『いまさら聞けない 計算力学の常識』 講習会

構造解析に入る前に知っておきたい「常識」

5話 知ってそうで知らない境界条件処理のいろいろ 7話 固体の非線形解析って何? 9話 固体の非線形解析における2つの論点 10話 破壊現象の数値解析の罠

東北大学 斉木 功

● mputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

『いまさら聞けない 計算力学の常識』 講習会

5話 知ってそうで知らない境界 条件処理のいろいろ

- 5.1 等分布荷重は均等にした集中荷重と同じでいいの?
- 5.2 無限・半無限弾性領域解析の落とし穴
- 5.3 点支持・点載荷の落とし穴
- 5.4 対称条件は使える? 使えない?

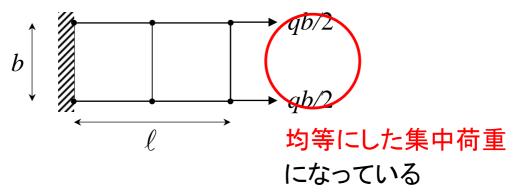
執筆者

徳山高専 原 新潟大学 阿部 東北大学 斉木 等分布荷重は均等にした集中荷重?

大きさqの等分布荷重が幅bに作用(荷重の総量qb)



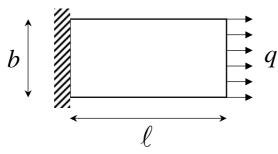
1次要素の場合



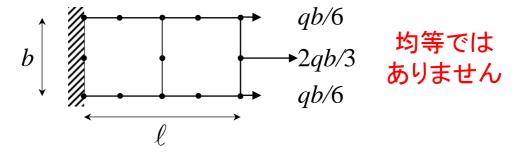
●pmputational **●**pechanics **S**ubcommittee 『いまさら聞けない 計算力学の常識』講習会 **●**土木学会

等分布荷重は均等にした集中荷重?

大きさqの等分布荷重が幅bに作用(荷重の総量qb)



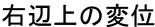
2次要素の場合



●pmputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

等分布荷重は均等にした集中荷重?

本来の離散化の過程をたどってみると



$$u = \frac{1}{2} (-\xi + \xi^2) u_1 + (1 - \xi^2) u_2 + \frac{1}{2} (\xi + \xi^2) u_3$$

分布荷重の仮想仕事

$$\delta w_{e} = \int_{-b/2}^{b/2} q \, \delta u \, d\ell$$

$$= \frac{b}{2} \int_{-1}^{1} q \left[\frac{1}{2} (-\xi + \xi^{2}) \delta u_{1} + (1 - \xi^{2}) \delta u_{2} + \frac{1}{2} (\xi + \xi^{2}) \delta u_{3} \right] d\xi$$

$$= \{ \delta u_{1} \, \delta u_{2} \, \delta u_{3} \} \left\{ \begin{array}{c} bq/6 \\ 2bq/3 \\ bq/6 \end{array} \right\}$$

●pmputational Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

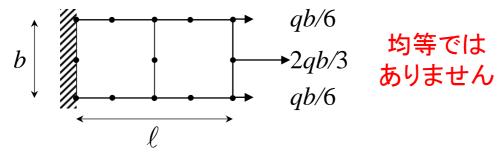
等分布荷重は均等にした集中荷重?

分布荷重の仮想仕事(2次要素の場合)

$$\delta w_{e} = \int_{-b/2}^{b/2} q \, \delta u \, d\ell$$

$$= \frac{b}{2} \int_{-1}^{1} q \left[\frac{1}{2} (-\xi + \xi^{2}) \delta u_{1} + (1 - \xi^{2}) \delta u_{2} + \frac{1}{2} (\xi + \xi^{2}) \delta u_{3} \right] \, d\xi$$

$$= \left\{ \delta u_{1} \, \delta u_{2} \, \delta u_{3} \right\} \left\{ \begin{array}{c} bq/6 \\ 2bq/3 \\ bq/6 \end{array} \right\}$$



●mputational (Mechanics Subcommittee)『いまさら聞けない 計算力学の常識』講習会@土木学会

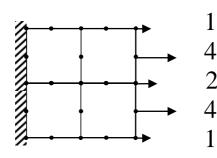
等分布荷重は均等にした集中荷重?

結論

等分布荷重は均等にした集中荷重?

一般的には正しくない

仮想仕事式の積分を確認しましょう

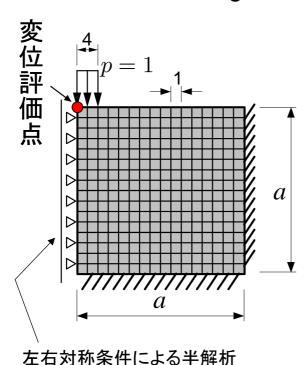


1 4 2次要素のときは, 2 たくさん並んでも 4 均等ではない..

©mputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

(半)無限弾性領域解析の落とし穴

3次元半無限領域(eg.地盤)を2次元(半無限領域)で近似

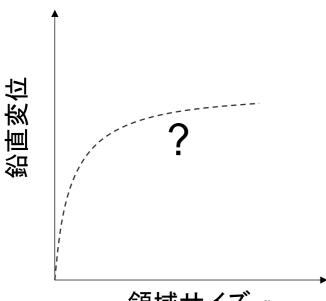


- 2次元平面ひずみ
- G = 1, v = 0.3
- 本来は無限である a を 大きくしていく
- 変位評価点の変位は?

●pmputational (Mechanics Subcommittee)『いまさら聞けない)計算力学の常識』講習会@土木学会

(半)無限弾性領域解析の落とし穴

2次元半無限領域の弾性解析で変位を見ると

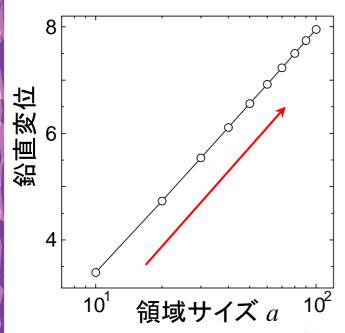


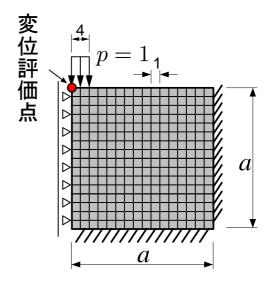
領域サイズ a

領域が大きくなるにしたがって変位 が収束してくれるといいな... ��mputational ∰echanics ��ubcommittee 『いまさら聞けない 計算力学の常識』講習会@土木学会

(半)無限弾性領域解析の落とし穴

2次元半無限領域(eg.地盤)の弾性解析で変位を見ると





領域の大きさに応じて変

有限要素法の不備ではなく. 3次元問題を適切にモデル化 できていないため

Jechanics Subcommittee 『いまさら聞けない』計算力学の常識』講習会 @ 土木学会

(半)無限弾性領域解析の落とし穴

結論

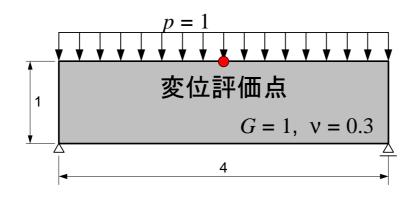
- 2次元(半)無限領域の弾性解析で変位を見ても意味はない.
- •3次元の正しい近似になっていない.
- ●無限の領域に荷重が作用していることになる.

3次元ではOK(変位が収束する) 相対変位や応力は2次元でもOK

●pmputational Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

点支持・点載荷の落とし穴

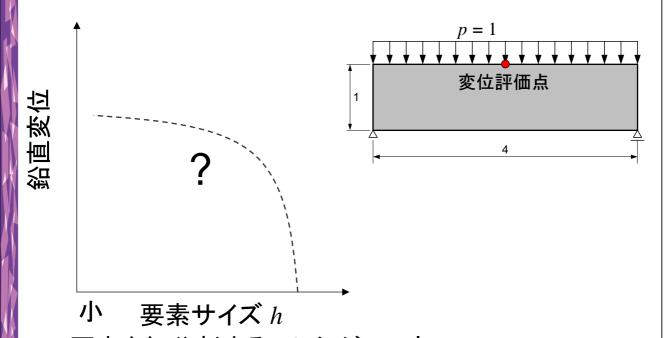
弾性体に集中荷重(含む点支持)が作用すると



要素サイズ h を小さくしていくと...

点支持・点載荷の落とし穴

弾性体に集中荷重(含む点支持)が作用すると

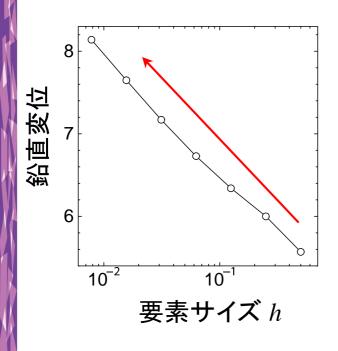


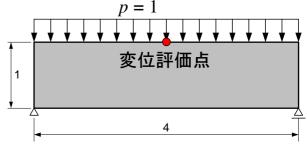
要素を細分割するにしたがって変 位が収束してくれるといいな...

©bmputational Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会@土木学会

点支持・点載荷の落とし穴

弾性体に集中荷重(含む点支持)が作用すると





要素を小さくすればする ほど変位も増える!

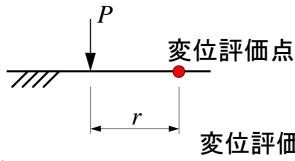
omputational (Mechanics Subcommittee)『いまさら聞けない)計算力学の常識』講習会 @ 土木学会

15

点支持・点載荷の落とし穴

半無限弾性領域に集中荷重(支点反力)が作用すると

(Boussinesqの問題)



()

変位評価点の鉛直変位

 u_z $u_z \propto P/r$

2次元: $u_z \propto P \log r$

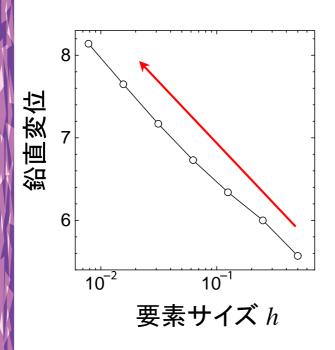
(2次元の場合は相対変位)

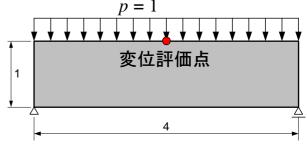
r がゼロになると(相対)変位が無限大になる!

● mputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

点支持・点載荷の落とし穴

弾性体に集中荷重(含む点支持)が作用すると





要素を小さくすればする ほど変位も増える!

弾性解(解析解)に近づいている

Computational **(V**)echanics **(S**ubcommittee 『いまさら聞けない 計算力学の常識』講習会**@**土木学会

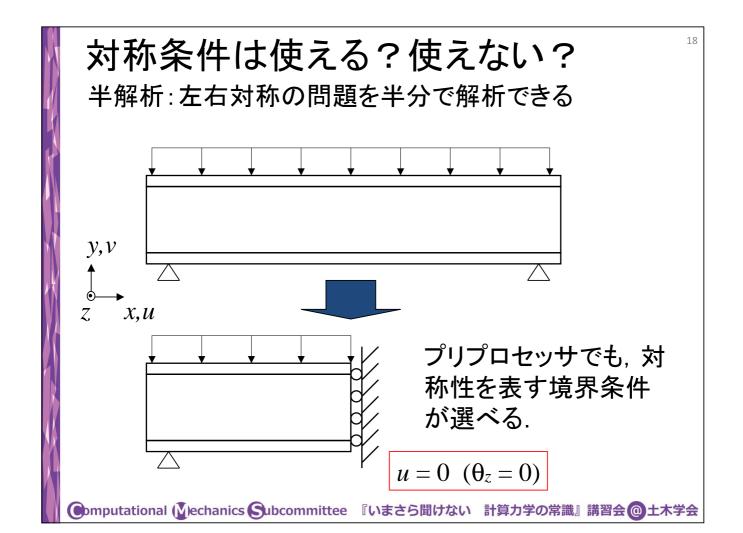
(半)無限弾性領域解析の落とし穴

結論

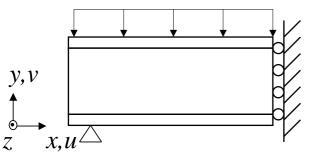
弾性体に集中荷重(含む点支持)が作用すると、要素の細分化に伴って変位は無限大となる.

有限要素法の不備ではなく、あくまで解析解に近づいていくため

●pmputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会



半解析: 左右対称の問題を半分で解析できる



$$u=0 \ (\theta_z=0)$$

鉛直軸(原点を通る)に関して対称

$$u(x) = -u(-x)$$
$$v(x) = v(-x)$$

$$u(x) = -u(-x)$$

$$v(x) = v(-x)$$

$$u(0) = -u(0) \Rightarrow u(0) = 0$$

$$v(0) + \frac{\mathrm{d}v}{\mathrm{d}x}h + \dots = v(0) - \frac{\mathrm{d}v}{\mathrm{d}x}h + \dots$$

$$2\frac{\mathrm{d}v}{\mathrm{d}x}h + \dots = 0$$

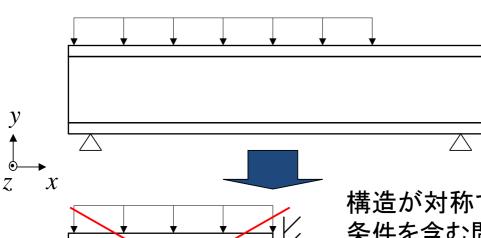
$$\frac{\mathrm{d}v}{\mathrm{d}x} = \theta_x = 0$$

 $\frac{\mathrm{d}\,v}{\mathrm{d}x} = \theta_z = 0$

●omputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

対称条件は使える?使えない?

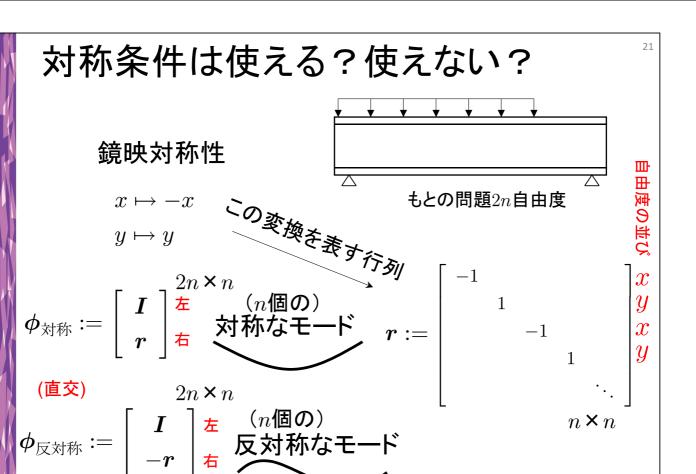
半解析:左右対称の問題(+構造)を半分で解析できる

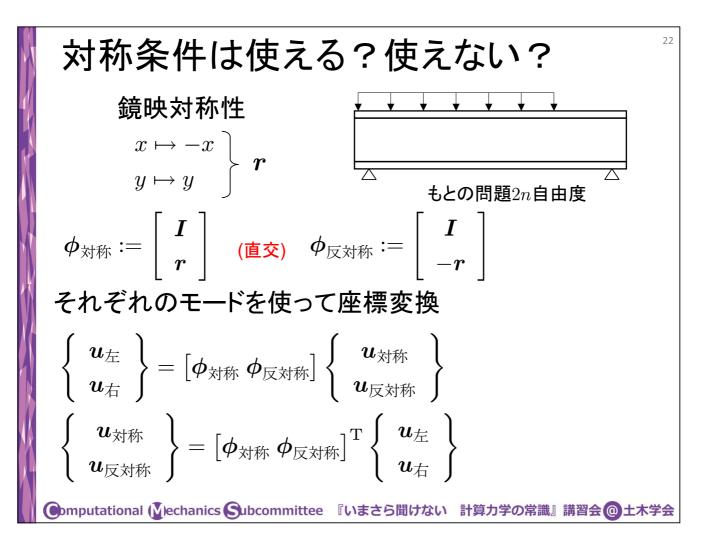


構造が対称でも、境界 条件を含む問題が対 称でないと半解析はで きない.

$$u = 0 \ (\theta_z = 0)$$

●pmputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会





●omputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

鏡映対称性

$$\left.\begin{array}{c}
x \mapsto -x \\
y \mapsto y
\end{array}\right\} \mathbf{r}$$

$$oldsymbol{\phi}_{orall \pi} \coloneqq \left[egin{array}{c} oldsymbol{I} \ oldsymbol{r} \end{array}
ight]$$

$$oldsymbol{\phi}_{lpha lpha} := \left[egin{array}{c} oldsymbol{I} \ oldsymbol{r} \end{array}
ight] \quad ext{(ie文)} \quad oldsymbol{\phi}_{oldsymbol{oldsymbol{\gamma}} lpha lpha} := \left[egin{array}{c} oldsymbol{I} \ -oldsymbol{r} \end{array}
ight]$$

荷重ベクトルも座標変換

$$\left\{egin{array}{c} oldsymbol{f}_{\pm} \ oldsymbol{f}_{ au} \end{array}
ight\} = \left[oldsymbol{\phi}_{
m yh} \, oldsymbol{\phi}_{
m Djhh}
ight] \left\{egin{array}{c} oldsymbol{f}_{
m pjh} \ oldsymbol{f}_{
m Djhh} \end{array}
ight\}$$

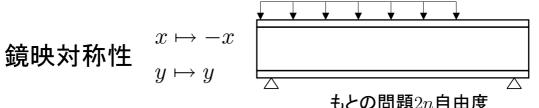
$$\left\{egin{array}{c} oldsymbol{f}_{ ext{plank}} \ oldsymbol{f}_{ ext{DMR}} \end{array}
ight\} = \left[oldsymbol{\phi}_{ ext{plank}} oldsymbol{\phi}_{ ext{DMR}}
ight]^{ ext{T}} \left\{egin{array}{c} oldsymbol{f}_{ ext{E}} \ oldsymbol{f}_{ ext{f}} \end{array}
ight\}$$

●omputational Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 @土木学会

対称条件は使える?使えない?

$$x \mapsto -x$$

$$y \mapsto y$$



$$\phi_{lpha rac{1}{r}} \coloneqq \left[egin{array}{c} I \ r \end{array}
ight]$$
 対称なモード

 $iggl \downarrow$ 直交する iggl iggr iggl iggr iggr

$$oldsymbol{\phi}^{ ext{T}}_{lpha lpha }$$
 $oldsymbol{\phi}^{ ext{T}}_{oldsymbol{eta} lpha lpha}$

$$oldsymbol{\phi}_{oldsymbol{ar{c}} ext{対称}} \coloneqq \left[egin{array}{cccc} oldsymbol{I} \ -oldsymbol{r} \end{array}
ight] oldsymbol{ar{c}} ext{対称} = \left[egin{array}{cccc} oldsymbol{k}_{ ext{対称}} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{k}_{oldsymbol{ar{c}} ext{対称}} \end{array}
ight]$$

$$= \left[egin{array}{ccc} oldsymbol{k}_{
abla j pprox oldsymbol{k}_{
abla j oldsymbol{k}}} oldsymbol{0} & oldsymbol{k}_{
abla j pprox oldsymbol{k}_{
abla j oldsymbol{k}}} \end{array}
ight.$$

鏡映対称性 $y \mapsto y$

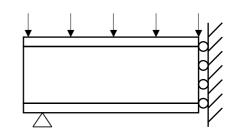
$$x \mapsto -x$$
$$y \mapsto y$$

以上から、解くべき式は

$$\left[egin{array}{cc} oldsymbol{k}_{ ext{ iny phi}} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{k}_{ ext{ iny phi}} \end{array}
ight] \left\{egin{array}{c} oldsymbol{u}_{ ext{ iny phi}} \ oldsymbol{u}_{ ext{ iny phi}} \end{array}
ight\} = \left\{egin{array}{c} oldsymbol{f}_{ ext{ iny phi}} \ oldsymbol{f}_{ ext{ iny phi}} \end{array}
ight\}$$

荷重が対称なら $f_{反対称}$ はゼロ

上の式の上の行のみ解けばよい



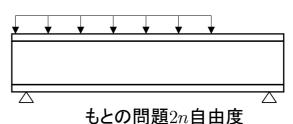
●pmputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

対称条件は使える?使えない?

鏡映対称性

$$x \mapsto -x$$

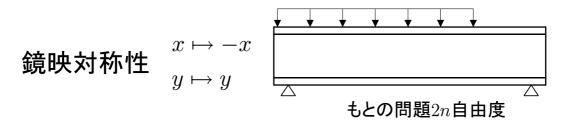
$$y \mapsto y$$



以上から、解くべき式は

$$\left[egin{array}{cc} oldsymbol{k}_{ ext{ph}} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{k}_{ ext{ph}} \end{array}
ight] \left\{ egin{array}{c} oldsymbol{u}_{ ext{ph}} \ oldsymbol{u}_{ ext{ph}} \end{array}
ight\} = \left\{ egin{array}{c} oldsymbol{f}_{ ext{ph}} \ oldsymbol{f}_{ ext{ph}} \end{array}
ight\}$$

荷重が対称でない場合でも、上の変換を行って、対称・反 対称の問題を別々に解き、後で重ね合わせることができる



$$egin{bmatrix} m{k}_{eta f h} & m{0} \ m{0} & m{k}_{m{f eta} f h} \end{bmatrix} \left\{ egin{array}{c} m{u}_{m{eta} h} \ m{u}_{m{eta} J h} \end{array}
ight\} = \left\{ egin{array}{c} m{f}_{m{eta} J h} \ m{f}_{m{eta} J h} \end{array}
ight\}$$

ブロック対角化:何らかの対称性により可能になる

連立方程式を解くのに自由度の1乗以上の演算が必要な場合、メリットがある。例えば古典的な消去法で3乗なら元の問題 $(2n)^3=8n^3>2n^3$ 対角化(1/4の演算)

●pmputational (☑)echanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 @土木学会

対称条件は使える?使えない?

結論

構造と荷重が対称性を持っていれば 使える.

荷重が対称でなくても, ブロック対角化は可能

7話 固体の非線形解析 って何ですか?

- 7.1 何が非線形なんですか?
- 7.2 材料非線形とは?
- 7.3 幾何学的非線形とは?
- 7.4 境界の非線形性とは?

執筆者

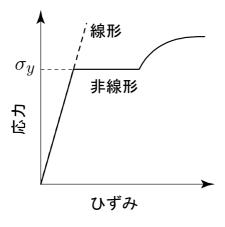
東北大学 斉木

東北大学 山川

木更津高専 石井

©omputational **№**echanics **S**ubcommittee 『いまさら聞けない 計算力学の常識』講習会 **@**土木学会

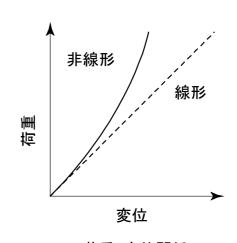
そもそも非線形とは?



(a) 応力-ひずみ関係

線形
$$\sigma(\epsilon_a + \epsilon_b) = \sigma(\epsilon_a) + \sigma(\epsilon_b)$$
 $P(\delta_a + \delta_b) = P(\delta_a) + P(\delta_b)$

非線形
$$\sigma(\epsilon_a + \epsilon_b) \neq \sigma(\epsilon_a) + \sigma(\epsilon_b)$$
 $P(\delta_a + \delta_b) \neq P(\delta_a) + P(\delta_b)$



(b) 荷重-変位関係

$$P(\delta_a + \delta_b) = P(\delta_a) + P(\delta_b)$$

$$P(\delta_a + \delta_b) \neq P(\delta_a) + P(\delta_b)$$

非線形性のいろいろ

釣合式(運動方程式)

運動(変位) 〈変位-ひずみ関係〉 変形(ひずみ) 〈応カ-ひずみ関係〉 力(応力)

幾何学的非線形性

有限変形、微小ひずみ有限回転、 分岐, 構造不安定 □

非線形弾性, 弹塑性, 損傷, 破壊、材料不安定

材料非線形性

境界値問題

境界条件

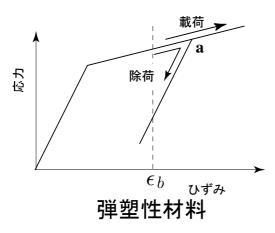
变位境界条件, 荷重境界条件

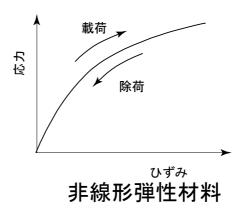
境界の非線形性

接触, 摩擦, 追従力(圧力), 破壊し

● mputational Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩ 土木学会

材料非線形とは? $\sigma(\epsilon_a + \epsilon_b) \neq \sigma(\epsilon_a) + \sigma(\epsilon_b)$





ex. 弹塑性材料

応力 = 構成モデル(弾性ひずみ)

弾性ひずみ = 全ひずみ - 塑性ひずみ

速度(増分)形構成関係は必須ではない!

塑性ひずみは履歴依存なので増分解法は必須

●pmputational (Mechanics Subcommittee) 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

固体の非線形解析とは

結論

- 材料非線形性
 - ▶ 弾塑性材料や非線形弾性
 - ▶ 弾塑性では増分解析は必須だが、速度形の構成 則は必須ではない

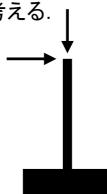
●pmputational Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

幾何学的非線形とは?

幾何学的に線形とは、変位もひずみも小さいこと = 微小変形

Case1. 変位が小さくないときは

変形後の状態で力の釣り合いを考える.



幾何学的非線形とは?

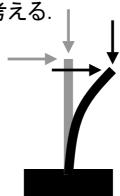
幾何学的に線形とは、変位もひずみも小さいこと = 微小変形

Case1. 変位が小さくないときは

変形後の状態で力の釣り合いを考える.

力を加えて変形させると. 力の作用点も変化する.

鉛直方向の力がモーメント を発生させる.

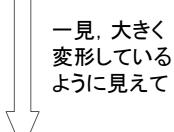


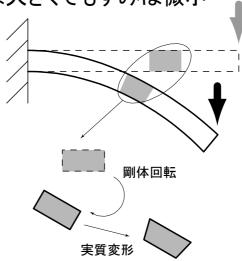
●pmputational **(M**)echanics **(S**ubcommittee 『いまさら聞けない 計算力学の常識』講習会 **(**@土木学会

微小ひずみでも幾何学的非線形

微小ひずみ有限変位:変位は大きくてもずみは微小

やわらかい(細長い)梁 を曲げてみると...





剛体回転は大きいが、実質的な変形は小さい ストレッチテンソルが小さい(極分解の定理) 微小変形の構成モデルで十分

●pmputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

固体の非線形解析とは

結論

- 材料非線形性
 - ▶ 弾塑性材料や非線形弾性
 - ▶ 弾塑性では増分解析は必須だが、速度形の構成 即は必須ではない
- 幾何学的非線形性
 - ▶ 微小ひずみでも非線形

●pmputational Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

幾何学的非線形とは?

幾何学的に線形とは、変位もひずみも小さいこと = 微小変形

Case2. ひずみが小さくないときは 変形後の状態で力の釣り合いを考える.

38

幾何学的非線形とは?

幾何学的に線形とは、変位もひずみも小さいこと = 微小変形

Case2. ひずみが小さくないときは

変形後の状態で力の釣り合いを考える.

力を加えて伸ばすと. 断面 積は減少する.

同じ力でも断面積が変化するので、応力も変化する、 (応力を定義するときの断面積はどちらを使ったらよい?) (ひずみの定義は一意か?)

●pmputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

大変形のひずみの定義

ひずみの定義がいろいろあります

工学(Biot)ひずみ

 $\frac{\ell - L}{I}$

もつとも簡単

対数(Hencky)ひずみ $\ln \frac{\ell}{L} = \ln \frac{\ell_1}{L} \frac{\ell_2}{\ell_1} \cdots \frac{\ell}{\ell_{n-1}}$ 加昇刀胜か可能 $=\lnrac{\overline{\ell_1}}{L}+\lnrac{\ell_2}{\ell_1}+\cdots+\lnrac{\ell}{\ell_{n-1}}$ 履歴依存の弾塑性の記述に便利

Green ひずみ

 $\ell^2 - L^2$

多次元への拡張が容易

Lagrange的なので異方性材料の記述に便利

対象とする材料と構成モデルによって選択

大変形のひずみの定義

ひずみの定義による違いは

工学(Biot)ひずみ

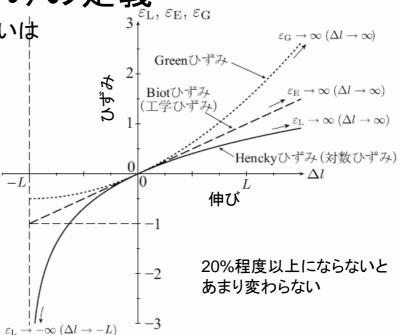
$$\epsilon_{\rm L} = \frac{\ell - L}{L}$$

対数(Hencky)ひずみ

$$\epsilon_{\rm H} = \ln \frac{\ell}{L}$$

Green ひずみ

$$\epsilon_{\rm G} = \frac{\ell^2 - L^2}{2L^2}$$

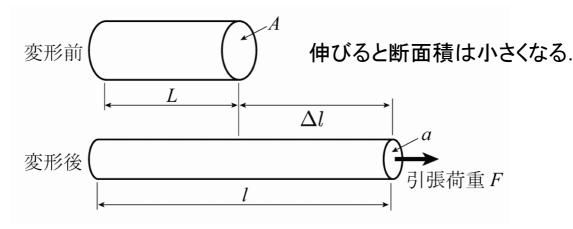


対数ひずみは $\Delta l
ightarrow -L$ で $arepsilon_{
m L}
ightarrow -\infty$

対象とする材料と構成モデルによって選択

●pmputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

大変形の応力の定義



$$F=PA$$
 (第1 $Piola-Kirchhoff$ 応力) 変形前の断面積 $=\sigma a$ 真応力 現在の断面積

固体の非線形解析とは

結論

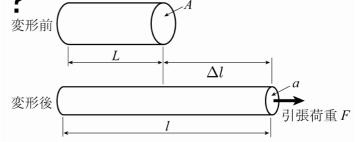
- 材料非線形性
 - ▶ 弾塑性材料や非線形弾性
 - ▶ 弾塑性では増分解析は必須だが、速度形の構成 即は必須ではない
- 幾何学的非線形性
 - ▶ 微小ひずみでも非線形
 - ▶有限ひずみと対応する応力の定義は複数

●pmputational (v)echanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

硬化材料の軟化?

伸びひずみと面積ひずみ

$$\epsilon_l = rac{l-L}{L}, \;\; \epsilon_a = rac{a-A}{A}$$
 græg



$$PA = \sigma a$$
 より
$$P = \frac{a}{A} \sigma = \sigma (1 + \epsilon_a)$$

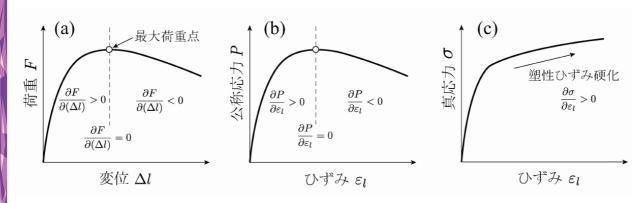
荷重変位曲線の傾き

Poisson比が正であれば負 (-0.5程度)

$$\frac{\partial F}{\partial (\Delta l)} = \frac{A}{L} \frac{\partial P}{\partial \epsilon_l} = \boxed{\frac{A}{L}} \left[\boxed{\frac{\partial \sigma}{\partial \epsilon_l}} (1 + \epsilon_a) + \sigma \boxed{\frac{\partial \epsilon_a}{\partial \epsilon_l}} \right]$$

定数 硬化材料であれば正 (弾性係数, 硬化係数)

硬化材料の軟化?



荷重変位曲線の傾き

(-0.5程度)

$$\frac{\partial F}{\partial (\Delta l)} = \frac{A}{L} \frac{\partial P}{\partial \epsilon_l} = \frac{A}{L} \left[\frac{\partial \sigma}{\partial \epsilon_l} (1 + \epsilon_a) + \sigma \frac{\partial \epsilon_a}{\partial \epsilon_l} \right]$$

定数 硬化材料であれば正(硬化係数)

伸び(断面減少)が大きくなり、応力が大きくなると荷重は減少する

●pmputational (vechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

固体の非線形解析とは

46

結論

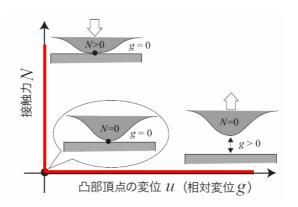
- 材料非線形性
 - ▶ 弾塑性材料や非線形弾性
 - ▶ 弾塑性では増分解析は必須だが、速度形の構成 即は必須ではない
- 幾何学的非線形性
 - ▶ 微小ひずみでも非線形
 - ▶ 有限ひずみ(と対応する応力)の定義は複数
 - ▶ 硬化材料も軟化する

境界の非線形性とは

•接触

 $g \ge 0$ and $N \le 0$ and gN = 0

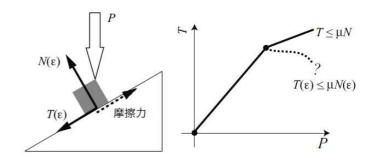
接触する点も自明ではない



・ 摩擦すべり

Coulomb摩擦

 $T \le \mu N$



●pmputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

固体の非線形解析とは

結論

- 材料非線形性
 - ▶ 弾塑性材料や非線形弾性
 - ▶ 弾塑性では増分解析は必須だが、速度形の構成即は必須 ではない
- 幾何学的非線形性
 - ▶ 微小ひずみでも非線形
 - ▶ 有限ひずみ(と対応する応力)の定義は複数
 - ▶ 硬化材料も軟化する
- 境界の非線形性
 - ▶接触や摩擦

● mputational (M)echanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 @土木学会

9話 固体の非線形解析における 2つの論点

- 9.1 "速度形"の正体
- 9.2トータルラグランジュと更新ラグランジュは何が違うのか?

執筆者 東北大学 寺田

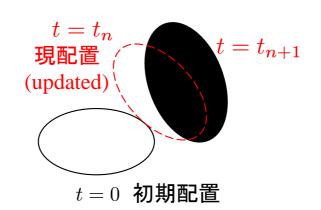
●pmputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

トータルラグランジュと更新ラグランジュ

何が違うのか?

変形を考える場合、 変形前と変形後の 情報(状態)が必要

→ 参照配置



(total)

total: 初期配置を参照配置とする

updated: 現配置を参照配置とする

トータルラグランジュと更新ラグランジュ

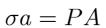
何が違うのか?

total: 初期配置 (X) を参照配置とする

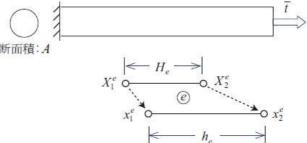
$$\frac{\partial P}{\partial X} = 0$$

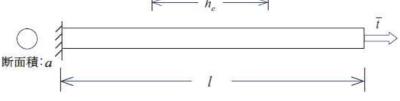
updated: 現配置 (x) を参照配置とする $_{I}$

$$\frac{\partial \sigma}{\partial x} = 0$$



真応力 公称応力





●omputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

トータルラグランジュ

内力ベクトル ([仮想ひずみ×応力]の積分)

total: 初期配置 (X) を参照配置とする

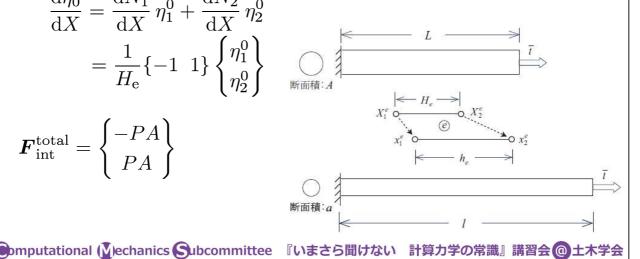
$$\int_0^{H_e} \frac{\partial \eta_0}{\partial X} PA \, \mathrm{d}X$$

$$\frac{d\eta_0}{dX} = \frac{dN_1}{dX} \eta_1^0 + \frac{dN_2}{dX} \eta_2^0$$

$$= \frac{1}{H_e} \{-1 \ 1\} \begin{Bmatrix} \eta_1^0 \\ \eta_2^0 \end{Bmatrix}$$

$$m{F}_{ ext{int}}^{ ext{total}} = egin{cases} -PA \ PA \end{cases}$$

は直とする
$$\eta_0(X)=N_1(X)\,\eta_1^0+N_2(X)\,\eta_2^0$$
線形の近似関数



更新ラグランジュ

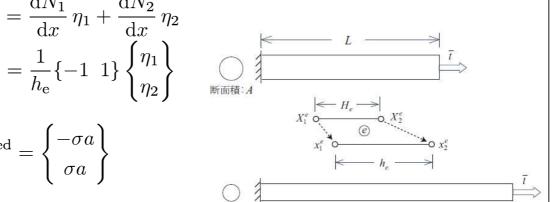
内力ベクトル

updated: 現配置 (x) を参照配置とする $\frac{h_{\rm e}-x}{h_{\rm e}}$ $\frac{x}{h_{\rm e}}$

ipulated. 現配置
$$(x)$$
 を参照配置とする $\int_0^{h_{\rm e}} \frac{\partial \eta}{\partial x} \, \sigma a \, {
m d} x$ $\eta(x) = N_1(x) \, \eta_1 + N_2(x) \, \eta_2$ 線形の近似関数

$$\frac{\mathrm{d}\eta}{\mathrm{d}x} = \frac{\mathrm{d}N_1}{\mathrm{d}x} \,\eta_1 + \frac{\mathrm{d}N_2}{\mathrm{d}x} \,\eta_2$$
$$= \frac{1}{h_e} \{-1 \ 1\} \begin{Bmatrix} \eta_1 \\ \eta_2 \end{Bmatrix}$$

$$m{F}_{ ext{int}}^{ ext{updated}} = egin{cases} -\sigma a \ \sigma a \end{cases}$$



©omputational Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

トータルラグランジュと更新ラグランジュ

実は同じです

total: 初期配置 (X) を参照配置とする

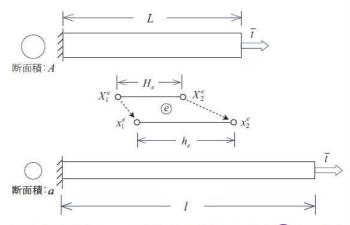
updated: 現配置 (x) を参照配置とする

$$m{F}_{ ext{int}}^{ ext{total}} = egin{cases} -PA \\ PA \end{pmatrix}$$

$$m{F}_{ ext{int}}^{ ext{updated}} = egin{cases} -\sigma a \\ \sigma a \end{pmatrix}$$

$$\sigma a = PA$$
 なので

$$m{F}_{ ext{int}}^{ ext{total}} = m{F}_{ ext{int}}^{ ext{updated}}$$



р mputational 🚺 echanics S ubcommittee 『いまさら聞けない 計算力学の常識』講習会 @

トータルラグランジュと更新ラグランジュは何が違うのか?

結論

トータルラグランジュと更新ラグランジュは本質的に何も変わらない.

プログラムを書く際に少しの違いが あるだけ

"There is no difference in the formulations." Bathe et al., Int. J. Num. Meth. Eng., 1975

© mputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

10話 破壊現象の数値解析の罠

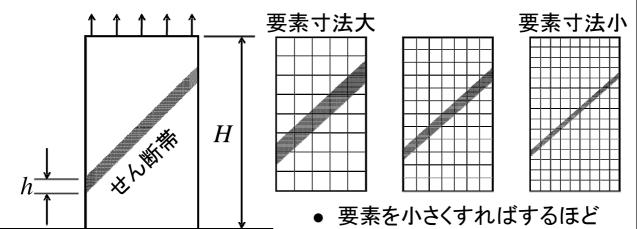
- 10.1 破壊現象の数理問題の特徴
- 10.2 弾塑性解析のメッシュ依存性
- 10.3 弾塑性解析の解の唯一性の喪失
- 10.4 亀裂先端の特異性
- 10.5 個別要素法による連続体解析の落とし穴

執筆者

東京大学 堀 慶応義塾大学 小国

弾塑性解析のメッシュ依存性

硬化係数が極めて小さい弾塑性体を引張ると



現実:

せん断帯の幅は有限

矛盾

メッシュ依存性 解析解に近づいている

せん断帯の幅も小さくなる!

モデル化そのものが現実を表していない

© pmputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

弾塑性解析のメッシュ依存性

結論

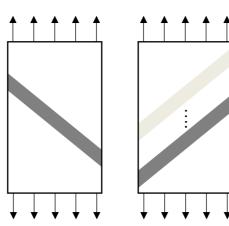
弾塑性解析では、メッシュ依存性が現れる場合がある.

有限要素法の不備ではなく, モデルの問題

58

弾塑性解析の解の唯一性の喪失

線形(弾性)問題でない限り、唯一性は保障されない



一様引張りなら, 角度,幅が同じせ ん断帯はどこにで きても等価

複数の解=分岐

- ◆ 分岐点では接線剛性行列の固有値の符号が変化 する(固有値がゼロになる).
- ◆ 分岐解はゼロ固有値の固有ベクトルから求める.
- 分岐解が複数(無数)ある場合もある.

© mputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

弾塑性解析の解の唯一性の喪失

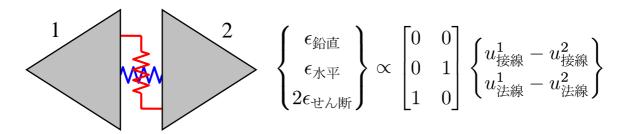
60

結論

弾塑性問題の解は一つとは限らない.

接線剛性行列の固有値に注意しよう

個別要素法による連続体解析の落とし穴 2点間の相対変位では3成分のひずみを表せない(2D)



- 2次元のひずみ成分は3つに対し、2体間の相対変位は2成分しかない。
- 図では、水平方向の垂直ひずみとせん断ひずみを 表現できているが、鉛直方向の垂直ひずみは表せ ない。

Poisson効果が表現できない

●pmputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会

個別要素法による連続体解析の落とし穴

62

結論

個別要素法では連続体の変形を表現できない.

連続体の変形を再現するには3体間 の相対変位が必要

構造解析に入る前に知っておきたい「常識」

5話 知ってそうで知らない境界条件処理のいろいろ 徳山高専 原, 新潟大学 阿部, 東北大学 斉木

7話 固体の非線形解析って何? 東北大学 斉木,山川,木更津高専 石井

9話 固体の非線形解析における2つの論点 東北大学 寺田

10話 破壊現象の数値解析の罠 東京大学 堀, 慶應義塾大学 小国

東北大学 斉木 功

© mputational (Mechanics Subcommittee 『いまさら聞けない 計算力学の常識』講習会 ⑩土木学会