
Development of Practical Software for Micro Traffic Flow Petri Net Simulator

Noboru Kimata1), Keiich Kisino2), Yasuo Siromizu3)

[Abstract] Recently demand for microscopic traffic flow simulators is increasing both from changes of problem situations
we encounter in transportation planning and intensity of public involvement (PI) movement in public planning. We have
been developing a new type simulator based on Coloured Timed Petri Net. This type simulator has potential to be put into
practical use as PI support system. In this paper we present a more practically strengthened prototype system on
Windows-OS platform and show its active supportability for development of individual simulations and accountability of
their usage to a wide range of people involved. We demonstrate especially how newly developed menus such as drawing
traffic-flow-net, tracing token behaviors on the net, making the individual places/transitions/arcs visible or invisible by
selection, work and improve readability of Petri net description for microscopic traffic flows and contribute to putting the
simulator into practical usage.

[Keyword] simulation, Coloured Timed Petri nets, microscopic traffic flows, transportation planning, Public
Involvement (PI)

1. Introduction
 In urban area, it has been difficult to
implement a drastic plan like a new road
construction as a resolution for traffic
congestion. So we are forced to find out other
practicable resolutions based on individual
conditions of actual road configuration and
available technologies. It would be
advantageous for us to do such task if we could
be supported by a microscopic traffic flow
simulator that can deal with such factors fully
and concretely. Support by such a microscopic
traffic flow simulator would be effective also
for evaluation of new alternatives like ITS,
P&R system, LRT, etc.
 Public involvement movement in public
planning field is another important
background of a great demand for microscopic
traffic flow simulators. Under PI oriented
planning, it is indispensable requisite that
accountability is fulfilled for a wide range of

people involved in the disputed plan.
Microscopic traffic simulator could contribute
to this requisite as a competent tool to explain
details of relationships between traffic flows
and proposed alternatives both from logical
and experiential points of view.
 In these situations we now encounter, some
powerful and visual simulators such as
NETSIM, AVENUE, PALAMICS, tiss-Net, etc.
are developed as planning support systems. We
also propose a microscopic traffic flow
simulator based on the methodology called
coloured timed Peri net.
 In this methodology, (1) traffic flows are
represented by a visual graph, and this
graphical net itself serves directly as
illustrative presentation of simulated outputs.
(2) Any nets are essentially driven by common
and simple rules that we could easily follow by
hand. (3) The nets have common structure and

1) Member of JSCE, Professor, Department of Civil Engineering, Kanazawa University (2-40-20 Kodatsuno
Kanazawa-shi, Tel 076-234-4914)

2) Member of JSCE, Chuo Fukken Consultants Co., Ltd. (1-8-29 Nisimiyahara Yodigawaku, Osaka-)
3)Member of JSCE, Chuo Fukken Consultants Co., Ltd. (2-11 Oodenmacho Nihonbashi Chuoku Tokyo)

are conjunctive each other. From (1) and (2),
we can develop highly flexible driving software
for traffic flows Petri nets. Under this software
and from futures of (1) and (3), we can easily
perform to expand and refine our description of
disputed traffic flows by step-by-step wisely.
And constructed net models of disputed traffic
flows and construction processes of these nets
could be understood both by following the logic
manually and by confirming vehicle’s
movements visually only given fundamental
knowledge of Petri nets and their driving rules.
 We expect certain potential to our simulator
as PI support system from these properties and
then try to expand it to some more practical
level. In this paper, we first summarize our
Petri net type simulator and explain some
fundamentals like collision safety in simulated
traffic flows, renewal rule of vehicle’s speed, etc.
Afterward, we present its more practical
oriented and converted version from UNIX to
Windows-OS platform, and demonstrate menus
newly devised for PI style usage.

2. Petri nets Methodology for Traffic

Simulation
2-1 Peri nets representation of vehicle traffic
flows.
 Essentially in Peri net method, objective
system is represented by a graph with two
kinds of nodes: places and transitions. In the
nets, arc exists only from a place to a
transition or from a transition to a place and is
classified into input, output, or inhibitor arc.
And states of the system are indicated by
markings of tokens at the places.
 States are dynamically transformed by
“firing” of enabled transitions. As mentioned
above, the firing rule is simple and common: a
transition fires if and only if at least one token
is marking at all input places of the transition
and no token exists at any inhibitor places.
And after the transition fires, its associated
tokens at its input places are removed, and a
token is deposited at each of its output places.
Here we avoid non-determined situation with
“conflict” in traditional rule because we must

validate traffic safety. We will explain this
point in section 2-2(1).
 Fig.1 is an example of Peri net
representations of vehicle traffic flows around
a signalized intersection focusing on the traffic
flow from left to right in this figure. The
modeling road is a single lane for each way and
set right-turn pocket with capacity five near
the intersection. As shown in Fig.1, a system
net of traffic flows can be constructed by
combining several basic Petri nets for
fundamental traffic flows. In this case the
system net consists of five such basic sub nets
as follows: ① vehicle’s arrival sub-net, ②

vehicle’s progress sub-net, ③ lane changing
sub-net, ④ traffic signal sub-net, ⑤ right
turn behavior sub-net. We have developed
other basic sub nets like merging, pedestrian
crossing, etc.
 Vehicle’s arrival sub-net generates vehicles
at time intervals which follow exponential
distribution with given mean time µ. It is
needless to say that 1/µ is the expected mean of
generated traffic volume. In Fig.1, this type
sub nets are put at both the left and the right
hand end as generators for the main and the
opposite traffics respectively.
 Sub net ① is combined with vehicle’s
progress sub-net as shown in Fig.1. As
presented in Fig.2, vehicle’s progress net is a
bonded net of sub nets each consists of a paired
places and two transitions and corresponds to
a block on the road defined as a space limited
only for one vehicle to occupy safely.
 Here we define the transition as an event of
vehicle’s progress to the adjacent block on the
road. While we devise the definition of the
paired places as one of places is “vehicle’s
presence in the block” (denoted by a black
token) and another is ”non-occupation of the
block” (denoted by a white token). And we
connect them to the transitions by arcs of such
input / output relationships as presented in
Fig.2 (a). Traffic safety is autonomously
validated by these net modeling and the firing
rule described above.
 Firstly, two types of places are complement

relations with each other and then always only
one token is put on either one of them. In Fig.2
(a), places inscribed with (-2) are first type
ones and places inscribed with (-1) are second
types. So tokens are put on at only ones of
paired places, saying P1(-2), P4(-1), and P6(-1).
Here a black token indicates existence of a
vehicle and a white token non-occupation of
the block. Then the marking of Fig.2 (a)
represents a state of traffic flow that one
vehicle exists at the first block while its
forward two blocks are free.
 Next, applying the firing rule to this net
marking, we can identify only transition t2 is
enabled because its all input places P1 and P4
are marked by tokens but for other transitions
one of their input places is not marked. Then

transition t2 fires and the state of the net
shifts to the marking as shown in Fig.2 (b). It
is easy to understand that this marking
represents the vehicle progressed safely to the
adjacent forward block.
 While Fig.2 (c) represents a traffic state that
two vehicles are running on neighboring blocks.
We can also assure that collision never occur in
this situation. Since transition t3 does not
satisfy the firing condition mentioned above,
then it does not fire until the forward vehicle
progresses to the next block and a token is
returned at P6. That is, in vehicle’s progress

①vehicles arrival

②vehicle’s progress

③lane changing

④traffic signal

⑤right turn
behavior

＜flow from left to right＞ ＜intersection＞ ＜opposite traffic＞

Fig.1 Petri-net Representation of Traffic Flows around Signalized Intersection

ｔ1 ｔ2 ｔ3 ｔ4 P1(－2) P3(－2) P5(－2)

P2(－1) P4(－1) P6(－1)

(a)

(b)

(c)

Fig.2 Basic Sub Net of Vehicle’s Progress

Table 1 Sdata Statement of System Net of Fig.1

・・・

・・・

・・・

net vehicles run autonomously as following
their forward ones and rear-end collision is
avoided.
 Lane changing sub net is modeled by
devising two expanded transitions as follows.
One is generative transition and equips tokens
with colors that represent straight, left turn, or
right turn vehicles. Another one is selective
transition that selectively determines its
output place according to token-colors. In Fig.1,
GT denotes the former and ST denotes the
later. Tokens (vehicles) equipped with colors by
GT are deposited at one of correspondent
output places (lanes) of ST when transition ST
fires.
 In sub nets of traffic signal and right turn
behavior, we design usage of inhibitor arcs to
intentional traffic control. Inhibitor arcs from
the place of red signal to the transition stop
vehicles to enter the intersection until the
token stays at the red place because of the
firing rule. We could design inhibitor arcs
according to phases of the signal we want to
adopt. We can also use inhibitor arcs to ensure
critical gaps between right turn vehicle and
ones running opposite lanes. In Fig.1, we use a
traffic signal sub net with four phases, green,
right turn only, yellow, and red, and a right
turn behavior sub net with space of five blocks
as driver’s acceptable critical gap.
 The individual system net is detailed by a
numerical data format called Sdata. At Table 1,
we show a part of Sdata statement for the
system net of Fig. 1.
 The statement of Sdata consists of five parts,
PLACE, TRAN, TOKEN, GENE, and
generatetranZ. In the part of PLACE, we
describe related inhibit transitions, types of
place, and parameter for drawing/non-drawing
at simulation to each of all places which
appear in the system net. In TRAN, we do
specification to all of transitions in same
manner. The part of TOKEN is used to set an
initial marking of the system net by describing
place numbers and initial stay timers at the
places. GENE defines parameters for traffic
volumes we want to generate at the vehicle’s

arrival sub-nets mentioned above, and
generatetranZ sets ratios of colors to transition
GTs in order to simulate more realistic and
reliable designated traffic flows. As
demonstrated lately, Sdata representation is
indispensable to our computer simulation and
its wide range of applicability and visual
readability.

2-2 Simulation Algorithm of Traffic Petri
Nets
(1) Driving algorithm by firing of transitions.
 As mentioned in 2-1, Petri nets are
dynamically driven by the “firing” rule of
transition. We essentially adopt this rule as
our simulation algorithm. That is, a transition
fires if and only if
r-1: at least one token is marking at all input
places of the transition and
r-2: no token is put at all inhibitor places, then
r-3: it’s associated tokens on its input places
are removed, and
r-4: a token is deposited on each of its output
places.
 In traditional rule, if enabled transitions,
from viewpoints of r-1 and r-2, are “conflict”
with each other, one of them is selected in
probabilistic manner and only the selected
transition fires. But in our driving algorithm
all of enabled transitions fire simultaneously
at the same instance as mentioned in 2-1.
 Fig. 3 shows an example of “conflict”
situation in traffic Petri nets. Judging from
viewpoints of r-1 and r-2, both of transition t1
and t5 are enabled. And it is obvious that if one
of them fires then the another becomes not
enabled because of net transaction by r-3 and
r-4. This is the definition that transition t1 and
t5 are “conflict” with each other.
 In the case of traffic simulation, this means
that always one of the vehicles located at P1
and P5 gives way another vehicle and collision
accidents are never occurred. But it is too
optimistic in this case. In our algorithm, both
transition t1 and t5 fire simultaneously.
Therefore two vehicles enter the space P3 and
a collision will occur.

 Of course it will be very rear to occur such
simultaneous firing of transitions even in our
algorithm. But we need avoid the risk
intentionally by setting priority to main road.
Fig.4 presents such a net in which priority is
given to the vertical road against horizontal
one using inhibitor arc. In this net, t5 can not
fire so for as the token stays at P1 because of
r-2 mentioned above. And the token passes the
P3 and a token is returned to P2, then t5
becomes to fire. So in our algorithm, head to
head collision can be avoided by introduction of
some intentional rule.
 This modeling technique can be applied to
sub nets of traffic signal, right turn behavior,
merging, pedestrian crossing, etc. It is also
possible to devise a kind of killer sub nets for
safety mechanism of these nets and to
construct a system net for collision simulation
by combining them to traffic flow net.
(2) Renewal rule of vehicle’s desired speeds
 The notion of time in timed Petri nets are
given by “timers” associated with places or
tokens. For instance, duration times of each
phases of traffic signal are represented by
timers set on corresponded places. And these
timers are fixed at constants if not actuated
control case. To such type of sub nets we can
apply the firing rule directly and change only
the state of net after the laps of the timers.
That is we need no treatment of timers
themselves. But concerning to vehicle’s
progress sub nets that we discussed at Fig. 2,

we need additional procedure to renew timers
of associated tokens.
 The tokens located at places of type (-2)
represent vehicles on road. Their timers are
time that the tokens stay at the places and
mean times that the vehicles journey the one
block that we define at 2-1. That is, these
timers vary depending on currently realized
speeds of vehicles and traffic conditions. Then
for tokens on the place of type (-2), we define
their timers as a new type and incorporate
additional procedure to renew them under an
assumption that drivers will be tendency to put
up their desired speed if possible.
 Table 2 is an example of reference data for

ｔ0

ｔ1

ｔ2 ｔ5 ｔ4

P0 P1

P2
P3

P4

P5

Fig.3 Conflict State in Traffic Peri-nets

ｔ0

ｔ1

ｔ2

P0 P1

P2
P3

P5

P4 ｔ5 ｔ4

Fig.4 Priority Setting by Inhibitor Arc

Search(S)

Table 2 Example of Vptimer Table

Fig.5 Combined Net of Vehicle’s Arrival
and Progress

P0
ｔ0 P1(1) ｔ1

P2(－1)

P3(－2) ｔ2

P4(－1)

Search(S)

renewal of desired speeds named as the
“vptimer” table. The table is described using
stay time values calculated by (the length of a
block) / (desired speed). In this table, we also
assume that the length of a block is 6.7m and
maximum speed limit is 40kph.
 The first column of this table represents
realized vehicle’s stay time at the current place
and the second desired stay time (reverse of
desired speed) at the next place the vehicle
progresses. In third column, we could assume
probabilities that drivers would select
acceleration shown in the table. At the bottom
line of this table, we could also set lag-time
when vehicles start from state of stopping. The
numerical values following “lag time” are stay
time for judgement of state of stopping and
delayed time of firing.
 Incorporation of the vptimer would be
informative for simulation of traffic flows. But
it requires stay time at the current place as
reference data to renew timers of token
corresponded to vehicle. Fig. 5 reveals a
problem arisen from this requirement and its
resolution.
 Fig. 5 is the combined net between the sub
nets of vehicle’s arrival and vehicle’s progress.
The P0 is programmed as a generation place
where vehicles are generated as tokens at time
intervals with an exponential distribution.
Then place P0 holds generated times of tokens
but does not hold any stay times of tokens.
When we bond P0 to the vehicle’s progress sub
net without any amendment, P1 becomes as
type of (-2) instead of (1) denoted in Fig. 5.
 If P1 is a place of type (-2), it is impossible to
determine the timer attached to the token that
progresses to the place P1(-2) because there is
no stay time at current place P0 to be referred
at the vptimer table. The net shown in Fig. 5
resolves this problem by defining the place P1,
adjacent to the generation place P0, as special
type of (1) and devising a fixed timer on this
special place.
 The tokens that progressed to P1 stay there
for a fixed duration given by this timer. Then
how many tokens are generated densely at P0,

the minimum of firing intervals of transition t1
is limited to this fixed duration. In other words,
the timer setting on this place defines the
maximum volume of traffic generated by our
vehicle’s arrival sub net. It is said that the
maximum capacity per a lane is 2200～2500
(pcu/h). We use 1.6 second by default as the
fixed timer for places denoted (1) in traffic
Petri nets. The maximum volume is then
calculated as 2250 (pcu/h). Fig. 5 is seen as
artificial at glance, but we insist as supported
by traffic reality.

3. Development of Practical Prototype for

Petri Net Traffic Simulator.
3-1 Requisites for PI usage of Petri net
traffic simulator.
 We advocate a PI style usage of our newly
developed simulator for urban traffic planning.
Here we consider fundamental requisites to
evolve a practical prototype from the simulator
to this end. The process of simulation usage for
PI style planning is generally divided into the
following three phases: description phase of
disputed traffic situation by Petri nets,
construction and execution phase of the net on
computer, and application phase of simulation
to the planning. We insist above that the most
competitive potential of our simulator is users
could develop their own nets corresponding to
their individual cases and validate them for
their planning bases almost by themselves.
But in reality still user’s working load may be
heaviest at the first phase. So it is especially
vital to lighten the working load at this phase
to the PI style usage success.
 We try to achieve this requisite by
implementation of the first phase working
itself on computer, which is supposed to be
classified as the second phase at above
recognition. During the first phase, we do trial
and error to get suitable net to simulate
disputed traffic situations. First of all we must
endeavor to realize step-by-step wisely
construction and execution procedure of Petri
nets model development and facilitate trial and
error performance on our prototype system. As

discussed above, direct execution of any nets
without any reprogramming is another
competitive future of Petri nets simulator. So
we can develop such a prototype by devising
user friendly interface to this end.
 In the trial and error process, advocators of
nets try to interpret their nets modeling to
other participants and participants try to
contribute to construction of nets for practical
usage by understanding the model structure,
expressing their opinions and proposing ideas.
In Petri net methodology, the net itself serves
directly illustrative presentation of simulated
outputs. This property provides valuable
assistance to fostering communication between
advocators and other participants and
achieving more useful net construction. So we
must endeavor to enrich visual and illustrative
presentation ability of nets.
 The net showed at Fig. 1 is so simple that
simulated token’s moves are traced easily on
this style of presentation. But in practical
cases, it is easy to predict that nets become
more complicated and become difficult to trace
token’s moves or to follow logical structure if
we present them directly. For instance
increasing of number of places and transitions
increases number of arcs among them and nets
themselves will become rapidly unreadable
because of high density of drawn arcs. Then we
may say that it is also vital how to elaborate
the net representation interface in order to
ensure readability of drawn nets on computer
and trace complicated tokens behaviors in the
nets.

3-2 Windows version interface of Perti net
simulator
 From considerations in section 3-1, we focus
on following three points: (1) step-by-step
wisely construction and execution of net
development for practical usage, (2) selective
representation of net components to ensure
visibility and readability of nets drawn on
computer, and (3) coloring tokens to trace
complicated their behaviors. Fig.6 is the main
menu developed as user interface in order to

realize these points on our prototype system.
Here left side three of buttons on the main
menu and right side two buttons are almost
same as standard ones equipped with the
Microsoft Windows system. Other three are
ones added for Petri net traffic flows simulator.
Fig.6 shows a situation that following selection
of “Drawing Net”, “Figure the Net” is clicked
and a pullout menu appears which contains
sub menu to select for ensuring visibility and
readability of nets drawn on computer, and for
tracing complicated tokens behaviors. We give
outline of usage and functions of them.
 First, we assume that a net model is
proposed and its Sdata file is made up. Now,
we can open the Sdata file by clicking “File” on
Fig.6 and selecting the file name. Construction
of the net on computer is executed using
“Drawing Net”. As shown in Fig. 6, “Drawing
Net” has sub menu which consists of “Layout P
and T”, “Figure the Net”, and “Sketch the
Road”. Here we select “Layout P and T” and
click it. Fig. 7 appears on screen as support
windows to lay out places and transitions of
which the net consists. Then we select a place
or a transition from the lists shown at the left
side sub windows and click the put-button.
After that we move the cursor on screen to the
position where we want to lay out the place or
the transition and click the mouse at the point.
As shown at the right side of Fig.7, a circle or a
bar is drawn at the position corresponding to
the selected component.
 Continuing this procedure, we construct the
net on computer. In section 3-1, we pointed out
rapidly increasing of arcs between places and
transitions in practical usage. So in order to
reduce user’s load we adopt the algorithm that
all of arcs are drawn automatically by referring
their relational data to the Sdata. Also we
provide at right side another sub windows
which display relevant components to the
selected one and guide user’s construction
procedure of net.
 Of course, we could rearrange easily
positions of components by drag and drop of
them. This rearrangement procedure can be

applied to sub nets by selecting them as an
entity. By adopting strategy to lay out in wider
space at the earlier stage of net construction
and ensure visibility and readability of the net,
users can check more easily the logical
relationships between places and transitions
even if the net is complicated. At the latter
stage, users can get more realistic
configuration of the net by rearrangement to
overlap some parts and/or move some parts to
positions to well fit the real space.
 The layout data of the net is saved as Ndata
file paired with the Sdata by using “File” menu.
After this, we open the Sdata then the net is
drown on computer. Users can do step-by-step
wisely construction and execution of the net
modeling supported by these functions.
 “Figure the Net” supports users to ensure
visibility and readability of the net and to trace
token’s movement on the net from more detail
viewpoints. “Non Display” in its sub menu

enables to draw components selectively as
designated in the Sdata and simplify the
representation of complex net. “Numbering”,
“Coloring”, and “Iconic Style” help users
discuss the net structure. Fig.1 is the net
drawn by giving checks to “Numbering” and
“Iconic Style” in this sub menu. Two special
transitions GT and ST, introduced in 2-1, are
displayed as bold bar and double bar
respectively and become distinguishable at
glance as iconic style.
 “Painting Tokens” and “View by Token Color”
help users trace visually token movement by
coloring tokens. By “Edit Token Color”, we
design colors given to tokens in order to attach
realistic colors or emphasize particular token
movement intentionally. We show later an
example of coloring of tokens.
 Fig.8 is sub menu of “Simulation”. Here we
can set “Simulation Time” and initial values of
“Random Number” and design “Analysis”

Fig.6 Basic Menus of Prototype Petri-net Simulator (Windows version)

Fig.7 Interface for “Layout Places and Transitions”

Fig.8 Menus for Simulation Execution

format. Implementation of simulation can be
done in two modes, “Execute” and “Step by
Step”, and its rewinding is also possible by
“Rewind”.
 Finally, we demonstrate an example of
practical traffic simulation image at Fig.9. This
is a shot of simulation of the net model shown
at Fig.1. In this case, we designate the Sdata
as only places inscribed as (-2) and places
corresponding to traffic signal in Fig.1 are
“visible” and all of others like transitions, arcs,
places inscribed as (-1), etc. are “invisible”. And
using “Sketch the Road”, we outline the road
configuration on the drawn net and get the
simple representation shown at Fig.9 where
only real space and real entities are presented
and conceptual elements in the net are
eliminated.
 We execute this net by giving check to “View
by Token Color” and cut off a shot of simulated
net markings at Fig.9. In this representation,
tokens are colored according to their entities
such as traffic signal, or cars of straight
forward, left turn, or right turn. The shot
shows us with these coloring of tokens the
current phase of traffic signal, number of cars
on each of lanes and their locations, and
indicates visually adequacy and some causes of

the current traffic situation. Step-by-step
execution of this form and its rewind will
facilitate to interpret and understand proposed
Petri net model for practical planning.

4. Conclusion
 In this paper, we described some
fundamentals of our micro traffic flow Petri net
simulator and proposed practical prototype
system for its PI style usage. And we outlined
the prototype focusing on menus equipped with
its user- friendly interface.
 First, we explained that “Drawing Net” has
sub menu which consists of “Layout P and T”,
“Figure the Net” and “Sketch the Road”, and
they help users construct the net on computer,
ensure readability and real presentation for
complicated nets, and trace visually token
behaviors on it by coloring them. Next, we
showed that “Simulation” contains
fundamental functions to set initial conditions
for “Simulation Time” and “Random Number”
and to design the plan of “Analysis” and
revealed that two modes execution by
“Execute” or “Step by Step” and “Rewind” mode
are realized.
 Finally, using these menus, we demonstrated
representation of simulated shot of a Petri net

Fig.9 Representation of Traffic Flows Simulation Shots near Signalized Intersection

model for traffic flows around a signalized
intersection and showed the representation is
highly informative to interpret and understand
traffic Peri net models. We confirm that the
prototype system will facilitate user’s net
model development and contribute to PI style
usage success.
 For future study, we need improve the
execution speed of simulation and expand the
scale of simulation to practical network level.
Further more, we need provide more various
and more refined sub nets which describe
fundamental traffic flows.

5. References
1) W.Reisig: A Primer in Petri Net Design,

Springer-Verlang, 1992.
2) K. Jensen: Coloured Petri Nets, vol.1～3,

Springer,1997,
3) Noboru Kimata, etc.: Development of Traffic

Flow Simulation System by Petri-Net Model,
Infrastructure Review, No.12, pp.691～699,
1995 (in Japanese).

4) Noboru Kimata, etc.: Fundamental Study on
Validation of Petri Net Simulator for Micro
Traffic Flows, Proc. of Infrastructure
Planning, No.23(1), pp.415 ～ 418, 2000(in
Japanese).

5) T.Holvoet, P.Verbaeten: Using Agents for
Simulating and Implementing Petri Nets,
11th Workshop on Parallel and Distributed
Simulation, 134～137, 1997.

