Analysis and Backcalculation for Pavement Structures

6th ICPT July 20-23 2008 Sapporo Japan

No.1

- 1. Static Analysis
 - 1-1. Cylindrical coordinates
 - The Software GAMES is compared with BISAR
 - 1-2. Cartesian coordinates

• The uniform loads over a rectangular area and a circular area are compared

2. Dynamic Analysis

Wave propagation in viscoelastic multilayered media • The responses from the solutions are compared with the results of ADINA

3. Backcalculation

Dynamic backcalculation

Strain-Displacement

$$\begin{split} \varepsilon_r &= \frac{\partial u}{\partial r}; \quad \gamma_{r\theta} = \frac{1}{r} \frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial r} - \frac{v}{r} \\ \varepsilon_\theta &= \frac{u}{r} + \frac{1}{r} \frac{\partial v}{\partial \theta}; \quad \gamma_{\theta z} = \frac{1}{r} \frac{\partial w}{\partial \theta} + \frac{\partial v}{\partial z} \\ \varepsilon_z &= \frac{\partial w}{\partial z}; \quad \gamma_{zr} = \frac{\partial w}{\partial r} + \frac{\partial u}{\partial z} \\ \end{array}$$

Strain-Stress

$$\varepsilon_{r} = \frac{1}{E} \left(\sigma_{r} - \nu \sigma_{\theta} - \nu \sigma_{z} \right); \quad \gamma_{r\theta} = \frac{2(1+\nu)}{E} \tau_{r\theta}$$
$$\varepsilon_{\theta} = \frac{1}{E} \left(\sigma_{\theta} - \nu \sigma_{z} - \nu \sigma_{r} \right); \quad \gamma_{\theta z} = \frac{2(1+\nu)}{E} \tau_{\theta z}$$
$$\varepsilon_{z} = \frac{1}{E} \left(\sigma_{z} - \nu \sigma_{r} - \nu \sigma_{\theta} \right); \quad \gamma_{zr} = \frac{2(1+\nu)}{E} \tau_{zr}$$

Uniformly distributed circular load

Features of GAMES

- Pavement: Multilayer pavement system with a possibility of interface slip.
- Surface load: Multiple vertical and/or horizontal circular loads.
- Analysis: Multiple points of interest.
- Response: Stresses, strains, and displacements

1. Static Analysis

1. Static Analysis

GAMES vs BISAR

~ Distribution of horizontal displacement, u_x ~

1. Static Analysis

Interface Slip Models

$$(1-\alpha_i)\left\{u_r^i(h_i)-u_r^{i+1}(0)\right\}=\alpha_i\beta_i\tau_{rz}^i(h_i)$$

Model 1(GAMES):
$$\beta_i = b^* \left(\frac{1 + \nu_i}{E_i} + \frac{1 + \nu_{i+1}}{E_{i+1}} \right)$$

Model 2(BISAR) :
$$\beta_i = 2b^* \left(\frac{1+\nu_i}{E_i}\right)$$

Model 3:
$$\beta_i = 2b^* \sqrt{\left(\frac{1+\nu_i}{E_i}\right) \left(\frac{1+\nu_{i+1}}{E_{i+1}}\right)}$$

 $0 \le \alpha_i < 1.0$ slip parameter

GAMES vs BISAR (Interface slip) ~ Distribution of radial displacement, u ~

GAMES vs BISAR (Interface slip) ~ Distribution of vertical displacement, w ~

GAMES for Windows (graphics) ~ Features ~

Language: Japanese / English

- Unit of measurement: Load (kgf, kN), Length (cm), Elastic modulus (kgf/cm², MPa)
- Input: Input of new parameters or import from existing file
- Output: analytical results and graphics visualization (contour and color fill plots) of strain

GAMES for Windows ~ start-up window ~

■, - GAMES -	GAMES
	Subbase Subgrade
	Preferred Language © Japanese © English

No.14

GAMES for Windows ~ input window ~

🖼 - GAMES -	
ANALYSIS OF PAVEMENT	
1. SELECT FOLDER	
SEARCH C:¥	
2. UNITS OF MEASUREMENT	
INPUT: kgf, kgf/cm2, cm OUTPUT: kgf/cm2, cm	
○ INPUT: kgf, kgf/cm2, cm OUTPUT: MPa, cm	
O INPUT: kN, MPa, cm OUTPUT: MPa, cm	
3. OBJECTIVE	
ANALYSIS ONLY GRAPHICS	
HELP QUIT NEXT	

GAMES for Windows ~ input window ~

🗑, - GAME5 -					
STRUCTURAL ANALYSIS OF		ENT BY M	ULTILAY		C THEORY
_ 1. DATA	_□ 2. INITIAL	SETTING			
C NEW DATA					
IMPORT FROM FILE	LAYERS		ADS	POINTS	
ODEN EU E		<u> </u>	2		
OPEN FILE					
3. LAYER PROPERTY		4. LOAD CHAF	RACTERISTIC -	<u></u>	
MODULUS(kgf/cm2) POISSON RATIO TH	HICKNESS(cm)	VERTIC	AL LOAD(kgf) RAI	DIUS (cm) X-AXIS (c	m) Y-AXIS(cm) HORI2
LAYER 2 81549.44 0.35	10.00	LOAD 2	2500.00	11.30 -10	.00 0.00
LAYER 3 4077.47 0.35 LAYER 4 2038.74 0.35	20.00				
LAYER 5 611.62 0.40					
	F	I			F
5. POINT OF INTEREST		-6. IN/001PU	I FILE		
LAYER X-AXIS(cm) Y-AXIS(cm) Z-AXIS POINT 1 1 0.00 0.00 1	(cm) 10.00				
POINT 2 1 16.00 0.00 1 POINT 3 2 0.00 0.00 2	20.00	analysis.dat	AM⊢	analysis-kgf.	Dut
POINT 4 2 16.00 0.00 2 POINT 5 5 0.00 0.00 2	20.00				
POINT 6 5 5.50 0.00 0	50.00				
			VI	EW RESULTS	
				,	
PREVIOUS CLEAR FORM	INPUT DATA OK!	SAVE IN	IPUT DATA	ANALYZE	HELP QUIT

GAMES for Windows ~ output window ~

LATER PRI		
LAYER YOUN	IG'S POISSON'S THICKNESS SLIP	
(ksf)	(cm2) (cm)	
1 8154 2 8154	.9.44 0.35 10.00 0.00 .9.44 0.35 10.00 0.00	
0 403	7.47 0.35 20.00 0.00	
4 208 5 61	8.74 0.35 20.00 0.00 1.62 0.40	
==== TOTAL STR	ESS AND DISPLACEMENT RESULTS ====	
, Х., С., У.,	7 JIX JIV JIZ	
(cm) (cm) 0.00 0.0	(cm) (cm) (cm) (cm) 0 10.00 0.0000E+00 0.0000E+00 3.5388E-02	
16.00 0.0	0 I0.00 -2.3738E-05 0.0000E+00 3.4871E-02	
0.00 0.0 16.00 0.0	0	
0.00 0.0	0 \$0.00 0.0000E+00 0.0000E+00 2.\$670E-02	
16.00 0.0	0 \$0.00 1.882/2-08 0.00002+00 2.82662-02	
X Y (cm) (cm)	Z STRx STRy STRz (cm) (kgf/cm2) (kgf/cm2)	
0.00 0.0	0 10.00 -1.5977E+00 -3.3779E-01 -1.0784E+00	
0.00 0.0	0 10.00 -8.1203E-01 -8.7713E-01 -3.8134E+00 10 20.00 6.1608E+00 8.4320E+00 -5.6111E-01	
16.00 0.0	.0 20.00 7.1537E+00 8.5229E+00 -5.8406E-01	
16.00 0.0	0 60.00 -1.0079E-03 3.7960E-03 -1.2684E-01	
х ү	Z STRxy STRxz STRyz	
(cm) (cm)	(cm) (kgf/cm2) (kgf/cm2) (kgf/cm2)	
16.00 0.0	0 I0.00 0.0000E+00 -6.2920E-01 0.0000E+00	
0.00 0.0 16.00 0.0	0 20.00 0.0000E+00 0.0000E+00 0.0000E+00 0 20.00 0.0000E+00 -1.2883E-01 0.0000E+00	
0.00 0.0	0 \$0.00 0.0000E+00 0.0000E+00 0.0000E+00	
16.00 0.0	0 60.00 0.0000E+00 -1.5702E-02 0.0000E+00	
X Y (cm) (cm)	Z EPSx EPSy EPSz	

6th ICPT July 20-23 2008 Sapporo Japan

No.17

GAMES for Windows ~ input window ~

🐃 – GAMES –	
ANALYSIS OF PAVEMENT	
1. SELECT FOLDER SEARCH	
 2. UNITS OF MEASUREMENT INPUT: kgf, kgf/cm2, cm OUTPUT: kgf/cm2, cm 	
© INPUI: kgt, kgt/cm2, cm OUIPUI: MPa, cm © INPUT: kN, MPa, cm OUTPUT: MPa, cm	
3. OBJECTIVE • ANALYSIS ONLY • GRAPHICS	
HELP OHIT NFXT	
6 th ICPT July 20-23 2008 Sapporo Japan	No.18

GAMES for Windows ~ input window ~

🖷 – GAMES –		
INITIAL SETTI	NG FOR GRAPHICS PRESENTATIO	N
I. DATA	2. INITIAL SETTING	INPUT FILENAME
O NEW DATA		
• IMPORT FROM FILE	LAYERS LOADS	graphics dat
OPEN ETLE		graphics.uur
OT ENTIRE		
_3. LAYER I	ROPERTY	
	ODULUS(kgf/cm2) POISSON RATIO THICKNESS(cm) SL	
LATER 1 LAYER 2	81549.44 0.35 10.00 81549.44 0.35 10.00	
LAYER 3 LAYER 4	4077.47 0.35 20.00 2038.74 0.35 20.00	
LAYER 5	611.62 0.40	
	-	
□ 4. LOAD CHARACTERIST	c	
VERTICAL LOAD(k	f) RADIUS(cm) X-AXIS(cm) Y-AXIS(cm) HORIZONTAL LO	AD(kgf) ANGL
LOAD 1 5000.	0 15.00 0.00 0.00	0.00
PREVIOUS CLEAR FORM	PUT DATA OK! SAVE INPUT DATA GUTO GRAPHICS	HELP QUIT
Oth LOT		

6th ICPT July 20-23 2008 Sapporo Japan

No.19

GAMES for Windows ~ output window ~

R, GAMES				_ □
T. INITIAL SETTING		_		
EPSx	C EPSz			
L		_		
2. X-SECTION				
• X-Y SECTION	SECTION SECTION	35.0		GAMES_VB.CSV
POSITION(Z-SECT.(c)	m)) 20	9.04E-5		(((((((((((((((((((
<u> </u>				
DATA FOR ANALYSIS	S. MIN/WAX VALUES			
	MIN. VALUE MAX. VALU	E 17.5 - 4.62E-5		
ANALYZE	Y-AXIS -35.0 35.0			
	VALUE 1.89DE-6 9.044E-5	1.89E-6		
DATA FOR GRAPHIDS				
	- _4. D'SPLAY ITEM	0.0 - 3	9.05-5	
READ DATA	CONTOUR (COLORFILL)			
	CONTOUR (LINE)			
PLOT GRAPHICS	EGEND			(HH) $(\Lambda \Lambda \Lambda)$
		-17.5 - / / / /		
CLEAR FORM				
		-351		
QUIT		-35.0	-17.5 0.0	17.5 35.0
	6 th ICPT	July 20-23 2	008 Sapporo Ja	pan A

No.20

Summary and recommendations **Computational accuracy of GAMES** Accuracy of GAMES is similar to and in some cases better than BISAR. User interface and visualization process Improves efficiency in the use of GAMES and assists users to visualize distribution of pavement responses. Application GAMES can be used for analysis. evaluation and design of pavements.

Dual Tire Footprints by SIM (Stress In Motion) (measured at CSIR, South Africa)

30 kN & 420 kPa inflation pressure

70 kN & 420 kPa inflation pressure

Contact pressure measured by SIM (provided by Prof. Morris De Beer)

WIDE BASE TYRE LOAD IN X DIRECTION - DECIMATED DATA (75 kN and 500 kPa)

Contact pressure measured by SIM (provided by Prof. Morris De Beer)

WIDE BASE TYRE LOAD IN Y DIRECTION - DECIMATED DATA (75 kN and 500 kPa)

Contact pressure measured by SIM (provided by Prof. Morris De Beer)

WIDE BASE TYRE LOAD IN Z DIRECTION - DECIMATED DATA (75 kN and 500 kPa)

1. Static Analysis in the Cartesian Coordinate Equilibrium $\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} = 0$ dx $\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} = 0$ dy $\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_{z}}{\partial z} = 0$ dz. Strain-displacement $\sigma_{y} + \frac{\partial \sigma_{y}}{\partial y} dy$ $\varepsilon_x = \frac{\partial u}{\partial x}; \quad \varepsilon_y = \frac{\partial v}{\partial y}; \quad \varepsilon_z = \frac{\partial w}{\partial z}$ $\tau_{xz} + \frac{\partial \tau_{xz}}{\partial x} dx$ $\frac{\partial \tau_{zx}}{\partial z} dz$ $\gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}; \quad \gamma_{yz} = \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}; \quad \gamma_{zx} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \qquad \qquad \tau_{yz} + \frac{\partial \tau_{yz}}{\partial y} \frac{dy}{\tau_{zy}} + \frac{\partial \tau_{zy}}{\partial z} \frac{dz}{dz} + \frac{\partial \sigma_{z}}{\partial z} \frac{dz}{dz}$ **Strain-stress** $\varepsilon_x = \frac{1}{E} (\sigma_x - v\sigma_y - v\sigma_z); \gamma_{xy} = \frac{2(1+v)}{E} \tau_{xy}$ $\varepsilon_{y} = \frac{1}{E} \left(\sigma_{y} - \nu \sigma_{z} - \nu \sigma_{x} \right); \gamma_{yz} = \frac{2(1+\nu)}{E} \tau_{yz}$ $\varepsilon_{z} = \frac{1}{E} \left(\sigma_{z} - \nu \sigma_{x} - \nu \sigma_{y} \right); \gamma_{zx} = \frac{2(1+\nu)}{E} \tau_{zx}$ 6th ICPT July 20-23 2008 Sapporo Japan No.26

Method of Solution

Neuber-Papkovich Representation $u = \frac{1}{2\mu} B_x - \frac{\lambda + \mu}{4\mu(\lambda + 2\mu)} \frac{\partial}{\partial x} \left(xB_x + yB_y + zB_z \right)$ $v = \frac{1}{2\mu}B_{y} - \frac{\lambda + \mu}{4\mu(\lambda + 2\mu)}\frac{\partial}{\partial y}\left(xB_{x} + yB_{y} + zB_{z}\right)$ $w = \frac{1}{2\mu}B_z - \frac{\lambda + \mu}{4\mu(\lambda + 2\mu)}\frac{\partial}{\partial z}\left(xB_x + yB_y + zB_z\right)$ where $\nabla^2 B_x(x, y, z) = \nabla^2 B_y(x, y, z) = \nabla^2 B_z(x, y, z) = 0$

1. Static Analysis

Rectangular Area vs Circular Area

1. Static Analysis

Rectangular Area vs Circular Area

6th ICPT July 20-23 2008 Sapporo Japan

No.29

~ Dual tires ~

Non-uniform Surface Loading

Dynamic Analysis of Pavement Structure

2. Dynamic Analysis

2-1. Axi-symmetric wave propagation analysis

$$\frac{\partial \sigma_r}{\partial r} + \frac{\partial \tau_{rz}}{\partial z} + \frac{\sigma_r - \sigma_{\theta}}{r} = \frac{\partial^2 u}{\partial t^2}$$
$$\frac{\partial \tau_{rz}}{\partial r} + \frac{\partial \sigma_z}{\partial z} + \frac{\tau_{rz}}{r} = \frac{\partial^2 w}{\partial t^2}$$

Stress-Strain

$$\begin{cases} \sigma_r \\ \sigma_\theta \\ \sigma_z \\ \tau_{rz} \end{cases} = E \begin{pmatrix} a+2b & a & a & 0 \\ a & a+2b & a & 0 \\ a & a & a+2b & 0 \\ 0 & 0 & 0 & b \end{pmatrix} \begin{cases} \varepsilon_r \\ \varepsilon_\theta \\ \varepsilon_z \\ \gamma_{rz} \end{cases}$$
$$= \frac{\nu}{(1+\nu)(1-2\nu)} \quad b = \frac{1}{2(1+\nu)}$$

FEM formulation

$$\begin{bmatrix} M \end{bmatrix} \{ \ddot{z} \} + \begin{bmatrix} K \end{bmatrix} \{ z \} = \{ f \} \\ \bigcup \\ \begin{bmatrix} M \end{bmatrix} \{ \ddot{z} \} + \begin{bmatrix} C \end{bmatrix} \{ \dot{z} \} + \begin{bmatrix} K \end{bmatrix} \{ z \} = \{ f \} \\ \begin{bmatrix} C \end{bmatrix} = \beta \begin{bmatrix} K \end{bmatrix} \\ \end{bmatrix}$$
6th ICPT July 20-23 2008 Sapporo Japan No.35

2. Dynamic Analysis

Wave-Pave, Dyna-Pave vs. ADINA

6th ICPT July 20-23 2008 Sapporo Japan

2. Dynamic Analysis

6th ICPT July 20-23 2008 Sapporo Japan

Summary

 Dynamic analysis with stiffness proportional damping is equivalent to dynamic analysis with the Kelvin model

2. Dynamic Analysis

• Wave-Pave

6th ICPT July 20-23 2008 Sapporo Japan

Dynamic Backcalculation

D-BALM (FEM)

W-BALM(Wave-Pave)

BALM: Static Backcalculation

Backcalculation

Objective Function

$$J = \frac{1}{2LN} \sum_{\ell=1}^{L} \int_{t0}^{t1} \sum_{i=1}^{N} \left\{ u_i^{(\ell)}(t) - z_i^{(\ell)}(\mathbf{X}, t) \right\}^2 dt$$

L: Number of tests

N: Number of sensors

X Vector of unknown parameters

(layer modulus and layer damping)

 (t_0, t_1) Time interval of deflection matching

National Institute for Land and Infrastructure Management (NILIM) in Japan

Same Size as Landing Gear of B747-400 Max. Running Speed : 5km/h Max. Load : 1200kN

Test Condition Running Speed : 5km/h Load : 910kN Load Repetition : 10,000 times

Measurement Item Dynamic Vertical Displacement Dynamic Soil Pressure

Aircraft Load Simulator

Backcalculated Results E1&C1

Backcalculated Results E2&C2

Backcalculated Results E3&C3

Incorporated Administrative Agency Public Works Research Institute Civil Engineering Research Institute for Cold Region (CERI)

6th ICPT July 20-23 2008 Sapporo Japan

CERI Field Test Site

6th ICPT July 20-23 2008 Sapporo Japan

City of Wakkanai

6th ICPT July 20-23 2008 Sapporo Japan

Pavement Cross Sections

測点	P=1870∼1950	P=2080∼2160	P=2160∼2240	P=2240~2320	P=2483.5 ~2493.5	P=2493. 5∼2523. 5	P=2523.5 ~2530	P=2530∼2560	P=2560∼ 2570	P=2570∼2600
延長	L=80	L=80	L=80	L=80	L=10	L=30	L=6.5	L=30	L=10	L=30

※As層厚および路盤厚は、㈱ウオールナットさんの実測値を使用した。 ただし、センサー設置位置は路盤上部が多少下がっていると 予想して、路線調査におけるセンサー設置測点の舗装厚から、センサー位置JustにおけるAs層厚を差し引いたものを路盤厚とした。 ※路床厚は調査で測定できなかったことから、従来どおり地質断面図から推定した。

6th ICPT July 20-23 2008 Sapporo Japan

FWD Test

National highway 238 (test site)

Truck Loading Test

6th ICPT July 20-23 2008 Sapporo Japan

Position of FWD Loading Plate

August 2006

Questions ?

GAMES can be downloaded from

http://www.jsce.or.jp/committee/pavement/downloads/ http://matsui.labo.googlepages.com/games_win.eng

Thank you !

6th ICPT July 20-23 2008 Sapporo Japan

6th ICPT July 20-23 2008 Sapporo Japan

1. Static Analysis

GAMES vs BISAR

~ Distribution of shearing stress, t_{xz} ~

6th ICPT July 20-23 2008 Sapporo Japan No.9

6th ICPT July 20-23 2008 Sapporo Japan

No.17

Dynamic Back-calculation using FWD Deflection Data

6th ICPT July 20-23 2008 Sapporo Japan