名取川流域における水資源評価 WATER RESOURCES EVARUATION IN THE NATORI RIVER BASIN

土田 恭平¹・風間 聡²・岡崎新太郎³・沢本 正樹⁴

Kyohei TSUCHIDA, So KAZAMA, Shintro OKAZAKI, Masaki SAWAMOTO

1学生員 東北大学大学院 工学研究科 (〒980-8579 仙台市青葉区荒巻字青葉 06) 2正会員 工博 東北大学大学院助教授 工学研究科 (同上) 3正会員 東北地方整備局仙台工事事務所 (〒982-8566 宮城県仙台市太白区郡山五丁目 6-6) 4フェロー 工博 東北大学大学院教授 工学研究科 (〒980-8579 仙台市青葉区荒巻字青葉 06)

In order to evaluate water resources of the Natori river basin, a runoff model was developed considering evapotranspiration and snowmelt, which were estimated by satellite observation. It was discussed that land use and two dams reservoirs effects influence runoff with storage. As the results, lower plain region has much water resources, on the other hand, the mountainous forest region has the utilization difficulty of water resources.

Key words: Dynamic Wave, Remote sensing, Agricultural water, GIS

1. はじめに

近年,全世界で地球規模の環境問題について議論・研究^{1),2)}されている.その中でも,人間活動によって大量 に排出される CO₂ や CH₄等の温室効果ガスは地球温暖 化を促し,ひいては,大規模な気候変動から陸域の水循 環システムに多大な影響を及ぼすと考えられている.水 循環システムの異常として,気候変動による小雨期間の 長期化が最も懸念される問題の一つである.この渇水時 にも水を安定的に利用できるような持続的水利用システ ムの構築を考慮した流域開発および水資源計画が必要と なる.日本における降水量は時間的・空間的にかなり変 動するまた河川が急峻で短く流域面積が小さいため, 降水量を水資源として十分に利用するのは難しい状況に ある.

一方,雪は「白いダム」とも呼ばれるほど貯留性が高 いため,融雪期から梅雨までの貴重な水資源としての利 用が期待される.日本は世界でも希に見る豪雪地域であ り,流域の積雪量を把握することは水資源計画にあたり 非常に重要である.広域の積雪を現地で観測する際,衛 星リモートセンシングの有効性が指摘されている^{3,4,5,6,} ^{7,8,9}.本研究では,NOAA/AVHRRデータ,国土数値 情報,AMeDASデータを用いて,東日本における積雪 域を月1枚の割合で推定し,積雪域からの融雪量をモデ ルに組み込んだ.

また,地球規模の異常気象や環境破壊のメカニズムを

支配しているエネルギー収支,水収支を解明するために は,蒸発散量を把握することも不可欠である.本研究で は蒸発散量とその地域の植生との相関に着目し,衛星デ ータから計算される NDVI (Normalized Difference Vegetation Index : 植生指標)を用いて推定された蒸 発散分布¹⁾を推定し流出モデルに組み込んだ.

本研究では名取川流域における融雪水と雨水流出を土 地利用と蒸発散量を考慮した流出モデルを作成し,各月 の流域に存在する水資源量や,名取頭首工における取水 量と流量の関係から頭首工が名取川に与える影響につい て考察した.

2.流域の概要とデータセット

(1)流域の概要

対象地域は一級河川名取川水系(図 1)である.宮城 県中央部に位置し,奥羽山脈から仙台湾へと注ぐ.幹線 流路延長は55km 流域面積は939km²(山地675.1km², 平地245.1km²,河川区域20.7km²)である.流域内には 仙台市を代表とする都市圏,穀倉地帯である水田域,森 林が広く分布し種々の土地利用が存在する.

(2)データセット

流出モデルのデータセットとして,国土数値情報をも とに流域内の標高,土地利用,河道マップを作成した.

降水量デ - タは気象庁月報の 1999 年分より,また,積雪 マップおよび蒸発散マップを人工衛星 NOAA/AVHRR の画像から作成した.

3.積雪分布の推定

(1) 雲域判定

1 枚の NOAA/AVHRR から積雪域を判断するには,雲 域との区別が重要となるが,これは多波長の channel を組み合わせることで可能となる.判定方法は以下のと おりである.縦軸に Channel.4 輝度温度,横軸に Channel.1 アルベドをとり,頻度分布を作成する.作成 した頻度分布を目視により,アルベド値の高い塊,すな わち白く見える塊を雪,または雲と判定し,アルベド値 の低い部分を無積雪域と判定する.

雲または雪と判定した部分のうち,高層の雲は温度が 極端に低いので Channel.4 の輝度温度の情報によって 判定できる.しかし,低層の雲については Channel.1 の 可視情報と Channel.4 の熱情報だけでは判定できない. そこで, Channel.3 の中間赤外温度を利用する.中間赤 外の波長域が大気中の水粒に強く反射する性質を持つこ とから,水粒を多く含む高度の低い雲を判定することが できる.

(2)積雪マップの作成

前節の方法で得られた積雪域と雲域を区別した画像を 毎日作成することは可能である.しかし,被雲率が50% 以下の画像はほとんど得られない.そこで,ある程度晴 れた画像をあらかじめ選んだ上でその日を中心とし,そ の画像の雲の部分のデータを前後1週間の観測の晴れた 日のデータと入れ替えることで,1枚の晴天の画像,積 雪マップ(積雪分布図)を作成した.図-2に1999年3 月の東日本全域と名取川流域の積雪マップを示す.

図 2 1999年3月の積雪マップ

4.NDVIを用いた蒸発散量推定

蒸発散量を支配する因子には,気温,地表面温度,日 照時間,湿度,風速,土壌水分等があるが,これらは全 てその地域の植生に影響を与えており,また植物自身も, 蒸発散量に影響を与えていると考えられる.そこで,植 生をパラメータとして蒸発散量を推定できることが考え られる.したがって,NDVIを用いることで蒸発散量 を推定し得ると考えられる.

これまでの蒸発散量は,限られた地点の情報,または 流域全体の水収支からしか算定されなかった.そのため 広域面からの蒸発散や流域内での空間的分布の推定は困 難であった.しかし,NDVIによる推定が可能であれ ば,広域の面的情報が得られ,蒸発散量の分布を容易に 知ることが出来る.さらにNDVIだけを使った推定で あれば,気象,水文情報の整備されていない地域につい ても蒸発散量を推定することが可能となる.そこで本章 では,図-3に示す多田⁷⁾が求めた釜房ダム流域におけ るNDVIと蒸発散量との関係を用いて,名取川水系の 蒸発散量及び,その空間的分布の推定を行った

図 - 3 釜房ダム流域における NDVI と蒸発散の関係¹⁰⁾

5. 流出計算法

流域はそれぞれ固有の河道網と斜面から成り立ってい るため,流域を河道と斜面とに分割し,河道系と斜面系 それぞれについて水理学的に追跡を行う.本研究では, 名取川水系のうち流量が大きくなる下流部の名取川,広 瀬川,増田川,川内沢川,五間掘の5つの河川を河道系 として扱った.斜面流出にはkinematic wave モデルを, 河道流出には dynamic wave モデルを用いて流出計算 を行った.

(1)Kinematic wave 法について

kinematic wave 法は,雨水流出を運動方程式と連続 の式を用いて水理学的に追跡する方法で,雨水流下の下 流側の条件が上流側に及ばないという仮定のもとに成り 立っている. kinematic wave モデルは,本来,斜面 上を流下する地表流を対象としている.しかし,豪雨時 の出水解析には表面流と中間流を合わせた直接流出に対 して kinematic wave モデルを適用しても十分な結果が 得られることが多い 本研究では 地下浸透は考慮せず, 降雨および融雪による全流出量から蒸発散量を引いたも のがすべて地表流であるとして kinematic wave 法を用 いた.

降雨および流出はメッシュ点でのみ起こるものとし, このとき各メッシュへの流入量に降雨量および融雪量が 加わり下流へ伝播される.連続の式は次のようになる.

$$Qdt + (r + s_m - E)dxBdt - \left(Q + \frac{\partial Q}{\partial t}dx\right)dt = \left(\frac{\partial A}{\partial t}dt\right)dx$$
...(5.1)

A:流水断面積	夏 B∶水面幅	Q∶流量
t :時間	x : 流下方向の距離	r:降雨量
s _m :融雪量	E:蒸発散量	

上式で矩形断面を仮定し整理すると , 下式が得られる .

$$\Delta h = \frac{\Delta t}{B\Delta x} (Q_{in} - Q_{out}) + (r + s_m - E)\Delta t$$
...(5.2)

 h:メッシュの水深変化量
 Qin:流入流量

 Qout:流出流量
 t:計算時間間隔

 x:計算メッシュ間隔

上式の第1項,第2項はそれぞれ流入,流出による水深 の変化量を表している.よって第2項をメッシュごとに 求め,その値を流下先のメッシュに加えることにより各 メッシュでの水深変化を求めていく.

(2)Dynamic wave 法について

河道を流れる洪水流は時間的・空間的に変化する.洪水流を支配している方程式は非線形の偏微分方程式であ り,厳密な解を得ることは困難である.そのため,様々 な数値解析法が提案されている.dynamic wave モデル とは差分法を用いて洪水流計算を行うモデルであり,運 動方程式を全く省略せずに計算を行うことができる.

洪水流の基礎方程式は次の連続式(5.3)と運動方程式 (5.4)から成っている.

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} - q = 0 \qquad \dots (5.3)$$

$$\frac{1}{g} \frac{\partial v}{\partial t} + \frac{1}{2g} \frac{\partial v^2}{\partial x} + \frac{\partial H}{\partial x} + \frac{n^2 |v| v}{h^{4/3}} = 0 \qquad \dots (5.4)$$

A:断面積 Q:流量 q:横流入量 g:重力加速度 v:流速 H:水位 n:マニングの粗度係数 h:水深

連続式(5.3)で水路を矩形断面とし,時刻n,メッシュ 番号iの点を差分中心として差分化したものを n+ihiにつ いて解くと,以下の式(5.5)が得られる.

$${}_{n+1}h_i = {}_{n-1}h_i - \frac{\Delta t}{\Delta x} \left(\frac{{}_{n-1}h_i + {}_{n-1}h_{i+2}}{2} {}_n v_{i+1} - \frac{{}_{n-1}h_{i-2} + {}_{n-1}h_i}{2} {}_n v_{i-1} \right) - \frac{\Delta t}{B} q$$
...(5.5)

運動方程式(5.4)を,時刻n,格子番号Iの点を差分中心 として差分化し, n+1viについて解くと,以下の式(5.6)が 得られる.

$${}_{n+1}v_{i} = \frac{{}_{n-1}v_{i}\left(1-fr\right) - \frac{\Delta t}{4\Delta x}\left({}_{n-1}v_{i+2}{}^{2} - {}_{n-1}v_{i-2}{}^{2}\right) - g\frac{\Delta t}{\Delta x}\left({}_{n}H_{i+1} - {}_{n}H_{i}\right)}{1+fr}$$

$$fr = \frac{gn^{2}|_{n}v|_{i}}{2h^{4/3}}\Delta t \qquad \dots (5.6)$$

河道では(5.5), (5.6)を用いた差分計算により流出計算 を行った.

6.水資源解析

本研究における水資源量とは各メッシュの水収支の残 差であり、そのメッシュで得ることができると考えられ る水の量である,前述の流出計算は国土数値情報をもと に作成した標高マップ上で,各メッシュでの水収支より 行った.流出計算の概念図を図-5に示す.

(1)計算条件

計算に用いた条件を以下に示す.

・時間スケール

流出計算の対象期間は1999年の1月から12月とし, 繰り返し計算に用いた時間間隔は10秒である.

・空間スケール

国土数値情報に合わせて,1メッシュの大きさは250 m×250mとした.ただし,河川部については陸地と計 算方法が異なるので,上流端の川幅を10mとし,合流 部より下流での川幅は元の河川の幅の和を用いた。

·融雪量

前述の積雪域(1月から4月と12月)にあたるメッシ ュでは,1日あたり1.4mmの雪解け水11)が流出すると し,10秒あたりの雪解け水をメッシュの流入量に加えた.

・降水量

対象期間の気象庁月報より川崎観測所における降水量 を流域全体に一様にあたえることにした.時別降水量を 10 秒あたりに換算し,メッシュへの流入量に加えた.た だし,気温が2 以下の場合は降雪であるとみなし,流 出計算で扱わないことにした.

・ダム放水量

広瀬川,名取川の上流にはそれぞれ大倉ダム,釜房ダ ムがある.そのため対象期間のダム放水量データの日別 値を10秒あたりに換算し,広瀬川と名取川の上流端の 条件として用いた.

・粗度係数

流出計算には以下の粗度係数値を用いた 12).

水田·畑	: n =0.025
宅地	: n =0.04
山林	: n =0.06
水域	: n =0.025
河道	: n =0.025

・農業用水

名取頭首工から取水される水のうち農業用水(5月か ら8月)は,図-1に示した灌漑域で利用される.灌漑 域にあたるメッシュでは,農業用水を流入量に加えた.

(2)名取頭首工から取水される農業用水の割合

名取頭首工において設定されている水利権から,農業 用水として取水される水量の比率を算定した. 名取頭首 工においては、上水、工業用水および農業用水の取水権 が設定されており、これらの水利権量は、それぞれ次の ように定められている.

上水 (高田	上水) · · · · · · · · · 0.51m³/sec (通年)
工業用水	0.63m³/sec(通年)
農業用水	••••••••••••••••••••••••••••••••••••••
	(しろかき期 :5/1~5/15)
	7.64m ³ /sec
	(灌漑期 :5/15~8/31)

これらから, しろかき期および灌漑期における取水権 量の比率を計算した結果を図 - 6 に示す.

図-6 しろかき期および灌漑期における取水権量の比率

87% 7.64m³/sec

図 - 6 からわかるとおり,名取頭首工においては,農業用水としての水量が全水量の約90%を占めており,この取水量の流量に占める割合によってはそれより下流の河川においての水質悪化が考えられる.本研究では名取頭首工の上流に位置する余方地点における流量と名取頭 首工からの取水量を比較することによって,取水による名取川への影響についても考察する.

7.結果および考察

流出計算により得られた 1999 年のハイドログラフと 余方流量観測所における実測値の比較を図 - 7に示す. また,計算流量に占める名取頭首工からの取水量の割合 を図 - 8に,1999 年 4月,8月の平均水資源分布を図 -9 と図 - 10 にそれぞれ示す.

本研究で構築した名取川流域の水循環モデルは,全体 的に実測値よりも高い値を示した.これは今回のモデル で表面流のみを考慮しており,浸透の影響を考慮してい ないためであると考えられる.しかし,流量ピーク時の 一致や降水に対する応答を考慮すると,本モデルは良好 な結果を示しているといえる.積雪,蒸発散,農業用水 を考慮しながら名取川流域の流況の概略を再現できたと 言える.

余方流量観測所における河川流量に占める取水量の 割合については,やはり農業用水を取水している5月か ら8月にかけて高い割合を示した.特に5月のしろかき 期(1日から15日)には7割近くが取水されてしまって いる.まとまった雨の影響で一時的に河川流量が増えて いる時期には,農業用水の占める割合が低くなる期間も 見られるが,降水がなく流量の低い時期には農業用水は 河川流量の多くの割合を占めていることがわかる.渇水 時には下流側での流量の大きな減少と,それに伴う水質 悪化などの問題が予想される.

図 - 9 と図 - 10 の平均水資源分布図は各日の貯留高 さの平均を表している.河川への集水の様子や名取頭首 工からの灌漑域への取水の様子を再現することができた. この図から,上流域よりも下流域に多くの水資源が存在 していることがわかる.上流域では植生が豊かであるこ とから蒸発散の影響が大きく,また斜面も急であるため に速やかに流出してしまうためであると考えられる.下 流域では勾配が緩やかであることに加えて,河川部の水 深も十分あるために河川への流入が少なくなっているた めに水が溜まりやすくなっていると考えられる.

図-9 平均水資源分布 4月

8.結論

本研究では kinematic wave 法と, dynamic wave 法を用い名取川流域における水資源解析を行った.その結果得られた結論を以下に示す.

- 降水の影響や融雪の影響を流出解析でうまく表現することができた。
- 名取頭首工から灌漑域への取水が流域に与える影響
 を評価した.
- 名取川水系の水資源分布を把握することができた.
 この結果は将来の土地利用の変化や気候変動が起こった場合の水資源量の予測や水資源計画に貢献することが

期待される.しかし,本モデルは地中への浸透や,融雪 と降水の区別が明確になされていない.これらの点を改 善することでより正確な解析が可能になると考えられる.

謝意:本研究を遂行するに際しては,国土交通省東北地方整備局釜房ダム管理所に放水量のデータを利用させていただいた.また,土木学会と国土交通省の共同研究,河川懇談会の援助を受けた.ここに併せて謝意を表す.

参考文献

- 1)多田毅:衛星データによる東北地方の蒸発散推定 手法の開発,東北大学修士論文,1995.
- 2)田窪昭夫:衛星による植生指標変動の地域特性解析,東北大学修士論文,2001.
- 3)小池俊雄,高橋裕,吉野昭一:積雪面積情報による流域積雪水量の推定,土木学会論文集,土木学会論文集,第 357 巻/-3, pp.159-169,1985.
- 4)陸是皎,早川典生,吉岡善浩:衛星積雪面積情報 と分布型流出モデルを用いた広域降雪抽出特性 の試み,水工学論文集,41,pp.239-244,1997
- 5)風間聡, 沢本正樹: NOAA/AVHRR を用いた積雪 深分布および水資源量推定,水文水資源学会誌, 第8巻, 第5号, pp.477-483, 1995.
- 6)土屋巌: リモートセンシングによる残雪及び雪田 植生の分布解析,国立公害研究所研究報告,第 71号,1984.
- 7)風間聡,川村宏,枝松芳枝,沢本正樹: AVHRR/NOAA データによる積雪域抽出パラ メータの経時変化,日本リモートセンシング学 会誌,第12巻,第4号,pp.59-69,1995.
- 8)風間聡,川村宏,松澤茂,及川一志,沢本正樹 N-LAND データベース・システムを用いた合成 積雪画像の作成と東北地方の積雪域の変化,日 本リモートセンシング学会誌,第16巻,第3 号,pp.56-64,1996.
- 9)本谷研,山崎剛: NOAA 近赤外チャンネルの Bidirectional (角度依存)特性とその応用によ る積雪判別,水文・水資源学会研究発表会要旨 集,pp.112-123.1997.
- 10) 渡辺浩明,風間聡,多田毅,澤本正樹,岡崎新太郎:土地利用を考慮した時空間蒸発散解析,河川 技術論文集,8巻,2002(印刷中).
- 11)古河俊也,笹本誠,堺茂樹,平山健一:降雪・積雪・
 融雪現象に関する現地観測,水工学論文集,第32
 巻,pp95-99,1994
- 12) 氾濫シミュレーション(2), 土木研究所資料第 2175 号