Standard Specification for Concrete Structures -2002
“Materials and Construction”

CONTENTS

CHAPTER 1 GENERAL
1.1 Scope
1.2 Structure design stage
1.3 Designed service life
1.4 Safety factors
1.5 Construction planning stage
1.6 Concrete production
1.7 Construction Stage
1.8 Definitions

CHAPTER 2 DURABILITY VERIFICATION OF CONCRETE STRUCTURE
2.1 General
2.2 Verification for carbonation
2.3 Verification for reinforcing bar corrosion caused by the ingress of chloride ions
2.4 Verification for freezing-thawing action
2.5 Verification for chemical attack
2.6 Verification for alkali-aggregate reaction
2.7 Verification for water tightness
2.8 Verification for fire resistance

CHAPTER 3 CONSTRUCTION PLAN
3.1 Construction plan
3.2 Construction plan for concreting work
3.3 Setting of construction methods
3.4 Verification of construction plan on concreting work
3.5 Change in construction plan

CHAPTER 4 VERIFICATION OF CRACKING AT CONSTRUCTION STAGE
4.1 General
4.2 Verification of cracking due to cement hydration
 4.2.1 General
 4.2.2 Thermal analysis
 4.2.3 Design values of thermal properties
 4.2.4 Stress analysis
 4.2.5 Design values of mechanical properties of concrete
4.3 Verification of cracking due to drying shrinkage

CHAPTER 5 PERFORMANCE OF CONCRETE FOR CONSTRUCTION
5.1 General
5.2 Workability
5.3 Pumpability
 5.4 Setting characteristics
5.5 Required strength during construction
CHAPTER 6 MIX PROPORTIONS

6.1 General

6.2 Constituent materials

6.2.1 General
6.2.2 Cements
6.2.3 Water
6.2.4 Fine aggregate
6.2.4.1 General
6.2.4.2 Physical properties for fine aggregate
6.2.4.3 Grading
6.2.4.4 Limit of deleterious substances
6.2.4.5 Chemical and physical soundness
6.2.4.6 Sea sand
6.2.4.7 Crushed sand
6.2.4.8 Slag fine aggregate
6.2.5 Coarse Aggregate
6.2.5.1 General
6.2.5.2 Physical properties for coarse aggregate
6.2.5.3 Grading
6.2.5.4 Limit of deleterious substances
6.2.5.5 Chemical and physical soundness
6.2.5.6 Crushed stone
6.2.5.7 Blast-furnace slag coarse aggregate
6.2.6 Admixtures
6.2.6.1 General
6.2.6.2 Mineral admixtures
6.2.6.3 Chemical admixtures

6.3 Mix proportions

6.4 Verification of concrete performance

6.4.1 General
6.4.2 Verification for compressive strength
6.4.3 Verification for carbonation rate
6.4.4 Verification for the diffusion coefficient of chloride ions in concrete
6.4.5 Verification for relative dynamic modulus of elasticity
6.4.6 Verification for resistance to chemical attack
6.4.7 Verification for resistance to alkali aggregate reaction
6.4.8 Verification for the coefficient of water permeability of concrete
6.4.9 Verification for fire resistance
6.4.10 Verification for adiabatic temperature rise
6.4.11 Verification for drying shrinkage characteristics
6.4.12 Verification for setting characteristic

CHAPTER 7 CONCRETE PRODUCTION

7.1 General

7.2 Production plant

7.2.1 Storage facilities
7.2.2 Batching equipment

7.2.3 Mixers

7.3 Batching

7.4 Mixing
7.5 Superplasticizing of concrete
7.6 Transportation to construction site

CHAPTER 8 READY-MIXED CONCRETE
8.1 General
8.2 Choice of concrete plant
8.3 Specification of quality
8.4 Delivery and acceptance

CHAPTER 9 REINFORCEMENT
9.1 Selection of reinforcement
9.1.1 General
9.1.2 Steel Reinforcement
9.1.2.1 Steel bar
9.1.2.2 Prestressing steel
9.1.2.3 Steel bars for structures
9.1.3 Continuous fiber bars
9.1.4 Other reinforcements
9.2 Storage of reinforcement

CHAPTER 10 CONSTRUCTION
10.1 General
10.2 Preparation
10.3 Transportation, placing and compaction within construction site
10.3.1 General
10.3.2 Transportation within construction site
10.3.2.1 General
10.3.2.2 Concrete pump
10.3.2.3 Bucket
10.3.2.4 Concrete placers
10.3.2.5 Belt conveyors
10.3.2.6 Chute
10.3.3 Placing
10.3.4 Compaction
10.3.5 Treatment of settlement cracks
10.4 Curing of concrete
10.4.1 General
10.4.2 Moist curing
10.4.3 Temperature-controlled curing
10.4.4 Protection against harmful effects
10.5 Joints
10.5.1 General
10.5.2 Horizontal construction joints
10.5.3 Vertical construction joints
10.5.4 Construction joints in columns and walls integrated with floor systems
10.5.5 Construction joints in floor systems
10.5.6 Construction joints in arch
10.5.7 Expansion joints
10.5.8 Joints to control cracking
10.6 Reinforcement
10.6.1 General
10.6.2 Fabrication of reinforcement
10.6.3 Assembly of reinforcing bars
10.6.4 Joints in reinforcing bars
10.6.5 Erection of assembled reinforcing bars

10.7 Formwork and shoring
10.7.1 General
10.7.2 Load
10.7.2.1 General
10.7.2.2 Vertical loads
10.7.2.3 Horizontal loads
10.7.2.4 Lateral pressure of concrete
10.7.2.5 Special loads
10.7.3 Materials
10.7.4 Design of formwork
10.7.5 Design of shoring
10.7.6 Preparation of formwork
10.7.7 Preparation of shoring
10.7.8 Removal of formwork and shoring
10.7.9 Special formwork and shoring
10.7.9.1 General
10.7.9.2 Slipform
10.7.9.3 Movable shores

10.8 Finishing
10.8.1 General
10.8.2 Finishing concrete surfaces
10.8.3 Finishing for concrete surfaces subjected to abrasion
10.8.4 Special finishing

10.9 Cold weather concreting
10.9.1 General
10.9.2 Transportation within construction site and placing
10.9.3 Curing
10.9.4 Formwork and shoring

10.10 Hot weather concreting
10.10.1 General
10.10.2 Transportation within construction site
10.10.3 Placing
10.10.4 Curing

10.11 Placing of mass concrete
10.11.1 General
10.11.2 Partitioning into blocks, lift height and joints
10.11.3 Placing
10.11.4 Curing
10.11.5 Formwork
10.11.6 Crack-inducing joints

CHAPTER 11 INSPECTION
11.1 General
11.2 Inspection plan
11.3 Inspection for acceptance of constituent materials of concrete
11.3.1 General
11.3.2 Cements
11.3.3 Mixing water
11.3.4 Aggregates
11.3.5 Admixtures

11.4 Inspection of production
11.4.1 Inspection of production facilities
11.4.2 Inspection of production process

11.5 Inspection for acceptance of concrete at delivery
11.6 Inspection for acceptance of reinforcement at delivery

11.7 Inspection of construction
11.7.1 Inspection of concreting
11.7.2 Inspection of reinforcement
11.7.2.1 Inspection of fabrication and assembly of reinforcing bars
11.7.2.2 Inspection of joint of reinforcing bars
11.7.3 Inspection of formwork and shoring

11.8 Inspection of structures
11.8.1 General
11.8.2 Inspection of surface texture
11.8.3 Inspection of position, shape and dimension of concrete members
11.8.4 Inspection of concrete properties in structure
11.8.5 Inspection of the cover
11.8.6 Loading test of member and structure

CHAPTER 12 CONSTRUCTION RECORDS

12.1 General

CHAPTER 13 PRESTRESSED CONCRETE

13.1 General
13.1.1 Scope
13.1.2 General requirements

13.2 Planning for construction

13.3 Performance requirements for concrete works
13.3.1 Required compressive strength of concrete at the time of prestressing

13.4 Required performance of grout
13.4.1 General requirements
13.4.2 Consistency
13.4.3 Bond strength between concrete and tendons
13.4.4 Corrosion resistance of steel

13.5 Proportioning of grout mix
13.5.1 Grout for prestressed concrete
13.5.2 Proportions
13.5.3 Verification of performance of grout
13.5.3.1 Verification of consistency
13.5.3.2 Verification of bond strength between concrete and tendons
13.5.3.3 Verification of corrosion resistance of steel

13.6 Materials other than reinforcing materials
13.6.1 Anchorages and couplers
13.6.2 Sheaths
13.6.3 Selection of protecting duct
13.6.4 Coating material for unbonded tendons
13.6.5 Material for jointing precast concrete members
13.6.6 Friction-reducing agents
13.6.7 Storage of materials
13.7 Execution
13.7.1 Installation of Tendons
13.7.1.1 Cutting, bending and placing of prestressing steel
13.7.1.2 Installation of sheaths, protecting tubes and tendons
13.7.1.3 Formation of ducts
13.7.1.4 Assembly and installation of anchorages, couplers and deviating devices
13.7.1.5 Layout of openings for grouting, exhaust and discharging
13.7.2 Formwork and shoring
13.7.3 Casting and compaction of concrete
13.7.4 Prestressing
13.7.4.1 General requirement
13.7.4.2 Calibration of tensioning equipments
13.7.4.3 Control of prestressing
13.7.4.4 Protection of anchorages and end surfaces of members
13.7.5 Grouting
13.7.5.1 General requirement
13.7.5.2 Mixing and agitating
13.7.5.3 Grouting
13.7.5.4 Treatment of injection inlet, openings for air vent and grout discharge
13.7.5.5 Grouting in cold weather
13.7.5.6 Grouting in hot weather
13.7.6 Manufacture and construction of precast members
13.7.6.1 Manufacture
13.7.6.2 Transportation
13.7.6.3 Storage
13.7.6.4 Jointing
13.7.6.5 Erection
13.8 Inspection
13.8.1 Inspection of grout
13.8.1.1 Inspection for grout quality
13.8.1.2 Inspection of grouting
13.8.2 Acceptance test of other materials
13.8.2.1 Anchorage and coupler
13.8.2.2 Sheaths
13.8.2.3 Materials for jointing members
13.8.3 Inspection of execution
13.8.3.1 Inspection of sheaths, protecting tubes and tendon arrangements
13.8.3.2 Inspection of anchorage and coupler assembly and arrangement
13.8.3.3 Inspection of opening layout for grouting, exhaust and discharging

CHAPTER 14 COMPOSITE STEEL AND CONCRETE STRUCTURES
14.1 General
14.1.1 Scope of application
14.1.2 Construction planning for composite steel and concrete structures
14.2 Materials
14.3 Compactability of concrete
14.3.1 Specification of compactability
14.3.2 Verification of compactability
14.3.3 Steel members
14.4 Production of steel member
14.4.1 Processing of steel member
14.4.2 Welding in factory
14.4.3 Temporary assembly and transportation
14.5 Erection of steel members
14.5.1 Erection
14.5.2 Temporary placement and assembly of steel members
14.5.3 Jointing using high-strength bolts
14.5.4 Welding in construction site
14.6 Construction
14.6.1 Concreting
14.7 Inspection
14.7.1 General
14.7.2 Inspection for acceptance
14.7.2.1 Inspection for acceptance of steel
14.7.2.2 Inspection for acceptance of jointing materials
14.7.2.3 Inspection for acceptance of concrete
14.7.3 Inspection for production of steel members
14.7.3.1 Inspection of welding in factory
14.7.3.2 Inspection for site welding
14.7.3.3 Inspection for tightening of high-strength bolt
14.7.4 Inspection of construction
14.7.4.1 Inspection for filling condition of concrete

CHAPTER 15 CONCRETE PRODUCTS
15.1 General
15.1.1 Scope
15.1.2 General requirements
15.2 Quality of constituent concrete materials and mix proportions
15.2.1 Quality of constituent concrete materials
15.2.1.1 Fine and coarse aggregates
15.2.1.2 Admixtures
15.2.2 Mix Proportions
15.2.2.1 General
15.2.2.2 Workability
15.2.2.3 Strength of concrete products
15.3 Reinforcing steel and other materials
15.4 Placing and construction
15.4.1 Mixing
15.4.2 Assembly of reinforcement
15.4.3 Formwork
15.4.4 Molding
15.4.5 Curing
15.4.6 De-molding and pre-stressing
15.4.7 Handling, transportation and storage
15.4.8 Erection and jointing
15.5 Inspection
15.5.1 General
15.5.2 Inspection of concrete products

CHAPTER 16 HIGH-STRENGTH CONCRETE
16.1 Scope
16.2 Determination of performance
 16.2.1 General
 16.2.2 Workability
 16.2.3 Pumpability
 16.2.4 Strength
 16.2.5 Resistance to alkali aggregate reactivity

16.3 Mix design
 16.3.1 Aggregate
 16.3.2 Mix proportioning
 16.3.3 Verification of performance
 16.3.3.1 Verification of workability
 16.3.3.2 Verification for pumpability
 16.3.3.3 Verification for strength
 16.3.3.4 Verification for resistance to alkali aggregate reactivity

16.4 Construction

16.5 Inspection

CHAPTER 17 LIGHTWEIGHT AGGREGATE CONCRETE

17.1 Scope
17.2 Determination of essential performance
 17.2.1 General
 17.2.2 Bulk density
 17.2.3 Freeze-thaw resistance
 17.2.4 Pumpability

17.3 Mix design
 17.3.1 Lightweight aggregate
 17.3.2 Mix proportioning
 17.3.2.1 Slump
 17.3.2.2 Air content
 17.3.2.3 Format of data sheet for mix proportion

17.4 Performance verification
 17.4.1 Verification of bulk density
 17.4.2 Verification of freeze-thaw resistance
 17.4.3 Verification of pumpability

17.5 Production and placing
 17.5.1 Transportation and storage of lightweight aggregates
 17.5.2 Control of moisture content of lightweight aggregate
 17.5.3 Mixing
 17.5.4 Transportation within the construction site
 17.5.5 Ready-mixed concrete
 17.5.6 Placing
 17.5.7 Compaction
 17.5.8 Surface finishing

17.6 Inspection for qualities of aggregate and concrete
 17.6.1 Inspection for quality of lightweight aggregate
 17.6.2 Bulk density of concrete

CHAPTER 18 HIGH–FLUIDITY CONCRETE

18.1 Scope
18.2 Self-compactability
18.3 Mix design
18.3.1 Materials
18.3.2 Mix proportioning
18.3.3 Format of data sheet for mix proportions
18.4 Verification of self-compactability
18.5 Production and construction
18.5.1 General
18.5.2 Production
18.5.3 Quality control during production
18.5.4 Transporting, placing, finishing, curing and construction joints
18.5.5 Formwork
18.6 Inspection of self-compactability

CHAPTER 19 EXPANSIVE CONCRETE
19.1 Scope
19.2 Determination of performance
19.2.1 General
19.2.2 Expansion of concrete
19.2.3 Strength
19.3 Mix design
19.3.1 Quality of materials
19.3.1.1 Cement
19.3.1.2 Expansive admixture
19.3.2 Mix proportioning
19.3.3 Verification of performance
19.3.3.1 Verification of expansion
19.3.3.2 Verification of strength
19.4 Production and construction
19.4.1 Mixing
19.4.2 Curing
19.5 Inspection
19.5.1 Inspection for acceptance of concrete at delivery

CHAPTER 20 STEEL FIBER REINFORCED CONCRETE
20.1 Scope
20.2 Performance specification
20.2.1 General
20.2.2 Strength properties
20.2.2.1 Compressive strength
20.2.2.2 Tensile strength
20.2.2.3 Flexural strength
20.2.3 Deformation characteristics
20.2.3.1 Deformation characteristics on the compression side
20.2.3.2 Tension softening properties
20.2.3.3 Flexural toughness
20.2.4 Other performances
20.3 Design of mix proportion
20.3.1 Steel fibers
20.3.2 Mix proportion
20.4 Performance verification
20.4.1 Verification of strength properties
20.4.1.1 Verification of compressive strength
20.4.1.2 Verification of tensile strength
20.4.1.3 Verification of flexural strength
20.4.2 Verification of deformation properties
20.4.2.1 Verification of deformation properties on the compression side
20.4.2.2 Verification of tension softening properties
20.4.2.3 Verification of flexural toughness
20.4.3 Verification of other performances
20.5 Production and placement/application
20.5.1 Fiber addition and mixing
20.5.2 Transportation
20.6 Inspection
20.6.1 Inspection for acceptance of steel fibers
20.6.2 Inspection for acceptance of concrete at delivery

CHAPTER 21 CONCRETE USING CONTINUOUS FIBER REINFORCING MATERIALS (CFRM)
21.1 General
21.1.1 Scope
21.1.2 General requirements
21.2 Verification of durability of concrete using CFRM
21.3 Selection of reinforcing and other materials
21.3.1 Reinforcing steel bars
21.3.2 Anchorages and couplers
21.3.3 Tendon coating materials and tendon protection materials
21.4 Construction
21.4.1 General
21.4.2 Handling and storage of materials
21.4.3 Shaping, assembly and placing in position of CFRM tendons, CFRM reinforcements etc.
21.4.3.1 Shaping and assembly of CFRM tendons
21.4.3.2 Shaping and assembly of CFRM reinforcement
21.4.3.3 Making ducts other than sheaths
21.4.3.4 Placing sheaths and CFRM tendons
21.4.4 Placement of concrete
21.4.5 Prestressing
21.5 Inspection
21.5.1 Inspection for acceptance of CFRM tendons
21.5.2 Inspection for protection of CFRM

CHAPTER 22 UNDERWATER CONCRETE
22.1 General
22.1.1 Scope
22.1.2 General requirements
22.2 Determination of essential performances
22.2.1 General
22.2.2 Strengths
22.2.3 Resistance to segregation under water
22.2.4 Flowability
22.3 Mix design
22.3.1 Materials
22.3.1.1 Chemical admixtures used for antiwashout underwater concrete
22.3.2 Mix proportions
22.3.3 Performance verification
22.3.3.1 Verification of strength
22.3.3.2 Verification of resistance to segregation under water
22.3.3.3 Verification of flowability
22.4 Construction
22.4.1 Methods of placing normal underwater concrete
22.4.2 Placing of antiwashout underwater concrete
22.4.3 Placing of underwater concrete for cast-in-place concrete piles and cast-in-place diaphragm walls
22.5 Inspection
22.5.1 Inspection of concrete
22.5.2 Inspection of concreting

CHAPTER 23 PRE-PLACED AGGREGATE CONCRETE
23.1 General
23.1.1 Scope
23.1.2 General requirements
23.2 Determination of essential performance
23.2.1 General
23.2.2 Determination of essential performance of pre-placed aggregate concrete
23.2.2.1 Strength
23.2.2.3 Determination of essential performance of mortar used for grouting
23.2.3 Flowability
23.2.3.2 Segregation to resistance
23.2.3.3 Expansion
23.3 Mix design
23.3.1 Materials
23.3.1.1 Coarse aggregate
23.3.1.2 Materials used in mortar used for grouting
23.3.2 Mix proportions
23.3.2.1 General
23.3.2.2 Format for giving mix proportions
23.3.3 Performance verification
23.3.3.1 Verification of strength
23.3.3.2 Verification of flowability
23.3.3.3 Verification of resistance to segregation
23.3.3.4 Verification of expansibility
23.4 Production and Placing
23.4.1 Production and placing of grout mortar
23.4.1.1 Production plant
23.4.1.2 Mixing
23.4.2 Construction and control
23.4.2.1 Shuttering
23.4.2.2 Charging coarse aggregate
23.4.2.3 Grouting equipment and injection pipes
23.4.2.4 Pumping
23.4.2.5 Grouting
23.4.2.6 Construction joints
23.4.2.7 Construction in cold weather
23.4.2.8 Construction in hot weather
23.5 Inspection
 23.5.1 General
 23.5.2 Inspection of materials for mortar for grouting
 23.5.3 Inspection of pre-placed aggregate concrete and mortar for grouting
 23.5.4 Inspection of construction

CHAPTER 24 SHOTCRETE

24.1 General
 24.1.1 Scope
 24.1.2 General
24.2 Determination of essential performance
 24.2.1 General
 24.2.2 Placing performances
 24.2.3 Long-term strength of shotcrete
24.3 Mix Proportions
 24.3.1 General
 24.3.2 Concrete materials
 24.3.3 Mix design
24.4 Performance verification
 24.4.1 Verification of placing performances
 24.4.2 Verification of long-term strength of shotcrete
24.5 Production
 24.5.1 General
 24.5.2 Production equipment
 24.5.3 Shotcreting machine and auxiliary equipment
 24.5.4 Production procedure
24.6 Reinforcement
 24.6.1 Wire fabric
 24.6.2 Fibers
 24.6.3 Storage of reinforcement
24.7 Execution
 24.7.1 General
 24.7.2 Surface preparation
 24.7.3 Reinforcement placing
 24.7.4 Shotcrete application
 24.7.4.1 General
 24.7.4.2 Application to arches and side walls
 24.7.4.3 Shotcreting on water ingress
 24.7.4.4 Application to inverts
 24.7.5 Measures against dusting
 24.7.6 Curing
24.8 Inspection
 24.8.1 Acceptance inspection of concrete materials
 24.8.2 Concrete inspection
 24.8.3 Inspection of concrete work
 24.8.3.1 Inspection of shotcrete application
 24.8.3.2 Inspection of application thickness
 24.8.3.3 Inspection of underground environment for shotcreting

APPENDIX I MIX PROPORTIONING METHOD OF CONCRETE
APPENDIX II FORM FOR EXPRESSING MIX PROPORTIONS