viscoplastic behaviour of bituminous materials: the DBN model,* Int. Jl Road Materials and Pavement Design, Vol. 8, N°2, pp. 285-316, 2007

DI BENEDETTO H., DELAPORTE B., SAUZEAT C,. *Three-dimensional linear behavior of bituminous materials: experiments and modeling*, ASCE jl of Geomechanics, Volume 7, N°2, pp. 149-157, 2007